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mutations in colorectal cancer
histopathology

Check for updates

Marco Gustav 1, Nic Gabriel Reitsam 2, Zunamys I. Carrero 1, Chiara M. L. Loeffler 1,3,
Marko van Treeck1, Tanwei Yuan 4, Nicholas P. West5, Philip Quirke 5, Titus J. Brinker 6,
Hermann Brenner4,7,8, Loëtitia Favre9,10,11, Bruno Märkl2, Albrecht Stenzinger 12, Alexander Brobeil12,13,
Michael Hoffmeister 4, Julien Calderaro9,10,11, Anaïs Pujals 9,10,11,15 & Jakob Nikolas Kather1,3,5,14,15

In thespectrumof colorectal tumors,microsatellite-stable (MSS) tumorswithDNApolymerase ε (POLE)
mutations exhibit a hypermutated profile, holding the potential to respond to immunotherapy similarly
to their microsatellite-instable (MSI) counterparts. Yet, due to their rarity and the associated testing
costs, systematic screening for these mutations is not commonly pursued. Notably, the
histopathological phenotype resulting from POLEmutations is theorized to resemble that of MSI. This
resemblancenotonly could facilitate their detectionbya transformer-basedDeepLearning (DL) system
trainedonMSIpathologyslides,butalso indicates thepossibility forMSSpatientswithPOLEmutations
to access enhanced treatment options, which might otherwise be overlooked. To harness this
potential,we trainedaDeepLearningclassifierona largedatasetwith theground truth formicrosatellite
status and subsequently validated its capabilities for MSI and POLE detection across three external
cohorts. Our model accurately identifiedMSI status in both the internal and external resection cohorts
using pathology images alone. Notably, with a classification threshold of 0.5, over 75%of POLE driver
mutant patients in the external resection cohorts were flagged as “positive” by a DL system trained on
MSI status. In a clinical setting, deploying this DLmodel as a preliminary screening tool could facilitate
the efficient identification of clinically relevantMSI andPOLEmutations in colorectal tumors, in one go.

In colorectal cancer (CRC), microsatellite instability (MSI) is a key bio-
marker, indicating tumors that are hypermutated and highly
immunogenic1–3. As a result, CRC patients with MSI are considered as
candidates for immunotherapy in both early and advanced stages4.
Laboratory tests, including polymerase chain reaction (PCR) and immu-
nohistochemistry (IHC), are used for the detection of MSI by identifying a
lack in expression of mismatch repair deficiency proteins (dMMR). Since
2019, dozens of academic research studies have shown that Deep Learning
(DL) can predict MSI status directly from routine hematoxylin and eosin
(H&E) histology slides5–14. These studies have led to the regulatory approval
of at least one commercial DL-based MSI test in 2022, with several similar
products being under development at other commercial entities14–16.
Although the performance of DL-based MSI tests may exhibit a somewhat

reduced specificity compared to gold standard methods, they offer a more
rapid and cost-effective means of patient pre-screening at a high sensitivity,
reducing the need for validating laboratory tests14,17.

Unlike patients with MSI, those with microsatellite stable (MSS)
colorectal tumors typically do not respond to immunotherapy. How-
ever, there is an exception: those harboring pathogenic mutations in the
DNA synthesis proteins DNA Polymerase Epsilon (POLE) or DNA
Polymerase Delta (POLD1). These mutations, specifically in the exo-
nuclease domain of the DNA polymerase family B, disrupt the proof-
reading function of the DNA polymerase enzyme18,19. Consequently,
these patients accumulate somatic mutations, resulting in a high
immunogenicity, and are likely to respond to immunotherapy20–22.Much
like CRC with MSI, MSS CRC with POLE or POLD1 mutations also
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exhibit a response to cancer immunotherapy22,23, with ongoing clinical
trials for immuno-oncology therapy in such cases24. However, these
pathogenic mutations are found in only about 1% of CRC patients25 and
are not typically included in routine screening protocols. As a result, they
often remain undiagnosed in clinical practice.

In this study, we aimed to investigate whetherDL-basedMSI detection
methods, which were not explicitly trained to detect POLE/POLD1 tumors,
are capable of identifying such cases. Our hypothesis is grounded on
research showing that tumors characterized by MSI, and those with
pathogenic POLE/POLD1mutations (but MSS), exhibit shared clinical and
morphological characteristics20,26–29. Although these tumors are not biolo-
gically identical30, they share biological features that arise from deficiencies
in DNA repair mechanisms, leading to subsequent genomic instability and
response to immunotherapy31–33. Resulting from these similarities, we
hypothesized that the morphological appearance of these tumors in histo-
logicalH&E images should be comparable enough forDLmethods to detect
them, even if trained solely on detecting MSI. This would be clinically
valuable, as there is currently a lack of rapid, cost-effective and widely
accessible methods to diagnose CRC cases with pathogenic POLE/POLD1
mutations.

