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Linear modes for which the Coriolis acceleration is
almost entirely in balance with the Lorentz force
are called Magneto–Coriolis (MC) modes. These MC
modes are thought to exist in Earth’s liquid outer
core and could therefore contribute to the variations
observed in Earth’s magnetic field. The background
state on which these waves ride is assumed here to
be static and defined by a prescribed magnetic field
and zero flow. We introduce a new computational
tool to efficiently compute solutions to the related
eigenvalue problem, and study the effect of a
range of both axisymmetric and non-axisymmetric
background magnetic fields on the MC modes. We
focus on a hierarchy of conditions that sequentially
partition the numerous computed modes into those
which are: (i) in principle observable, (ii) those
which match a proxy for interannual geomagnetic
signal over 1999–2023, and (iii) those which align
with core-flows based on recent geomagnetic data.
We found that the background field plays a crucial
role in determining the structure of the modes. In
particular, we found no examples of axisymmetric
background fields that support modes consistent
with recent geomagnetic changes, but that some
non-axisymmetric background fields do support
geomagnetically consistent modes.
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1. Introduction
Earth’s magnetic field varies on a broad range of time scales, from billions of years to millisec-
onds. Changes in the magnetic field occurring at periods longer than about 1 year are termed
secular variation (SV). The SV has its origin in flows within the liquid outer core, where Earth’s
magnetic field is generated by a self-sustaining dynamo action. Observations of the SV therefore
have a direct link to the flow field within the Earth’s core, allowing us to better constrain this
inaccessible region of our planet.

High-resolution maps of SV have been made possible over the last 24 years because of
satellite data, providing accurate measurements with global spatial coverage [1]. Based on
several years of satellite measurements, global models of the internal geomagnetic field such as
CHAOS [2,3] and GRIMM [4,5] have revealed interannual SV at a global scale across the surface
of the Earth [6]. We use here and in the rest of the article the word interannual to mean variation
over 1 year or more, including up to the 24 years of focus in this work. The emerging picture of
SV is one of decadal to centennial change on the core’s convective time-scale of about 150 years,
superimposed by relatively fast, periodic interannual signals, which strongly suggest a wave
origin [7–9]. The rapid SV has its largest amplitudes in regions of low latitudes, i.e. close to the
geographic Equator, and close to the North Pole [7,10,11]. A more detailed presentation of the
interannual SV observed by satellite data is given in §3.

Variations in Earth’s magnetic field have long been postulated to be partially accounted for
by global hydromagnetic modes or localized travelling waves within the liquid outer core of
the Earth, assumed to be rotating, electrically conducting, inviscid and incompressible [12,13].
There are three main classes of mode that can exist in the liquid core: inertial, torsional and
Magneto–Coriolis (MC), whose dynamics and observational signature we summarize below.
Other types of modes can exist when making different structural assumptions; for example
a layer of stable stratification supports Magneto–Archimedes–Coriolis waves owing to the
additional restoring force through buoyancy [14]. We refer the reader to Finlay [15] for a
thorough introduction into the topic.

The shortest period modes of the three classes are the inertial modes at near-diurnal periods.
They exist also in the purely hydrodynamic case and are only slightly modified by electrical
conductivity and the presence of a magnetic field. Inertial modes, which include the quasi-
geostrophic inertial modes (related to Rossby modes) [16], have been studied extensively in
laboratory experiments [17,18] and have been observed at the surface of the Sun and in stars
[19–22]. Unfortunately, the core of the Earth lies hidden below the mantle, rendering a similar
observation of these modes impossible on Earth. Being mostly kinetic in nature, inertial modes
have only a weak magnetic signature. Furthermore, because their frequencies are high (with
periods much less than 1 year), any signal will not only be smoothed by the weakly conducting
mantle but will overlap with variations in the external geomagnetic field, making it difficult to
isolate.

Another class of modes are torsional (Alfvén) modes, first introduced by Braginsky [23].
They can be understood as perturbations to a Taylor state [24], a quasi-steady equilibrium
between Coriolis and Lorentz forces. Torsional modes perturb this equilibrium in the form
of differentially rotating geostrophic cylinders, where the magnetic tension through stretching
of the background magnetic field that permeates the cylinders acts as the restoring force.
Although the geometry of these waves is specific to rotationally dominant flows, the interplay
between the velocity and magnetic field is characteristic of Alfvén waves in a non-rotating
magnetohydrodynamic fluid [25]. Due to their pseudo-geostrophic structure [26], a one-dimen-
sional evolution equation can be derived, revealing that the frequency of torsional modes is
proportional to the cylindrical average Alfvén velocity:

(1.1)vA s = 1
4πHμ0ρ −H

H B0 ⋅ es 2dzdϕ,
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where H is the half height of the fluid column, μ0 the magnetic permeability of free space, ρ the
fluid density, B0 the steady background magnetic field, es the unit vector along the cylindrical
radius.

Using identified torsional waves, the relationship between vA(s) and modal frequency can
be used to infer vA(s), and therefore information on a specific part of the magnetic field itself
hidden inside the Earth’s core. Previous estimates of the fundamental torsional wave period
were about 60 years [23,27], corresponding to B0 ⋅ es ≈ 0.5 mT in the core, but more recently,
the identification of faster signals has led to an update of the fundamental period to 6 years,
corresponding to B0 ⋅ es ≈ 3 − 5 mT [28], in better agreement with numerical dynamo models.
The analysis of the angular momentum carried by core flows revealed a remarkable correla-
tion in phase and amplitude with the 6-yr variation observed in the length-of-day [28–30].
Torsional waves only explain a small part of the observed SV, and their direct identification
from magnetic measurements or global magnetic field models remains challenging, because
their magnetic signature is likely too small to be confidently separated from other dynamics
occurring at similar time scales [7,31]. Instead, the identification of torsional modes within
Earth’s core relies on the flows obtained by the inversion of geomagnetic field model data.
These inversions include additional assumptions about the dynamics of the flow, which can be
viewed as a filter of the geomagnetic field data, allowing the isolation of torsional modes within
the data.

The final class of modes that we describe are MC modes, which arise when a balance
of Coriolis and Lorentz forces dominates the momentum budget. In the literature, often a
separation into slow and fast MC modes is presented, where fast MC modes refer to what we
have classed as inertial modes (governed by a balance of Coriolis and inertial forces), and slow
modes governed by a balance of Coriolis and Lorentz forces. Because the fast modes are only
weakly influenced by the Lorentz force but strongly influenced by the inertial force, in what
follows we exclude them from our classification of MC modes. Initially discussed by Lehnert
[32] as plane waves, numerous studies have developed the theory of MC modes. A variety of
studies have considered different geometries from thin spherical shells to full spheres, along
with different background fields and forcing terms [12,13,33,34]. For simplicity, many of these
studies not only used a simple axisymmetric background magnetic field, but also a perfectly
conducting boundary condition so that B ⋅ n = 0 at the surface, with n the normal vector.
Neither of these assumptions are representative of the Earth’s core, and more recent works have
studied MC modes using the more appropriate insulating boundary condition for the magnetic
field [35–37] and non-axisymmetric background magnetic fields [36,38]. Some studies have used
non-axisymmetric background magnetic fields with perfectly conducting boundary conditions,
but these calculations cannot be easily related to the Earth [38].