Results
Prediction ofMSI status fromhistological data viaDeepLearning
across three external cohorts
Digital whole slide images of H&E stained histopathology tissue of CRC
cases were collected from four patient cohorts (Fig. 1a and Supplementary
Table 1): DACHS (Darmkrebs: Chancen der Verhütung durch Screening,
N = 2039)34,35, TCGA (TheCancerGenomeAtlas,N = 429, Fig. 1c),APHP
(Assistance Publique–Hôpitaux de Paris/Public Assistance Hospitals of
Paris) surgical resection (N = 27, Fig. 1d) and APHP biopsy (N = 38,
Fig. 1d). The cases from the DACHS cohort were then used to train a
transformer-based Deep Learning model (Fig. 1a, b) for the prediction of
MSI status. We assessed the model’s performance through patient-level
cross-validation. Our findings revealed a state-of-the-art Area under the
Receiver Operating Curve (AUROC) of 0.94 ± 0.03 (p = 0.00, Supple-
mentary Fig. 2a) for MSI prediction, reiterating that MSI status can be
reliably predicted from histopathology (Supplementary Fig. 2b). We used
a pre-defined threshold of 0.5 to binarize outcomes based on the pre-
diction scores obtained from the output neurons of the classifier network,
with cases above and equal to 0.5 classified as positive, and those below as
negative. This resulted in a sensitivity of 0.87 ± 0.07 (mean ± standard
deviation), a specificity of 0.88 ± 0.04, a negative predictive value (NPV) of
0.98 ± 0.01 and a positive predictive value (PPV) of 0.47 ± 0.08. The dis-
tribution of prediction scores within the DACHS cohort indicates accu-
rate classification for most MSI and MSS cases, including those patients
under 50 years of age (Supplementary Fig. 2). These observations high-
light the model’s robust performance on internal data, underscoring the
need for external validation. To address this, we tested the classifier’s
generalizability by utilizing three external cohorts (Fig. 2a–c) with pre-
viously unseen data. For the TCGA cohort, consisting ofN = 429 patients,
an AUROC of 0.87 ± 0.02 (p = 0.00, Supplementary Fig. 2a) was achieved.
Furthermore, ourmodel reached a sensitivity of 0.93 ± 0.02, a specificity of
0.51 ± 0.10, a NPV of 0.98 ± 0.00 and a PPV of 0.25 ± 0.03 in the TCGA
cohort. The mean prediction scores (± standard deviation) in this cohort
were 0.83 ± 0.06 for MSI patients, 0.48 ± 0.14 for MSS patients, and
0.79 ± 0.12 for those patients harboring pathogenic POLE or POLD1
mutations (Fig. 2a, d).

The APHP resection and biopsy cohorts were designed to include a
nearly equal number of patients withMSI andMSS, ensuring a balanced
representation between the two groups. Within the APHP resection
cohort, 5.60 ± 0.49 (mean ± standard deviation) of 6 MSI patients were
accurately predicted to be MSI. Conversely, 4.60 ± 0.80 out of 10 MSS
patients were correctly categorized, with the remaining ones falsely
predicted to be MSI. This resulted in a sensitivity of 0.93 ± 0.08, speci-
ficity of 0.46 ± 0.08, PPV of 0.51 ± 0.03, andNPV of 0.93 ± 0.08 (Fig. 2b),

which is similar to commercially available methods for detection of MSI
from H&E slides14. The mean MSI prediction score was 0.90 ± 0.07 for
MSI patients, 0.55 ± 0.17 for MSS patients, and 0.70 ± 0.11 for patients
with pathogenic POLEmutations (Fig. 2d). This implies that our model
predicts MSI status on par with a commercially available assay and is a
viable pre-screening tool.

For the APHP biopsy cohort, 9.20 ± 2.40 of the 13 MSI patients were
accurately predicted to beMSI, while 5.80 ± 1.60 out of 9MSS patients were
incorrectly predicted to be MSI. This led to a sensitivity of 0.71 ± 0.18,
specificity of 0.36 ± 0.18, PPV of 0.61 ± 0.05, and NPV of 0.47 ± 0.12
(Fig. 2c). Of note, we found that two cases from the last group which were
falsely predicted asMSI, originated from livermetastases (Fig. 2c,middle) as
opposed to primary tumors like all cases in the training set, indicating that
the system’s performance on liver biopsy tissue could be limited. The mean
MSI prediction scores for this cohort were: 0.68 ± 0.13 for MSI patients,
0.62 ± 0.13 forMSSpatients, and 0.66 ± 0.14 for patients bearing pathogenic
POLEmutations (Fig. 2d).

To conclude, our transformer-based Deep Learning approach
demonstrated robust capabilities in predicting MSI status from
pathology slides of surgical resection samples. Next, we assessed the
predictions of this classifier in patients harboring POLE driver
mutations.

Deep Learning for MSI classification also identifies POLE driver
mutants in three external cohorts
Wehypothesized thatMSS tumors harboring POLE drivermutations share
a common phenotype with MSI tumors. To investigate this, we obtained
three cohorts with POLE sequencing data: TCGA, the APHP surgical
resection and theAPHPbiopsy cohort. In TCGA,N = 10 tumors hadPOLE
drivermutations (Fig. 1c and Supplementary Table 2), reflecting the natural
prevalence of these raremutations in CRC. TheAPHP resection cohort was
composed of N = 8 POLE driver mutants, N = 6 MSI and N = 12 MSS
patients, whereas the APHP biopsy cohort was composed of N = 9 POLE
drivermutants,N = 13MSI andN = 8MSSpatients (Fig. 1d, Supplementary
Table 3). None of the three external cohorts included POLD1 driver
mutation cases.

We observed that 9.00 ± 0.63 out of 10 POLE drivermutant patients in
theTCGAcohortwerepredicted asMSI. The twoPOLEdrivermutant cases
which were not classified as MSI by the median model (Fig. 2a, bottom)
carried the POLE mutations S459F and V411L, which are considered
pathogenic29,36–39. Specifically, TCGA-AG-A002 had mutations S459F (d)
andR150* and amedianprediction score forMSIof 0.12,whileTCGA-AA-
A00N carried V411L (d) and L1255V and had a median MSI prediction
score of 0.31 (SupplementaryTable 2).Overall, therewas a discernible trend
towards high MSI prediction scores for the majority of POLE/POLD1
mutant samples. For scores in the range of 0.8 and above, there was reduced
variation among the model’s predictions, as opposed to the transitional
range (Fig. 2a bottom). Furthermore, it can be noted that for the two mis-
classified cases in TCGA based on themodel with themedian AUROC, the
majority of the 5 deployedmodels predicted them to be asMSIwhen the 0.5
threshold was applied.

In theAPHP resection cohort, 6.00 ± 0.63 out of 8POLEdrivermutant
patients were predicted to be MSI (Fig. 2b, bottom). We further evaluated
the performance of our model on biopsy samples, which are known to be
inherently difficult to assess by DL-models40. For the APHP biopsy cohort,
6.40 ± 0.80 out of 9POLEmutant patientswere predicted to beMSI (Fig. 2c,
bottom). Just as in the MSI cases, we observed that there is less uncertainty
regarding POLEmutations in the APHP resection cohort compared to the
APHP biopsy cohort (Fig. 2b, c, bottom). These findings confirm that the
analysis of biopsies using DL is more challenging compared to that of
surgical resection slides due to inconsistent sample size, quality, and tumor
content.

Understanding the pathogenicity and biological relevance of POLE
mutations is still an evolving field41,42. Hotspot mutations show a restriction
depending on the tumor type43, with POLE p.P286R mutations being of
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particular relevance in CRC43,44. For predicting POLE p.P286R mutations,
our model reached a comparable or even better prediction scores (mean ±
standard deviation) than calculated for all driver mutations in TCGA
(0.96 ± 0.04), APHP resection (0.70 ± 0.29) andAPHPbiopsy (0.73 ± 0.16),
indicating that our algorithm is able to identify morphological features
associated with this particular CRC-specific POLE mutation. Taken toge-
ther, our findings demonstrate that DL-based MSI detection methods
possess the capacity to identify POLE mutants. This provides compelling
evidence for a commonmorphological phenotype betweenMSI and POLE
mutations in CRC, thereby confirming our initial hypothesis.

Explainability of themorphological patterns associatedwithMSI
and POLE mutations
Having established that a morphology-based classifier trained on MSI
tumors can also identify POLEmutant tumors, we sought to determine the
distinct morphological patterns associated with these tumors. In order to
visualize the distribution of attention at a slide-level, we conducted an
analysis using attention heatmaps for samples in TCGA (Fig. 3) and
DACHS (Supplementary Fig. 3a). Specifically, we examined samples with
the highest and lowest prediction scores across all ground truth classes,
including MSI, MSS, and POLE driver mutations (POLE only for TCGA,