For a non-axisymmetric poloidal background magnetic field, it was found that some MC
modes can have periods corresponding to the interannual period range in Earth’s core [36]. In
this study, the flow was supposed quasi-geostrophic (QG), appropriate under rapid rotation.
The QGMC modes at interannual periods combined a small azimuthal wavenumber with a
large cylindrical wavenumber. Near the Equator, such a spatial structure projects onto large
latitudinal length-scales on the core-mantle-boundary (CMB) owing to the local steep gradient
of the half height H with s. In this low-latitude region, it was further found that wave-like
patterns in core-flows around a period of 7 years showed strong similarities in the phase speed,
azimuthal wavenumber and peak amplitude to the numerically calculated QGMC mode [39].

No systematic study has yet investigated the sensitivity of these interannual MC modes on
the choice of background magnetic field configuration. Here, we investigate several poloi-
dal and toroidal background magnetic fields, both axisymmetric and non-axisymmetric. We
consider all these different choices of background state as they form important contributions
to the geomagnetic field, both in the present day but also likely in its general morphology as
indicated by high-resolution direct numerical simulations of the geodynamo [40].

3
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At high resolution, we compute all modes (i.e. the dense spectra) for each background
magnetic field. Rather than attempting to study the effect of the background field on all these
modes, we investigate the properties of a hierarchy of subsets, categorized by their observatio-
nal, geomagnetic and kinematic relevance.

The remainder of this paper is set out as follows. In §2, we introduce the theoretical and
numerical background of the linear model used to solve for the eigenmodes. Section 3 revisits
the satellite magnetic field observations over the last two decades and a set of observational and
geomagnetic constraints are derived from the data to select only a subset of relevant modes. The
results are presented in §4, before a final discussion in §5.

2. Linear model of the fluid core
Earths’ core is modelled by a spherical core of radius L containing an incompressible, rotating
and electrically conducting fluid. The time evolution of the velocity U and magnetic field B are
given, respectively, by the momentum and induction equation:

(2.1a)∂U
∂t + U ⋅ ∇ U + 2Ω × U = − 1ρ∇P + 1ρμ ∇ × B × B + ν∇2U + F,

(2.1b)∂B
∂t = ∇ × U × B + η∇2B,

where Ω is the axis of uniform rotation, ρ is the uniform fluid density, P is the reduced
hydrodynamic pressure, μ is the magnetic permeability, ν is the kinematic viscosity, F repre-
sents any driving force such as buoyancy and η is the magnetic diffusivity.

Assuming characteristic scales for length of L, magnetic field of B0, time of tA = L ρμ/B0 (the
Alfvén time) and velocity of L/tA, equations (2.1a) and (2.1b) read:

(2.2a)∂U
∂t + U ⋅ ∇ U + 2

Leez × U = −∇P + ∇ × B × B + Ek
Le∇2U + F,

(2.2b)∂B
∂t = ∇ × U × B + 1

Lu∇2B,

where all the vector quantities have been replaced by their non-dimensional versions, and Le,
Lu, Ek are the Lehnert, Lundquist and Ekman numbers, respectively. We use both cylindrical
coordinates (s, ϕ, z), and spherical coordinates (r, θ, ϕ), denoting unit vectors in, for example thez direction as ez.

These non-dimensional numbers can be written as the ratios of different time scales [41],
namely the rotation time tΩ, the Alfvén time tA, the viscous diffusion time tν and the magnetic
diffusion time tη,

(2.3)

Le = tΩtA = B0LΩ μ0ρ ∼ O 10−4 ,

Lu = tηtA = B0Lη μ0ρ ∼ O 105 ,

Ek = tΩtν = νL2Ω
∼ O 10−15 .

The orders of magnitudes of these numbers are given as estimates for Earth’s core. We find
that the Ekman number is very small at the time scales of interest and so we neglect viscous
diffusion in all that follows.

We assume the velocity, magnetic field and pressure evolve as periodic perturbations to a
steady background state, so that:

4
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(2.4a)U r, t = U0 r + u r eλt,
(2.4b)B r, t = B0 r + b r eλt,
(2.4c)P r, t = P0 r + p r eλt,

where λ = iω − σ with ω the frequency and σ the damping rate. In the following, we consider a
steady background magnetic field B0(r), no forcing (F = 0) and zero assumed background flow
(U0(r) = 0).

The linearized set of equations governing the perturbation are:

(2.5a)λu + 2
Leez × u = −∇p + ∇ × b × B0 + ∇ × B0 × b,

(2.5b)λb = ∇ × u × B0 + 1
Lu∇2b .

The fluid volume of radius r = 1 is denoted V, its boundary as ∂V and its exterior V̂ (so that

ℝ3 = V ∪ V̂). We can then project the evolution equations as:

(2.6a)λ u∼,u V = u∼, 2
Leez × u + ∇ × b × B0 + ∇ × B0 × b

V
,

(2.6b)λ b∼,b ℝ3 = b∼,∇ × u × B0 + 1
Lu∇2b ℝ3 ,

where

(2.7)v,w V =
V
v∗ ⋅ w dV .

In the above, v* denotes the complex conjugate of v, and u~ and b~ are velocity and magnetic
test functions respectively. The kinetic energy equation (2.6a) requires only the interior volume

integral over V, since u = 0 in V̂. We note that the projection of the pressure gradient is omitted

in (2.6a), as it vanishes for an incompressible velocity field. The projection (2.6b) is defined over
all space for numerical expediency.

(a) Galerkin method and bases
We discretize equations (2.6) by expressing both the flow and magnetic field as linear combina-
tions of basis vectors,

(2.8a)u = ∑i = 1

dim PNu (V) αiui,
(2.8b)b = ∑i = 1

dim PNb ℝ3 βibi,
with complex coefficients αi, βi ∈ ℂ and the respective subspaces of the flow and magnetic field,PNu (V) and PNb (ℝ3), which are introduced and defined in detail in the following. Discretized

versions of the dynamical equations are formed in (2.6) by back-projecting onto the same
subspaces. The subspaces are chosen to have the following expedient properties:

— Each basis vector is a geometrically admissible solution, in that it satisfies all conditions
related to boundaries and differentiability.

5
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— Although defined in terms of spherical polar coordinates, the bases have a Cartesian
homogeneous complexity N.

— Each basis vector is built from a spherical harmonic and a terse combination of Jacobi
polynomials, both of which are spectrally convergent.

— Certain projections are optimally sparse, which reduces memory requirements.

Because the geometry is spherical, it is easier to define the subspaces in this geometry. However,
it is helpful to express the spaces in terms of Cartesian coordinates in order that we can define
a homogeneous measure of the spatial complexity N (that is invariant under rotation). The
subspaces are defined as follows:

(2.9a)PNu (V) = {u ∈ PN3 |∇ ⋅ u = 0 in V,u ⋅ n = 0 on ∂V},

(2.9b)

PNb ℝ3 =

b ∈ PN3 | ∇ ⋅ b = 0  in V,b̂ ∈ IN3 | ∇ ⋅ b̂ = 0, b̂ = −∇Φ, Φ ∈ IN  in V̂,b = b̂  on ∂V,

where PN = xiyjzk| i, j, k ∈ ℤ0 + , 0 ≤ i + j + k ≤ N , Φ is the magnetic potential field in the

exterior domain and IN = xiyjzk| i, j, k ∈ ℤ−, 0 ≤ | i + j + k| ≤ N . The subspaces for the flow

and magnetic field in V are built from vectors whose Cartesian coordinates belong to the

set PN, homogeneous multinomials of degree at most N. They further satisfy zero diver-

gence, and either impenetrable or electrically insulating boundary conditions [42–44]. We have
dim PNu (V) = N N + 1 2N + 7 /6 [43] and dim PNb (V) = N N − 1 2N + 5 /6. The subspace for

magnetic field in V̂ is also homogeneous but built from multinomials with negative exponents.

Because the spherical boundary conditions couple the Cartesian components together, these
spaces are compiled from expedient representations in spherical polar coordinates, involving
spherical harmonics and polynomials in r. Using such a truncation, sometimes referred to as
a triangular truncation, as the maximum radial polynomial index decreases with spherical
harmonic degree l [44,45], is advantageous. Not only is the solution space homogeneous in
resolution, but certain special classes of solution like the inviscid inertial modes are complete
within this space [43]. This example is discussed in the electronic supplementary material, §S1,
comparing a uniform truncation (where the radial degree n is truncated at the same degree for
all spherical harmonic degrees l) to the triangular truncation.

(i) Velocity basis

Since we require ∇ ⋅ u = 0, we use a classical poloidal–toroidal decomposition of the velocity:

(2.10)u = ∑i αiui = ∑l,m,nαlmnP Plmn + ∑l,m,nαlmnQ Qlmn,
with αlmnP ,αlmnQ ∈ ℂ. The vectors, written in spherical coordinates (r, θ, ϕ), are:

(2.11a)Plmn = ∇ × ∇ × Pln r Y lm θ, ϕ r,
(2.11b)Qlmn = ∇ × Qln r Y lm θ, ϕ r .

Here, Ylm(θ, ϕ) is the (fully normalized) spherical harmonic of degree l and order m, andr = rer. The toroidal and poloidal scalar functions Qln and Pln, where n is the radial index, are
chosen to satisfy the appropriate boundary condition at the surface (here, r = 1), orthogonality,
and regularity at the origin [46,47]. The assumed inviscid fluid only satisfies a condition of

6
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impenetrability on r = 1, leaving the toroidal scalar function Qln unconstrained but requiring the
poloidal scalar function to satisfy

(2.12)Pln(1) = 0.

In addition, to satisfy the regularity of the velocity at the origin (r = 0), these functions need to
take the form Qln ∼ Pln ∼ rlf(r2), where f is an arbitrary polynomial.

A set of poloidal and toroidal scalar functions satisfying these conditions is presented in
appendix Aa, where we give the analytical expressions of the inner product and the projections
onto the Coriolis term. They are all built from terse expansions in Jacobi polynomials [47].

(ii) Magnetic field basis

In the same way as the velocity, we write the magnetic field in the interior volume V as a linear

combination of poloidal and toroidal vectors:

(2.13)b = ∑i βibi = ∑l,m,nβlmnS Slmn + ∑l,m,nβlmnT Tlmn,
with βlmnS , βlmnT ∈ ℂ. Analogous to (2.11), the vectors are written as:

(2.14a)Slmn = ∇ × ∇ × Sln r Y lm θ, ϕ r,
(2.14b)Tlmn = ∇ × Tln r Y lm θ, ϕ r .

Assuming the overlying mantle to be insulating, the magnetic field is required to match its three
components to a potential field −∇Φ on r = 1. The expression of the poloidal field Slmn in the

interior matches to a field Ŝlmn in the exterior V̂, written as:

(2.15)Ŝlmn = − lSln 1 ∇Iml ,

with Iml = r−(l + 1)Yml , so that the associated magnetic potential field Φ = lSln(1)Iml . The continuity
across the surface is equivalent to the conditions:

(2.16a)Tln 1 = 0,

(2.16b)∂Sln r
∂r r = 1

= − l + 1 Sln 1 .

Again, to satisfy the regularity of the magnetic field at the origin, Tln ∼ Sln ∼ rlf(r2).
A set of functions satisfying these conditions is given in appendix Ab, together with the

analytical expressions of the inner product, as well as the projection onto the vector Laplacian.
The basis we have chosen is orthogonal w.r.t. the projection onto the vector Laplacian, and
tridiagonal w.r.t. the inner product. In doing so, we also find that all other projections in the
induction and momentum equation are banded in the radial degree as well (for the orthogonal
inviscid velocity basis considered here). The bandwidth of the induction term ∇ × u × B0  and
Lorentz term depends on the radial degree n of the background magnetic field (or flow, if
considered). This property is desirable for increased resolution and problem sizes, needed to
resolve modes of complex background magnetic field structures.

(iii) Magnetic induction and Lorentz force projections

An important part of equations (2.6) we need to solve are the projections:

(2.17)u∼, ∇ × b × B0 + ∇ × B0 × b V ,

7
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(2.18)b∼,∇ × u × B0 ℝ3 ,

for each choice of flow and magnetic field basis vector. Based on the seminal work of Bullard
& Gellman [48] and Ivers & Phillips [49], these projections involve both radial integrals and
integrals over a spherical surface, the latter of which can be written as Adam-Gaunt and
Elsasser integrals [48,50]:

(2.19)Aijk = Y iYjYk sin θdθdϕ,

(2.20)Eijk = Yk ∂Y i∂θ ∂Yj∂ϕ − ∂Y i∂ϕ ∂Yj∂θ dθdϕ,

where we have abbreviated the notation of the spherical harmonics so that Yi = Y limi. What
remains to be calculated of the projections are one-dimensional equations, only depending on
the radius r, for each combination of the basis vectors. The detailed equations are shown in
appendix B. As the induction equation is integrated over ℝ3, some additional terms arise in

the projections if u ≠ 0 on the surface, even though u = 0 in the exterior V̂. The details are

discussed in appendix C. The Adam-Gaunt and Elsasser variables Aijk and Eijk are calculated
numerically through Wigner-symbols using the WIGXJPF library [51]. The integrals over r are
exactly calculated using Gauss–Legendre quadrature.

(b) Eigen problem
The discretized projected version of the momentum and induction equations (2.6), i.e. the
projection onto the basic elements ui and bi, then can be written as the generalized eigenpro-
blem:

(2.21)λMx = Nx,

with

(2.22)
M =

V 00 W ,

(2.23)
N =

C LA D .

The submatrices V and W arise from inner products of the velocity basis with itself, and the
magnetic field basis with itself, respectively. The submatrices C and L are, respectively, the
projections of the Coriolis and Lorentz terms onto the velocity basis, while A and D are the
projections of the induction and the magnetic diffusion terms onto the magnetic field basis.
The matrices M and N, each of size S × S, are sparse and for the bases considered here, M
is symmetric tridiagonal. If we consider the full subspaces PNu (V) and PNb (ℝ3), i.e. without

any symmetry assumptions to reduce the problem size, we have S = N 1 + 6N + 2N2 /3. An

eigensolution (λ, x) is the solution to (2.21), with λ the complex eigenvalue and the complex
eigenvector x containing a list of coefficients [αlmnP ,αlmnQ , βlmnS , βlmnT ]. For small polynomial degreesN ≲ 40, the matrix size S is sufficiently small that we can solve (2.21) directly, using a dense

generalized Schur factorization, giving access to the dense spectrum of modes. Keeping the
matrix size S moderate but increasing N requires exploitation of symmetry, in order to reduce

the number of angular modes involved. In the most general case, if B0 has no particular
symmetry, all angular modes are coupled together. However, if B0 has particular properties

8
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such as equatorial symmetry or axial axisymmetry, then the solution separates into independent
symmetry classes that can be investigated in separate calculations [52]. In particular, under
axisymmetry, each azimuthal wave number m can be considered individually. For such B0, the
upshot is that number of angular modes, for any calculation, can be vastly reduced.