Fig. 1 | Experimental design, study overview and cohort characterization. a A
suspected case of colorectal cancer (CRC) prompts a biopsy or surgical resection to
obtain a tissue sample. This sample is then digitized into aWhole Slide Image (WSI)
for analysis by a clinical Deep Learning system, which has the potential to pre-screen
for MSI and POLE cases, pending external validation and regulatory approval as a
medical device. bOur Deep Learning pipeline starts with tessellation ofWhole Slide
Images (WSIs) into smaller, relevant tiles while discarding non-informative back-
ground areas.We then extract n feature vectors fromn color-normalized tiles, which
range in size from 100,000 to 50,000 pixels across three color channels. These vectors
are compressed into a more compact feature space and processed using a two-layer,
eight-head Vision Transformer (ViT) architecture. Within this system, a ‘class

token’ is simultaneously trained to generate the final MSI prediction. To aid
pathological evaluation, we create heatmaps that visualize the areas of focus deter-
mined by the ViT’s attention mechanisms. c Molecular characterization of the
TCGA (The Cancer Genome Atlas) cohort with respect to MSI and MSS (MSI-L/
MSS). Combinations of microsatellite status and POLE/POLD1 (“d”: driver)
mutations are shown (orange: POLE driver mutation, blue: MSI-H, yellow: MSI-L/
MSS). dMolecular characteristics of the APHP (Assistance Publique–Hôpitaux de
Paris, resection and biopsy) cohorts with respect to MSI and MSS cases. Combi-
nations of microsatellite status and POLE/POLD1 (“d”: driver) mutations are shown
(orange: POLE driver mutation, blue: MSI-H, yellow: MSS). The icons on all panels
are obtained from www.flaticon.com.
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regardless of MS status). Here, we observed that high-attention areas
included almost exclusively tumor tissue, whereas other tissue types, such as
regular tumor-free intestinal mucosa or uninvolved pericolonic/mesorectal
adipose tissue, were not highlighted. The heatmaps also reveal that the

model seems to be quite robust against pen markings, since prevalent pen
markings are not highlighted in the majority of cases (Supplementary
Fig. 3). The results depicted in the figures also indicate that the eight
attention maps of the first transformer layer show more diverse attention

Fig. 2 | Results of MSI and POLE prediction experiments with Vision Trans-
former based pipeline. Results are shown for external validation on TCGA (The
Cancer Genome Atlas, International) and APHP Resection and Biopsy (Assistance
Publique–Hôpitaux deParis, France). Each patient is shownwith 5 dots representing
their prediction scores from 5-fold cross-validation. Highlighted dots correspond to
the median AUROCmodel based on the TCGA cohort. The classification threshold
is set to 0.5 for all cohorts. Mean and standard deviation of the predicted MSI score
are shown, with values computed for drivermutations only in case of POLE/POLD1.
Microsatellite status is indicated by color, wild type byWT,mutated byMUT, driver
mutations by “d”, liver metastasis samples by green boxes and early-onset colorectal
cancer patients (age at diagnosis <50 years)58 by a green triangle. Arrows point to the
corresponding heatmaps of selected samples. a In the TCGA testing cohort,

prediction scores were calculated for patients with MSI (excluding POLE/POLD1
mutations, top chart), MSS (excluding POLE/POLD1mutations, middle chart) and
POLE/POLD1 mutations (bottom chart). MSS group includes MSI-L and MSS.
b, c In APHP resection (b) and biopsy (c) testing cohort, prediction scores were
calculated for patients with MSI (excluding POLE/POLD1 mutations, top chart),
MSS (excluding POLE mutations, middle chart) and POLE (bottom chart). d The
mean and standard deviation for Predicted MSI Scores in panel a–c based split are
calculated for the cohort and ground truth regarding microsatellite and POLE/
POLD1 status. For POLE/POLD1 mutated cases, only driver mutations are con-
sidered. The icons indicating the origin of the cohorts are sourced from www.
flaticon.com.
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Fig. 3 | Attention heatmaps of selected samples from the TCGA (The Cancer
Genome Atlas) cohort. For each group with ground truth MSI (blue, A, B), MSS &
POLEmutated (orange,C,D), andMSS (yellow, E, F) we chose a sample with a high
and a lowMSI prediction score, respectively. The associated whole slide images can
be viewed under the GDC Data Portal: https://portal.gdc.cancer.gov/. Heatmaps
were derived from a model that showcases the median AUROC among 5 trained
models for this cohort. Due to the transformer’s architecture, which consists of 2
layers and 8 heads, each slide yields 16 distinct heatmaps. Blue regions signify areas