For large matrix sizes S, computing the dense spectrum becomes infeasible due to compu-

tational effort and memory requirements, and instead we can turn to iterative methods that
exploit matrix sparsity to calculate a subspace of eigensolutions. One of such method is the
implicitly restarted Arnoldi method, available in the ARPACK library [53]. Iterative methods are
good at finding a few eigenvalues with extremal properties, for example largest or smallest in
amplitude or in real/imaginary part. To find eigensolutions that lie within the spectrum and
not at the extremes, we can use a shift-invert method, where we shift the spectrum around the
target λt, so that:

(2.24)1λ − λtx = N − λtM −1Mx = Mtx ,

which defines a new linear operator Mt. Written in this way, the eigenvalues 1/(λ − λt) are largest
when λ is close to λt. The right-hand side can be calculated without explicitly calculating the
inverse (N − λtM)−1 through the use of the sparse LU factorization provided for example by
UMFPACK [54] and Intel MKL Pardiso [55]. Using the shift-invert method allows tracking
of a given eigensolution through parameter space and different numerical resolutions.

Any solution of either a dense or shift-invert calculation needs to be checked for convergence
in resolution. We deem a numerical eigensolution to be numerically relevant if it is converged as
judged by the following criteria:

— The frequency of the mode should not change its value more than 10% between an
eigensolution calculated at truncation N and one at N + 2. For some modes that are
further analysed, we verify stricter convergence by tracking individual modes up to
higher resolutions and verifying the eigenvalues converge towards a finite value.

— Between two resolutions, N and N + 2, the eigenvectors must correlate to a minimum
threshold (0.99). The correlation is performed by appropriate padding with zeros of the
eigenvector at the lower resolution.

— Another requirement is spectral convergence. We consider the spectral energy density as
calculated as a function of Cartesian monomial degree n~ that takes account of structure
in all spatial directions; this is distinct from considering the spectrum only as a function
of l, which ignores radial complexity. We calculate this by exploiting the fact that every
basis vector has a particular Cartesian complexity, binning the squared magnitude of the
coefficients at each n~. We calculate the energy at the peak, and compare this with the
energy at the highest resolution N.
For solutions with an axisymmetric B0, when each m can be considered independently,
we can use a higher resolution and we can be stricter: for these cases, we require the
energy density at the truncation to be 1% of the peak energy density. For the solutions
with a non-axisymmetric B0, we weaken this to a factor of 5%, due to the restrictions
in resolution for dense calculations. We then confirm further spectral decay by tracking
relevant solutions to a higher resolution.

3. Interannual secular variation and hierarchical classification
In a typical calculation, the matrix size S might be several thousand, leaving typically many

hundreds of modes numerically relevant. Many of these modes will be invisible to observation,
either because they are too rapid (so their time-dependence is smoothed out by the weakly
conducting mantle), or their lengthscale is too short (and so their signature is lost in small-scale
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unmodelled signals). Even if modes have an appropriate frequency and lengthscale, they may
not describe the present-day interannual pattern of SV in Earth (although they may have been
present in Earth before the modern era of observation). We therefore introduce a system of
mode classification, with specific criteria described below. Broadly, the classes are:

— A mode is numerically relevant if it is a converged solution of the equations (2.6).
— A mode is observationally relevant if, in principle, it would be observable in the currently

available 24 years of continuous satellite data.
— A mode is geomagnetically relevant if it is consistent with the structure of interannual SV

over the last 24 years.
— A mode is kinematically relevant if it bears resemblance to other core-flow inversions based

on recent observations of the magnetic field.

This classification is also hierarchical. For example, a mode that is geomagnetically relevant is also
observationally relevant and numerically relevant.

The classification presented here is configured to the geomagnetic observations currently
available from satellites. We want to highlight that the details of the classification laid out
below are not necessarily universal but can easily be adapted to apply to other datasets, e.g.
archaeomagnetic observations or the data from future satellite missions.

(a) Interannual secular variation
Within state-of-the-art global geomagnetic field models, the SV is available up to spherical
harmonic degree l = 17, whereas the secular acceleration (SA) is reliable up to degree l = 10,
considered here [1,30]. In figure 1, we illustrate the SV and SA extracted from the CHAOS−7.16
model by their temporal root mean square (RMS) [3], as well as the CM6 model [56]. We use
the chaosmagpy package to process the model coefficients [57]. The times 01/2000–08/2023 are
considered for the CHAOS−7.16 model and the times 01/2000−12/2018 for the CM6 model. In
order to remove variations occurring at time scales longer than the observational time series
available, we apply a band-pass filter of 1−23.7 yr. The upper bound of 23.7 yr is determined
by the length of the CHAOS−7.16 dataset. The lower bound of 1 yr is chosen to avoid contami-
nation through external signals and it is believed to be about the shortest observable period for
signals of internal origin due to the slightly conducting mantle [58]. Another way of describing
the dynamics at interannual time-scales is by the SA, giving more emphasis to the most rapid
dynamics. We compare the unfiltered and filtered SA with the filtered SV and find qualitatively
similar features.

The main characteristic of secular changes, on interannual time-scales, is a focus of radial SV
and SA in the equatorial region. This is clearly visible in figure 1a,c, highlighting the equatorial
structure and is further quantified in the RMS taken both over time and longitude in figure
1b. In both the filtered SV and SA data, a clear peak in the RMS is found at the equator, θ = 0.
Some north–south asymmetry is observed, with a stronger RMS near θ = −60∘ compared with
the southern hemisphere. This local peak in the RMS field is removed, when filtering the data
at shorter periods (see electronic supplementary material, figure S1). Lastly, we show the RMS
over time and latitude as a function of longitude ϕ in figure 1d. The RMS field as a function of
longitude is more complex in its structure, showing several peaks in amplitude, with stronger
amplitudes around Asia (ϕ = 90∘) and the Americas (ϕ = −90).

(b) Observationally relevant modes
Given these basic properties of the interannual SV over the last two decades, we define a
mode to be observationally relevant with respect to the presently available satellite magnetic
observations if:
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— The dominant length-scale of the mode at the surface should be large enough to be
observable in the geomagnetic data. Here, this lengthscale is defined by the spherical
harmonic degree, which should be l ≤ 17 (in SV data) or l ≤ 10 (in SA data) based on
the current geomagnetic models considered. For any mode, because of the assumed
time-dependence, the spatial structure of the mode for any time-derivative is the same.
We therefore can use the spatially highest resolution constraint, and so require that the
peak amplitude in the poloidal magnetic field component of the mode (which determinesbr at the surface) has to be at a degree l, |m| ≤ 17.

— The radial length-scale within the core is not constrained by observations. However, in
order to focus our attention to the largest scale modes, we assume the peak amplitude
in the poloidal magnetic field component should be at a radial degree n ≤ l/2 = 17/2. This
choice is motivated by the uniform truncation in the Cartesian monomial degree n~ ∼ 17,
i.e. we require the smallest observable length-scale to be equal in all spatial directions.

— The quality factor of the mode, Q = |ω/2σ|, should be larger than unity in order for the
mode to propagate before being damped and therefore to be observable.

— The period of the mode t = 2π/|ω| should be interannual, or within observational and
geophysical limits. The shortest period is determined by the filter through the slightly
conducting mantle, as well as the masking of the internal signal by the ionospheric signal.
The longest period is determined by the satellite data availability. We restrict the range of
observable periods of the modes to be 0.5tA < t < 11tA, corresponding to periods of 1.1−24
yr for tA = 2.2 yr. In terms of the frequencies of the numerically calculated modes, given as
Alfvén frequencies, this requires 0.57 < |ω| < 12.6.
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Figure 1. Properties of interannual geomagnetic change 1999–2023. (a) Temporal RMS of radial SV, band-pass filtered
around 1−23.7 yr, at the CMB from CHAOS−7.16. (b) Temporal and longitudinal RMS as a function of latitude θ for filtered SV
and SA based on CHAOS−7.16 and CM6. Each profile is weighted with the area factor of sin θ. (c) Temporal RMS of radial SA
at the CMB from CHAOS−7.16. (d) Temporal and latitudinal RMS as a function of longitude ϕ for filtered SV and SA, with the
same legend as (b) Contours of the continents are projected down to the CMB for reference.
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(c) Geomagnetically relevant modes
The spatial structure of the mode’s SV should be in agreement with the RMS SV derived from
the geomagnetic observations. Qualitatively, this means that most of the mode’s magnetic field
variations should occur at low latitudes, close to the Equator.

— For a geomagnetically relevant mode, we require that the temporal and longitudinal RMS of
the mode should correlate (using a lower threshold of 0.8) with the similar profile using
the SV filtered between 1 and 23.7 yr (figure 1b, blue line), derived from the CHAOS−7.16
model. Each of these profiles is weighted by the factor sin θ to take account of the
variation of the element of area, sin θdθdϕ, on the spherical surface.

(d) Kinematically relevant modes
Other studies, based on similar geomagnetic datasets to those we have described, have
reconstructed core-flows, which generally show a focusing of the azimuthal velocity uϕ near
the Equator [9,59,60], comparable to the focusing observed in the SV and SA.

— For a mode to be kinematically relevant, we require that the peak amplitude in uϕ lies at
|θ| < 30∘.

We want to highlight that the definition of kinematic relevance is only a very crude way
of comparing the calculated modes with core-flows obtained from inversions of geomagnetic
data. This comparison is only to put our modes into context of previous works, and is not
intended as a geophysical constraint in general. We do not want to put any constraint on the
flow component of the solution, but rather only on the magnetic component that is directly
constrained by geomagnetic data.

4. Results
(a) Background magnetic fields and convergence

We fix the Lehnert number to be Le = 2 ⋅ 10−4. For a density ρ = 1.1 ⋅ 104 kg m−3 and a length-
scale L = 3480 km, this corresponds to B ≈ 6 mT, tA ≈ 2.2 yr. We use a Lundquist number of
Lu = 2 ⋅ 104, corresponding to η ≈ 8.8 m2 s−1. This value of η is slightly smaller than the value
expected for Earth’s core, although higher magnetic diffusion aids numerical convergence.

Several background magnetic fields, both axisymmetric and non-axisymmetric, constructed
from either single or several poloidal and toroidal components are investigated. The exact
expressions and naming conventions are introduced in table 1. The radial component at the
surface of the core of the axisymmetric field B0,1

⊙  and the non-axisymmetric field B0,1
⊘  are

illustrated in figure 2. By allowing non-axisymmetry in the background state, we are able to
approximate the Earth’s steady magnetic field more accurately at the cost of increased computa-
tional effort. We normalize each background magnetic field to have a unit RMS value within the
core volume,

(4.1)B0 = 1V V
B0 ⋅ B0dV = 1,

with V = 4π/3. In order to construct a background field that is real, a single magnetic field
component is given as the following sum of complex-valued constituents:
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(4.2)

BlmnS =

1
2
−1 mSlmn + Sl −m n , m > 0,

Slmn, m = 0,
i
2
Slmn − −1 mSl −m n , m < 0,

0.5

0.0

–0.5

0.5
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B
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 ·

 e
r
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 ·
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(a) (b)

Figure 2. Radial component of the axisymmetric background magnetic field B0,1
⊙  (a) and B0,1

⊘  (b) at the surface of the core.
Contours of the continents are projected down to the CMB for reference.

Table 1. Background magnetic field configurations considered in this study. Axisymmetry and non-axisymmetry are
annotated by ⊙ and ⊘, respectively.

name components expressionB0,1
⊙ B101

S ∇ × ∇ × 1
2

7
46f101

s r
B0,2
⊙ B101

S ,B101
T 1

2
B0, 1
⊙ + ∇ × 3

4
35
2 f101

t r
B0,3
⊙ B101

S ,B201
S 1

2
B0, 1
⊙ + ∇ × ∇ × 1

32
5

13f201
s r

B0,4
⊙ B101

S ,B104
S 1

2
B0, 1
⊙ + ∇ × ∇ × 1

256
1615

6 r r2 − 1 2 195r4 − 182r2 + 35 cos θ r
B0,5
⊙, † B101

T ∇ × 3
4 35f101

t r
B0,6
⊙, † B201

S ∇ × ∇ × 1
16

5
26f201

s r
B0,1
⊘ B101

S ,B111
S /3 ∇ × ∇ × 1

4
7

115 3f101
s + f111

s r
B0,2
⊘ B101

S ,B111
S /3,B111

T /3 10
11B0, 1

⊘ + ∇ × 1
16

5
286r2 5r2 − 7 3 cos 2θ + 1 r

B0,3
⊘ B101

S ,B111
S /3,B211

S /3 10
11B0, 1

⊘ + ∇ × ∇ × 1
32

5
286r2 5r2 − 7 cos ϕ sin 2θ r

B0,4
⊘ B101

S ,B111
S /3,B211

T /3 10
11B0, 1

⊘ + ∇ × 1
8 105r2 r2 − 1 cos ϕ sin 2θ r

B0,5
⊘, † B101

S ,B111
S /3,B101

T /3 10
11B0, 1

⊘ + ∇ × 3
4

35
11f101

t r
B0,6
⊘, † B101

S ,B111
S /3,B201

S /3 10
11B0, 1

⊘ + ∇ × ∇ × 1
16

5
286f201

s r
With f101

s = r 3r2 − 5 cos (θ), f101
t = r r2 − 1 cos (θ), f201

s = r2 5r2 − 7 (3 cos (2θ) + 1),f111
s = r 3r2 − 5 cos (ϕ) sin (θ). † Results for these background magnetic fields are shown in the electronic

supplementary material.
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and analogously for a toroidal magnetic field component BlmnT .
We compute dense mode spectra of the considered background magnetic fields, as described

in §2b. For the axisymmetric fields, a resolution of N = 80 is considered, for each m ∈ [0,17]. We
only consider m ≤ 17, as the modes at larger m are, by definition, not going to be observationally
relevant. Non-axisymmetric fields require a lower resolution for a given matrix size; here, we
find dense solutions using N = 40. At this resolution, the matrix dimensions are challenging
S ∼ 4.5 ⋅ 104, requiring significant memory (∼ 150 GB) and computational effort for the full

dense spectrum.
We confirm the convergence of the modes for the non-axisymmetric B0

⊘, which have been
calculated at a truncation degree N = 40, by tracking the observationally relevant modes up toN = 100. The frequency-damping rate spectrum at each truncation degree is shown in figure
3a, showing that the frequencies are almost unchanged and only the damping rates alter as
the solution converges. The spectra of the eigenvectors decays to less than 10−5 of the peak
energy density at the truncation degree (shown in figure 3b), giving us confidence in the spatial
structure of all the observationally relevant modes that are further analysed.