with low attention, while yellow designates high attention areas critical for predic-
tions. The scale bars indicate a length of 2 mm.A,C, E illustrate lowMSI-prediction
scores, characterized by adenocarcinoma NOS (not otherwise specified) histology,
the presence of dirty necrosis, and a reduced number of tumor-infiltrating lym-
phocytes. B, D, F demonstrate high MSI prediction scores, associated with mor-
phological hallmarks such as abundant extracellular mucin (seen in B and F), a
medullary growth pattern (visible in D), and an enhanced presence of tumor-
infiltrating lymphocytes.
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patterns than in the second transformer layer. For two samples (Supple-
mentary Fig. 3b), attention within the transformer varies significantly
among different attention heads: some focus on larger regions, while others
concentrate on smaller areas. This variance becomes more uniform in the
second transformer layer (Fig. 3, Supplementary Fig. 3). Furthermore, we
revised the histomorphology of the cases with lowest (N = 10, heatmaps in
Supplementary Fig. 4) andhighest (N = 10, heatmaps in Supplementary Fig.
5) MSI prediction scores within TCGA with regards to histology, tumor-
infiltrating lymphocytes (TILs) and the presence of dirty necrosis (Sup-
plementary Table 5). High MSI prediction scores were significantly asso-
ciated with the presence of extracellular mucin or a medullary growth
pattern (p < 0.001), higher numbers of TILs (p = 0.002) and the absence of
dirty necrosis (p = 0.002) (Supplementary Table 6), which is in line with the
characteristic phenotype Shia et al. have already described in their com-
prehensive histomorphologic characterization of POLEmutant CRCs27. In
the APHP resection cohort, prediction and attention heatmaps for selected
samples have been delineated in Supplementary Figs. 6-7. Within these
figures, a specific MSS patient sample, taken from a liver metastasis, was
classified as MSI (refer to Supplementary Fig. 6A). Additionally, two MSS
patients with pathogenic mutations in POLE, both of whom were classified
as MSI, are presented in Supplementary Fig. 6B-C. These findings lend
considerable weight to the hypothesis of this study. In contrast, the sole two
MSS patients with pathogenic mutations in POLE, who were classified as
MSS, are shown in Supplementary Fig. 7A-B, accompanied by anotherMSS
case which was incorrectly predicted as MSI (Supplementary Fig. 7C). To
gain further insights into morphological features associated with our pre-
dictions, we qualitatively reviewed another ten misclassified TCGA MSS
cases which were POLE wild type (WT) but were assigned high MSI pre-
diction scores by our model. Three of these cases were consistent with the
diagnosis of mucinous adenocarcinoma (≥50% extracellular mucin con-
tent), and one case showed a partly mucinous differentiation (~40%
extracellular mucin content). The other cases showed gland-forming and
cribriform architecture (adenocarcinoma, non otherwise specified, low-
grade), but all cases had a relatively high tumor-to-stroma ratio, resembling
a solid/medullary growthpattern, andalsopartially showinghighnumberof
TILs (Supplementary Table 7). All of these morphological features are
known to be associated with MSI, hence they are plausible confounding
factors26,27,45. Thus, the misclassification of the model is reasonable as it
reflects the categorization a pathologist would likelymake.Combining these
results, it is clear that the morphological patterns detected through our
method provide strong validation of our study’s underlying hypothesis.

Discussion
The advent of cancer immunotherapy has fundamentally changed the
treatment landscape in oncology, notably in tumor types such as lung cancer
and melanoma where immune checkpoint inhibitors elicit prolonged
responses even in metastatic cases46,47. Given the current advance in medical
treatments, immunotherapy in neoadjuvant and adjuvant settings is
increasingly utilized, promising potential for improved response rates across
different cancer entities. Despite being one of the most common types of
cancer, CRC is notoriously unresponsive to immunotherapy. Only a small
fraction (<10% in metastatic stages48) of CRC cases, specifically MSI tumors,
benefit from immunotherapy49, leading to its use even in the neoadjuvant
setting, and necessitating upfront MSI testing in all CRC patients. Several
techniques forMSI detection include IHC, PCR, next-generation sequencing
(NGS)-based testing (via computational methods such as MSIsensor or
MANTIS50) and a DL-based assay that predicts MSI status via the analysis of
digital images of H&E stained histopathology slides (MSIntuitTM, Owkin,
France14). Among the majority of non-MSI CRC patients, a rare,
immunotherapy-responsive subgroup exists with POLE or POLD1 muta-
tions, affecting fewer than1%ofCRCcasesbuthighly significant for impacted
individuals. Identifying these mutations, however, involves expensive genetic
testing, not routinely conducted in CRC cases nor widely available.

Our study demonstrates the effectiveness of a DL method in MSI
screening, capable of identifying not only MSI but also POLE mutant

tumors, classifying them as MSI. This model, initially trained on CRC data
to differentiateMSI fromMSS cases, utilizes specific characteristics in H&E
images for this purpose. The ability of our DL model to detect POLE
mutations— typically identified via extensive genetic data acquisition and
processing — represents a major breakthrough, suggesting our model’s
broader utility beyond MSI detection alone. Despite the challenge in con-
clusively determining these features within our current technological fra-
mework, tools like heatmaps assist in correlating visible characteristics with
established pathological patterns, indicating that our model captures fea-
tures common to both MSI and mutations recognizable by trained
pathologists. Therefore, describing our model solely as an MSI detector
would be an oversimplification as it effectively identifies various mutation
patterns, highlighting its diagnostic capabilities beyond initial expectations.
This evidence points to a common histopathological profile shared byMSI
andPOLEmutations, allowing aDL system trained onMSI alone to reliably
detect POLE mutations. The overlapping morphological features between
MSI and many POLE tumors, such as high levels of tumor-infiltrating
lymphocytes, a medullary growth pattern, substantial mucin production,
and the absence of dirty necrosis20,26–29, are not novel findings. Interestingly,
some of these features seem to be site-agnostic and also already known for
POLE mutant endometrial carcinomas51. The assessment of attention
heatmaps inour study reinforced the foundationalmorphological attributes
critical to our DL approach. Our analysis not only corroborated our initial
observations with respect to the MSI classifier but also underscored the
model’s resilience to artifacts like pen markings.