(b) Mode spectra
The dense mode spectra, showing the frequency against the damping rate, are presented
in figure 4. For all considered B0, we find numerically relevant modes throughout a broad
frequency range (shown in grey). Some numerically relevant modes in the observationally
relevant frequency window satisfy also the other constraints (highlighted in the respective
colours), and these modes are discussed in more detail. We also report the direction of
wave propagation: westward means that ω/m > 0 in our convention. When all azimuthal wave
numbers are coupled, m is determined as the azimuthal wave number of peak energy in Q.

Outside of that window, many inertial modes are clustered at high frequencies up to twice
the diurnal frequency (= 2/Le, in terms of the Alfvén frequency). Their damping rates are small
compared with their frequency, i.e. they have quality factors Q ≫ 1. Magnetic diffusion (which
is the only diffusive term present) is therefore negligible, consistent with the irrelevance of the
magnetic field in the dynamics of these modes. It is noteworthy that some of the inertial modes
approach the observationally relevant frequency range. At frequencies below the observatio-
nally relevant frequency window, we find MC modes. Their periods are mostly gathered
around ω ∼ Le, but extend to even lower periods, as well as up to the observationally relevant
frequencies (ω ∼ 1 − 10). At the Lundquist number considered here (2 ⋅ 104), most MC modes
have a quality factor smaller than 1, i.e. they are overdamped. The number of numerically
relevant MC modes with Q > 1 at relevant periods depends on the background magnetic field.
For example, for B0,3

⊙  (shown in the figure 4a(iii)), there exist more MC modes at frequenciesω ∼ 10−1 with large quality factors compared with other background magnetic fields. For B0,4
⊙ ,

some of the MC modes at long periods are actually unstable (figure 4a(iv)), travelling eastward.
We are uncertain of the origin of this instability, but we note that for this background magnetic
field, the amplitudes are stronger in the deep interior of the domain. Due to the stronger shear
in the background magnetic field, conditions for a field gradient instability may be satisfied
[61,62].

Observationally relevant modes (as defined in §3) are highlighted in shades of blue (the
different shades correspond to geomagnetic relevance; for our purposes here, each shade of
blue means observationally relevant). For each B0 considered, except the axisymmetric purely

toroidal field B0,2
⊙  (shown in the electronic supplementary material), observationally relevant

modes are present. The number of these modes is not the same between the different B0.
In addition, differences in the rate of numerical convergence for each case, and the different
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resolutions for axisymmetric and non-axisymmetric calculations, make a direct comparison
difficult.

Among the observationally relevant modes are torsional modes, mostly distinct from the
other modes by their larger quality factor and a dominant m = 0 velocity structure (shown
as rectangles in the spectra). The fundamental torsional mode has a frequency around ω = 1,
with only slight differences in the frequency between each B0. For the axisymmetric fields
considered, only the gravest few torsional modes are numerically relevant at this resolution
(N = 80), while for the non-axisymmetric case many torsional modes of higher degrees also
are converged at a lower truncation of N = 40. We can understand this difference in numerical
convergence from the properties of the reduced ideal one-dimensional torsional mode equation,
which is only solvable when: (i) vA, given by (1.1), does not vanish at the axis and (ii) ifvA(s = 1) = 0 then vA ∼ (1 − s)ν with ν ≤ 1 [63]. Luo & Jackson [64] showed that torsional modes
can exist for a B0 that fails to satisfy these conditions, when magnetic diffusion is present.
However, a high resolution is needed to resolve the thin structures arising near the axis and
Equator. This is why, at the resolution considered here, only the gravest few torsional modes
are numerically relevant for the axisymmetric B0

⊙. For the non-axisymmetric B0
⊘ discussed here,vA(s) is non-zero everywhere, so no such pathological points exist. The solutions are therefore

larger scale because significant magnetic diffusion is not required on the axis or Equator. With
the exception of B0,4

⊙  (figure 4a(iv)), all the gravest torsional modes (and, if present, most of the
higher degree torsional modes) are observationally relevant.

Besides torsional modes, we find that some MC modes are also observationally relevant.
Their quality factors are of the order of 1−10, smaller than those of torsional modes, but
observationally relevant. Their quality factors should also be larger for larger values of Lu.
For all non-axisymmetric B0

⊘, as well as B0,1
⊙  and B0,4

⊙ , all observationally relevant MC modes are

westward propagating. For B0,2
⊙  and B0,3

⊙ , some observationally relevant modes are also eastward
propagating.
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Figure 3. Convergence of the observationally relevant modes for the background magnetic field B0,1
⊘ . (a) Frequency-

damping rate spectrum coloured by the truncation degree N ∈ [44,100]. (b) The energy density p as a function of
Cartesian polynomial degree n~ for the poloidal (P and S) and toroidal scalar (Q and T) of the velocity and magnetic field
(respectively) at the truncation N = 100. Each colour corresponds to one mode.
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(c) Columnarity
Columnarity of flows, in which the Coriolis force is approximately in balance with the pressure
gradient, is believed to be important in the rapidly rotating dynamics of Earth’s core, at time
scales close to the Alfvén period [65]. We compute a measure of columnarity similar to Luo et al.
[37], as:

(4.3)χ = 4π us 2 + uϕ
2us2 + uϕ

2

1/2sds,
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Figure 4. Frequency-damping rate spectra for the background magnetic fields in table 1. (a) and (b) correspond
to axisymmetric B0,1 − 4

⊙  and non-axisymmetric B0,1 − 4
⊘ , respectively. Dashed lines correspond to Q = |ω/2σ| = 1.

Rectangles indicate modes with a dominant (or exact) azimuthal wave number m = 0 in the velocity. Triangles and circles
indicate a westward and eastward phase velocity of the mode, respectively.
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with . = (4πH)−1∮∫. dzdϕ. The factor 4π ensures that χ = 1 when the flow is perfectly
columnar.

In figure 5, we present the ratio of kinetic to magnetic energy as a function of frequency,
coloured by the columnarity, for one non-axisymmetric magnetic field. It is evident that
modes closer to the Alfvén frequency are more columnar than modes that are much faster
or slower. Keeping in mind our restriction to numerically relevant modes here, smaller scale
modes with low columnarity may fill the spectrum at the same frequencies, but they are not
of importance from an observational perspective. Despite having a much stronger magnetic
energy compared with the kinetic energy, the westward propagating MC modes are all very
columnar, i.e. QG, confirming the validity of previous studies that, a priori, imposed QG on the
flow to investigate interannual QGMC modes [36,39]. At the highest and lowest frequencies,
non-columnar modes are found. For these modes, either the strong inertial force or Lorentz
force, respectively, dominate the flow structure. In a related axisymmetric case, columnar MC
modes have been presented in Luo et al. [37]. In their work, no columnar modes were found
for the background magnetic field B0,1

⊙  (which has only a B101
S  component) at the resolution they

considered (N ∼ 40). At the higher resolution considered here, we find a QGMC mode branch,
showing that a relatively high resolution is needed in this particular background magnetic field
to find adequate convergence of these modes. A lack of an azimuthal component does not seem
to be the relevant property of B0 to observe these columnar modes.

(d) Geomagnetic relevance
To put all observationally relevant modes into context of the magnetic field variation at
the surface of the core, the region that we can access through observations on Earth, we
calculate the weighted temporal and longitudinal RMS of the radial magnetic field variation,
rmst, ϕ∂tBrsin θ. For the modes, the temporal RMS is computed by taking the absolute value of
the complex spatial magnetic field, reconstructed by (2.13). This produces the exact temporal
RMS in the limit of large Q, that we assume here.

A comparison is then made to the RMS derived from the observations (CHAOS−7.16 model),
as shown in §3, to determine the geomagnetical relevance of the modes. In figure 6, we present
the RMS profiles of the modes compared with the RMS of the observations, for each consid-
ered background magnetic field. The colour of the profiles of the modes corresponds to the
correlation c with the observed RMS.
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Figure 5. Ratio of kinetic to magnetic energy as a function of frequency ω for the mode spectrum calculated for the
background magnetic field B0,1

⊘ , at N = 40. Shown are only the numerically relevant modes.
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When the correlation is larger than the threshold value that determines geomagnetic
relevance (0.8), the colour is red instead of shaded blue (c < 0.8). It is found that none of the
axisymmetric magnetic fields show modes with geomagnetically relevant correlation. This low
correlation is mainly due to the vanishing radial RMS component at the Equator (θ = 0) found
for all modes, for background magnetic fields that have a vanishing radial component at the
Equator. This suggests that any combination of modes for such magnetic fields is unable to
reproduce the observed RMS SV. When B0 ⋅ r ≠ 0 at the Equator for an axisymmetric field (cf.

figure 6a(iii), corresponding to B0,3
⊙ , which has a quadrupolar component B201

S ), we find a large
RMS near the poles, which is not observed on Earth. This strong hemispheric asymmetry
through the quadrupolar component is also present in the non-axisymmetric field B0,3

⊘ , that
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Figure 6. Weighted temporal and longitudinal RMS of the radial magnetic field changes for each mode from background
magnetic fields considered. (a) and (b) correspond to axisymmetric fields B0, 1 − 4

⊙  and non-axisymmetric fields B0, 1 − 4
⊘ ,

respectively. Each coloured line corresponds to a single observationally relevant mode. The colour indicates the correlation
to the same RMS of the CHAOS−7.16 model, with blue colours for geomagnetically irrelevant modes (c < 0.8) and red for
geomagnetically relevant modes (c > 0.8). The RMS of the filtered (1−23.7 yr) SV derived from CHAOS−7.16 is shown in
thick black lines.
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includes a B211
S  component (shown in figure 6b(iii)). However, for B0,3

⊘ , there is no peak in
the amplitude at high latitudes. Unlike in the axisymmetric case, the non-axisymmetric fields
considered here all show a peak RMS in ∂tBr near the Equator, and smaller RMS at high

latitudes. For the background magnetic fields B0, (1,2,4)
⊘ , a high correlation between the observed

RMS and the RMS of the modes is found, deeming them geomagnetically relevant according
to our definition. This is true for all modes that are observationally relevant, both the QGMC
modes and the torsional modes.

We find that all modes for the non-axisymmetric B0, (1, 2, 4)
⊘  that are geomagnetically relevant

are also kinematically relevant (see figure 4b). By our definition, this means that the peak in
azimuthal velocity is near the Equator (|θ| < 30∘). This is in agreement with previous calcula-
tions of these modes in two-dimensional reduced QG models [36,39].

(e) Spatial structures
For each background field, the spatial structure for the mode with highest correlation c (see
above) is shown in figure 7. For each subpart (a–g), the left shows the azimuthal velocity and
the right the radial magnetic field at the core surface.

A clear discrepancy between the modes for axisymmetric and non-axisymmetric B0 can be
seen. The modes of the axisymmetric fields (figure 7a,c,e and g) all show a very large azimu-
thal wavenumber, both in the azimuthal velocity (left) and the radial magnetic field (right).
There are observable modes with small m for the axisymmetric fields as well, but they do not
correspond to the mode of highest correlation. The two highest correlating modes for B0,1

⊙  andB0,2
⊙  (shown in figure 7a,c) are very similar in their spatial structure. In both cases, the radial

magnetic field vanishes at θ = 0, while the amplitude is largest slightly above and below the
Equator. The azimuthal flow is largest near the Equator in both cases. This similarity indicates
that a toroidal field B101

T , which is added in B0,2
⊙  on top of B0,1

⊙ , does not seem to affect strongly
the structure of QGMC modes near the surface. Of course, the toroidal field has some effect
on the modes, recalling also the RMS fields of all modes shown in figure 6a(i,ii), and the two
modes that are compared are not linked in any particular way for this comparison. For B0,4

⊙ , the

spatial structure is also similar to the modes of B0,1
⊙  and B0,2

⊙ , but the amplitudes of the azimuthal
velocity and the radial magnetic field are smaller at higher latitudes. For the axisymmetric
field B0,3

⊙ , the spatial structure at the surface is very small scale, with fine structures of highest
amplitude of the azimuthal velocity near the Equator and near the South Pole for the radial
magnetic field. It is interesting to note that strong magnetic field perturbations can be spatially
separated from velocity perturbations on the surface. The small-scale spatial structure of the
modes in for axisymmetric B0

⊙ is also evident in the slow spectral decay of the eigenvectors
(shown in the electronic supplementary material, figures S2 and S3).

The highest correlating modes for the non-axisymmetric fields are very different compared
with the axisymmetric ones. The overall dominant spatial length-scales are larger, and in all of
the modes, the velocity field shows a small azimuthal wave number combined with a larger
cylindrical radial wavenumber. The amplitude of both the azimuthal velocity and the radial
magnetic field are largest near the Equator for all non-axisymmetric B0

⊘ shown. The biggest

difference between the B0
⊘ shown is the longitudinal modulation of the amplitude of the radial

magnetic field.
The low geomagnetic relevance for B0,3

⊘  is not very apparent from figure 7f alone. How-
ever, the asymmetry about the Equator in the peak amplitude of the radial magnetic field
RMS deems this background magnetic field configuration not geomagnetically relevant. The
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generally larger scale structure of the QGMC modes in the non-axisymmetric magnetic field
configuration is highlighted also in the faster spectral decay of the eigenvectors compared with
the modes of the axisymmetric fields (see the electronic supplementary material, figures S4–S6).