Ourmodel’s categorizationofPOLE cases asMSI,while not technically
predicting POLE, is still clinically significant. Both MSI and POLE muta-
tions, associated with hypermutation52, increased immune response, and
better outcomes with immunotherapy20,22,52, present valuable targets for
treatment. Hence, deploying DL screenings could help in identifying
potential POLE mutation carriers clinically. In practice, after thorough
external validation and the necessary regulatory approvals, themodel could
help in ruling out POLE and MSI mutations in samples classified as MSS.
This serves as a similar approach to existing DL-based MSI testing tools
used for preliminary screening. Following an MSI-positive result from our
model, a cost-effective IHC test could be conducted to detect dMMR,
correlating with recommendations for existing DL products14. The detec-
tion of dMMR suggests MSI presence. Conversely, an MSI prediction with
proficientMMR necessitates further analysis. According to our findings, in
CRC cases of proficient MMR, POLE mutations might be the underlying
cause for anMSI-like prediction. In such scenarios, it is advised to use cost-
effective Sanger sequencing for POLE mutations or small NGS panels
covering POLE/POLD1 mutations. This is particularly recommended for
young male patients with right-sided tumors, as these clinical-pathological
features are often associated with POLE mutations20. Adopting this tiered
testing strategy could significantly reduce the need for broad, expensive
panel sequencing for POLEmutations, thereby streamlining and providing
more cost-effective clinical workflows. This becomes increasingly pertinent
with the anticipated incorporation of Immuno-oncology (IO) therapies for
POLEmutant CRCs into routine clinical management.

Technically, our study enhances a robust, previously established DL
pipeline53 with some innovative elements. For final predictions, we
employed an ensemble of 5 models, each trained on distinct 80% subsets of
theDACHS training cohort. This ensemble approach generates a consensus
indication among the models, which can be interpreted as a measure of
confidence in the predictions. Our findings indicate that the models are
more confident in their predictions when the scores are markedly high or
low, as opposed to those around the mid-range (0.5 ± 0.3). This trend is
especially evident in MSI or POLE mutation cases derived from surgical
resections in the TCGA and APHP datasets. Conversely, there is more
uncertainty in predictions for biopsies andMSS cases. Further investigation
into the learning mechanics of the model and understanding the elements
influencing these extreme prediction values and the origins of uncertainty
could lead to further refinement of the model. Our future research should
focus on leveraging this methodology to quantify the clinical relevance of

https://doi.org/10.1038/s41698-024-00592-z Article

npj Precision Oncology |           (2024) 8:115 6



ensemble-based prediction uncertainty, ideally incorporating additional
cohorts with POLE mutant samples. We suggest that data on therapeutic
outcomes should be collected in future patient cohorts.

Our research is subject to some constraints, predominantly the limited
number of POLE mutants and significant class imbalance impacting sta-
tistical analysis.Notably,manyDL studies inCRCuse theTCGAcohort, but
it includes only ten relevant POLE driver mutants and lacks POLD1 driver
mutants. Despite the inaccessibility of POLD1 mutant samples, our study
sought to solidify our results’ robustness and general applicability by
incorporating a considerable number of POLEmutation cases from amajor
French reference center (APHP). It is pertinent to note that the prevalence of
POLE testing in CRC remains limited, impacting the sample size of POLE
mutations in our study, although their significance is only just being
recognized.Our dataset included 28POLD1mutants and 61POLEmutants,
27 of which were POLE driver mutations (Fig. 1c, d). The APHP cohort,
which comprised two sub-cohorts of surgical resection specimens and
biopsies, respectively, confirmed the generalizability of our findings. Con-
sistent with prior research8, our results revealed lower performance on
biopsy samples, suggesting current DL approaches are more effective with
surgical specimen analysis. However, as biopsy-based testing is becoming
more common, it is important to develop algorithms that can effectively
process these samples in the future4. Additionally, the total sample number
in theAPHPcohort complicates the interpretationofMSI andMSS,with the
liver metastasis cases being the most challenging. Results from DL models,
trained on primary tumors but applied to metastatic tissues, often demon-
strate unsatisfactory discriminative performance54. This becomes apparent
in the distinct scatter of the model predictions for MSS cases. To address
these challenges, further studies could explore how the selection criteria for
defining final predictions impact outcomes. For example, instead of basing
the final prediction on the median fold guided by the AUROC, it might be
more effective to consider the majority of predictions from the 5 folds.
Investigating this approach could lead to amore refinedmethodof setting an
optimized threshold for binarization. However, adjusting the threshold for
specific cohorts would limit generalizability and would ideally require more
data. The goal would be to encompass a greater number of MSI and POLE
cases while more accurately classifying MSS, thereby minimizing the inci-
dence of falsely predicted cases lacking POLE/POLD1 driver mutations.

In conclusion, our study demonstrates the capability of a DL
screening tool, initially trained for MSI classification, to extend its utility
beyond identifyingMSI status in patients.Notably, it can also discernMSS
CRCs harboring POLE mutations. This finding implies a shared histo-
pathologic phenotype between MSI and POLE mutations, which a DL
system, focused solely onMSI, can effectively detect. As wemove forward,
such technologymight play a pivotal role in the preliminary screening for
POLE mutations within MSS CRCs, potentially identifying a small yet
significant patient group for targeted treatment strategies. Our study
underscores the importance of collecting these rare samples, as the sig-
nificance of these mutations is becoming increasingly evident. Never-
theless, it is paramount to further validate and couple these DL-based
screeningswith subsequent genetic confirmation to bolster diagnoses. The
ability to accurately and efficiently identify CRC patients with pathogenic
POLE gene mutations could greatly enhance both diagnostic processes
and therapeutic outcomes in this field.

Methods
Patient samples
In this study we used the following independent patient cohorts (Supple-
mentary Table 1): DACHS (Darmkrebs: Chancen der Verhütung durch
Screening, Southwest Germany,Nall = 2039,NMSI = 210 (10.3%))34,35, TCGA
(The Cancer Genome Atlas, Nall = 429, NMSI = 63 (14.7%)), APHP (Assis-
tance Publique–Hôpitaux de Paris/Public Assistance Hospitals of Paris)
resection (Nall=27, NMSI = 7 (25.9%), Fig. 1d) and APHP biopsy (Nall=38,
NMSI = 13 (34.2%), Fig. 1d). DACHS is a population-based case-control and
patient cohort study on CRC including samples from patients of all tumor
stages (I-IV) collected from different laboratories in the south-west of

Germany coordinated by the German Cancer Research Center (Heidelberg,
Germany). TheAPHP cohorts are consecutive case series of a total ofN = 27
POLEmutant, withN = 17 POLE drivermutant, colorectal cancers collected
between 2015 and 2023, as well as a matched cohort of N = 19 MSI and
N = 20 MSS tumors from the same pathology archive. In this cohort the
control tumors (MSI and MSS tumors) underwent POLE testing and are
proven tobePOLEWT.TCGAis thepublic repository “TheCancerGenome
Atlas”, available at https://portal.gdc.cancer.gov/, USA55,56, which includes
colorectal cancer of any stage. The microsatellite status for the TCGA
samples was determined by Polymerase Chain Reaction (PCR) testing57.
Molecular features of DACHS, TCGA, APHP surgical resection and biopsy
cohorts are shown in Fig. 1c, d (Supplementary Table 1). Sociodemographic
and relevant clinical features are shown in Supplementary Table 1. Addi-
tional molecular information is presented in Fig. 4 for TCGA and in Sup-
plementary Fig. 1 for DACHS and APHP. A comprehensive list with
molecular characteristics of patients with POLE/POLD1 mutations can be
found in Supplementary Table 2 for TCGA and Supplementary Table 3 for
APHP.As shown in the tables, this study does not include anyPOLD1 driver
mutations. Therefore, onlyPOLEmay be referenced in parts of the following
sections. The distribution of MSI status was available for all cohorts (Sup-
plementary Table 1). Details on the methods used for genetic testing of
patients in these cohorts are given in Supplementary File 1: Supplementary
Methods. Cases of early-onset colorectal cancer (EO-CRC) with patient age
under 50 at point of diagnosis are highlighted in the results58. This retro-
spective analysis of scanned images of anonymized tissue samples from
various cohorts of cancer patients was conducted in accordance with the
Declaration of Helsinki. The data were collected, anonymized, and ethical
approval was obtained. The use of tissue samples from DACHS was
approved by the ethics committees of the Medical Faculty at Heidelberg
University (310/2001) and the statemedical boards of Baden-Wuerttemberg
and Rhineland-Palatinate59. All participants the DACHS study provided
written informed consent for the scientific analysis of their data and samples.
The use of tissue samples from the APHP cohort was approved by the local
ethics committee of Henri Mondor University Hospital (IRB N° 00011558 ;
2021-123). For APHP and TCGA, there was no informed consent required
by local regulations for a retrospective analysis of anonymized data. The
overall analysis was approved by the ethics board of the Medical Faculty of
Technical University Dresden under the ID BO-EK-444102022.

Experimental setup
We used the image data from the DACHS study to train a Deep Learning
network to detectMSI inCRC. In this study, only informationonMSI status
was available, but no information on either POLE or POLD1 status. The
methodologyweusedhere corresponds to that ofWagner et al. 53. Briefly,we
tessellated all digitized whole slide images (WSIs) into tiles and stain nor-
malized them.We further processed the normalized tiles by applying a pre-
trainednetwork to extract features fromeach tile. Basedon these featureswe
trained a transformer-based architecture with a classifying multilayer per-
ceptron to classify each slide asMSIorMSS. The ground truth for all cohorts
is taken from the clinical data. For TCGA the microsatellite classes contain
MSI-H (high grade MSI), MSI-L (low-gradeMSI) andMSS. For this study,
MSI-H cases are assumed to be MSI while MSI-L and MSS cases both are
assigned to MSS as performed by Wagner et al. 53. All experiments were
performedusing 5-fold cross-validationwith internal validationonDACHS
and external validation on two datasets. For testing the trainedmodels from
the 5-fold cross-validation, they were deployed on the external cohorts,
TCGA and APHP, for which the POLE/POLD1 mutation status was
available.Our hypothesis applies toPOLE/POLD1mutations that aremeant
to include drivermutations onlywhile other genetic alterations like splice or
passenger mutations were considered as wild type. For each slide we cal-
culated the classification probabilities of beingMSI predicted by the model.
We assessed the model performance using the median AUROC of the 5
deployedmodels on theTCGAexternal cohort. To investigate the scattering
of themodels’prediction results, we visualized the results of all folds for each
sample respectively and highlighted the prediction score obtained from the
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median model. For explainability, attention heatmaps as well as prediction
heatmaps of selected slides were generated. Training and deployment were
performed on a NVIDIA RTX A6000 with 48 GB GPUmemory. Detailed
information on the Deep Learning methods (Fig. 1b) is provided in Sup-
plementary File 1: Supplementary Methods.

Statistics
The primary statistical endpoint for assessment of model performance
during training was the AUROC including 95% confidence intervals (CIs).
For internal validation (DACHS) as well as for external validation on
TCGA, the CI was calculated based on all 5-fold-wise AUROCs. For cal-
culating the statistical power of the AUROCs, we used a two-sided t-test
comparing the prediction scores. For individual folds, sensitivity, specificity,
positive predictive value (PPV) and negative predictive value (NPV) were
calculated for each subgroup consisting of MSI, MSS and POLE cases
respectively. For the TCGA andAPHP cohorts, we calculated themean and
standard deviation of the prediction scores for each subgroup (MSI, MSS,
POLE/POLD1) for the 5 folds. To do this, we first calculated the mean and
standard deviation of the prediction scores for each sample over the 5 folds
and then determined the mean of these values over all samples within each
subgroup. In thePOLE/POLD1 subgroup, only drivermutationswere taken
into account. For hypothesis testing of differences between relative fre-
quencies of morphologic features, a two-sided Fisher’s exact test was used.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The whole slide images (WSIs), molecular and clinical data for the TCGA
cohort are publicly accessible at https://portal.gdc.cancer.gov/ and https://
www.cbioportal.org/ (accessed 12October 2022). For this studywe used the
MSI status for the TCGA cohort based on the findings of Liu et al.57. at
https://github.com/KatherLab/cancer-metadata/blob/main/tcga/liu.xlsx
(accessed 06 November 2022). The datasets from DACHS and APHP are
available from the corresponding author on reasonable request. All data
generated or analyzed during this study are included in this published article
and its supplementary information files.

Code availability
All source code for image processing is publicly available at https://
github.com/KatherLab and given with the exact commit ID for reasons
of reproducibility. The tesselation script is available at https://github.
com/KatherLab/preprocessing-ng and followed by normalization with
the script and the reference image available at https://github.com/
KatherLab/preProcessing. Extraction of CTransPath features was car-
ried out with scripts from https://github.com/KatherLab/marugoto as
well as the transformer-based Deep Learning model and the heatmaps
for explainability used for the study. Links to the exact version to the
repositories including the scripts used can be found in Supplementary
Table 4.

Received: 7 November 2023; Accepted: 14 April 2024;

Fig. 4 | Selected molecular characteristics for the TCGA (The Cancer Genome
Atlas) cohort. The columns correspond to individual patients and are sorted by
“Median Prediction Score”, representing the median model of 5-fold cross-valida-
tion evaluated using AUROC. “MSI Status” is the ground truth of microsatellite
status. POLE (d) denotes patients with a POLE driver mutation. TMB represents
tumormutational burden. For BRAF andKRAS “MUT” indicates the presence of the

respective mutation and “WT” the absence of the mutation (wild type). “Stage”
ranges from one to four and indicates the cancer stage. The same range is used by
“Colorectal CMS” which stands for the consensus molecular subtypes (CMS) of
colorectal cancer. Empty cells represent cases where the information regarding
specific characteristics is missing.
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