(f) Dispersion of quasi-geostrophic Magneto–Coriolis modes
We can investigate the dispersion of the QG-MC modes, i.e. the frequency as a function of
cylindrical radial wave number ks and compare it with the dispersion relation:

(a)

c = 0.78, λ = −0.98 + 4.36i

(c)
c = 0.75, λ = −0.66 + 2.62i

(e)

0.68, λ = −0.21 + 1.23i

(g)

c = 0.62, λ = −2.22 + 9.57i

(b)

c = 0.91, λ = −0.22 + 3.38i

(d)

c = 0.95, λ = −0.12 + 1.09i

(f)

c = 0.52, λ = −0.15 + 1.8i 

(h)

c = 0.91, λ = −0.23 + 2.95i
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Figure 7. Azimuthal velocity (first column) and radial magnetic field (second column) for the mode of highest correlation
in rmst, ϕ∂tBrsin θ with the CHAOS−7.16 profile, for each considered background magnetic field. The modes for the

axisymmetric fields B0,1 − 4
⊙  (a,c,e,g) are truncated at N = 80, and for the non-axisymmetric B0,1 − 4

⊘  (b,d,f,h) at N = 100.
Correlation c and the eigenvalue are given for each mode. The units are Alfven speeds, for both the magnetic field and the
velocity, and amplitudes are arbitrary, so only their relative amplitude is relevant.
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(4.4)ω ≈ − vA2 ks4H2

2mΩ ,

derived by considering only the highest derivatives in s in the reduced (QG) equations [39,
appendix D]. Here, vA is the column averaged cylindrical radial Alfvén velocity:

(4.5)vA s, ϕ = 1
2Hμ0ρ −H

H B0 ⋅ es 2dz .

This dispersion relation is only relevant when ks > m due to the neglect of derivatives in ϕ, and
when the background magnetic field is dominated by components that contribute to VA. For
example, if B0 is an axisymmetric toroidal field VA vanishes and the dispersion relation cannot
hold [37].

We select, for each non-axisymmetric field considered (see table 1), several QGMC modes of
dominant wavenumber m = 1, without restricting the frequencies to the observationally relevant
range. Only the m = 1 dominated QGMC modes are shown, as these are the modes that are
reliably extracted from the dense spectra calculated at the computationally feasible resolution.
To ensure the eigenvalues are converged (on top of the numerically relevant constraint already
imposed), we track the selected modes up to a higher resolution of N = 100. The cylindrical
radial wavenumber ks is determined by counting alternating peaks in the azimuthal velocity.

Figure 8a shows the dispersion relation for the non-axisymmetric background magnetic
fields considered. It is found that the spectra almost collapse, following closely a ks4 scaling,
in agreement with (4.4). For large m, we expect this dispersion to be slightly different, as the
derivatives along ϕ become more important and the ks4 scaling is likely no longer valid (at least
for the moderate values of ks shown here).

We also show the damping rate as a function of ks for the same modes in figure 8b. The
damping rates roughly follow a ks5/2 scaling, but strong variations to that scaling are observed
between different background fields, which do not collapse in the same way as the frequencies
do.

5. Discussion
We presented a suite of eigenmode calculations for several axisymmetric and non-axisymmetric
background magnetic fields to investigate the sensitivity of modes in the interannual period
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Figure 9. Temporal and latitudinal RMS of the radial magnetic field changes for each mode of highest correlation
(in rmst, ϕ∂tbrsin θ) from background magnetic fields B0,1 − 4

⊘ . The colour indicates correlation in rmst, θ∂tbr to the
CHAOS−7.16 model (shown in thick black lines), with blue colours for c < 0.8 and red colours for c > 0.8. Panel (b) is
identical to panel (a), but the mode profiles are shifted by 110∘.
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range on the background magnetic field within the core. Fully three-dimensional modes using
non-axisymmetric magnetic fields that obey geophysically realistic boundary conditions have
been calculated for the first time. The results underline the fact that non-axisymmetric magnetic
fields are key to be able to produce geomagnetically relevant solutions in the interannual period
range, relevant for global satellite-based observations of the geomagnetic field. The absence of
observationally relevant modes for the purely axisymmetric toroidal field B0,2

⊙  highlights the
pathological character of such a simplified B0. When comparing with RMS fields derived from

the CHAOS−7.16 (and CM6) model, the modes for the considered axisymmetric B0
⊙ agree less

than those for the non-axisymmetric B0
⊘. The calculated m = 1 dominated modes for B0

⊘ show
good agreement with the dispersion relation (4.4).

There are likely more observationally relevant modes in the dense mode spectra, which are
not captured at the numerical resolution used here. However, we do not expect these additional
modes to have an entirely different magnetic field structure at the CMB, in comparison with
those that are already captured. Likely, these additional modes have smaller length-scales only,
while having overall similar properties. To be able to compute at even higher resolutions, an
iterative method should be used to compute a subspace of eigensolutions, as otherwise the
matrix size becomes infeasibly large for dense calculations. For example, one could sweep
through a set of targets in the observationally relevant period range, or use contour-integral
methods [66].

A more realistic model for Earth should include a conductive inner core. However, at the
considered periods (interannual to decadal), the inner core might be almost locked into the
motion of the fluid, therefore not contributing much to the dynamics of the modes. In addition,
the most geomagnetically relevant modes investigated here have their peak in amplitude near
the Equator both in the flow and the magnetic field and therefore an inner core might only play
a minor role in their dynamics.

We have chosen the RMS of the radial magnetic field variations as a proxy for geomagnetic
relevance as a first step. The temporal and longitudinal RMS is able to constrain a peak
amplitude near the Equator. In addition, we can compare the mode of highest correlation in
the longitudinal direction with the observations through the RMS averaged over the latitude.
This comparison is made in figure 9a,b, where in (b) we have simply shifted the mode solutions
arbitrarily by ϕ = 110∘. We find that very little correlation in latitudinal RMS is found between
the geomagnetic SV and even the most favourable mode. Shifting the modes by 110∘, corre-
sponding to a change in the orientation of the non-axisymmetric components of the background
magnetic field (whose orientation was not chosen on geophysical grounds), we find that one
mode (for B0,2

⊘ ) has a geomagnetically relevant correlation of c > 0.8 with the RMS derived from
the observations. This small experiment demonstrates how the background magnetic field may
be constrained more accurately by taking into account the full information from the available
observations.

In addition to the comparison with the observation, we compared the radial magnetic field
variation as a function of longitude of modes with vA(ϕ) of the background magnetic fields.
Here, vA(ϕ) is the cylindrical radial average Alfvén speed vA(ϕ) = ∫vA(s, ϕ)sds, assumed to be
relevant for QGMC modes. No simple relationship between the observable radial magnetic
field variation and vA(ϕ) averaged through the bulk of the core was found, requiring further
investigations. From the simplified dispersion relation (4.4), we expect to gain additional
knowledge in the longitudinal direction of vA(s, ϕ), compared with the information on vA(s)
obtained through torsional modes. There also does not seem to be a simple spatial relationship
between the background magnetic field and the magnetic field perturbation of the modes, as
shown in figure 7, requiring further investigation.
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Comparing the averaged RMS profiles is clearly only a very crude way of determining
geomagnetic relevance of the modes and the imposed background magnetic field. However, so
far hydromagnetic modes within the Earth’s core have only been identified in the flow fields
inferred from the geomagnetic data, and not from the geomagnetic data directly. Our work is
a first step towards a more direct identification of these waves in the geomagnetic data. One
possible way to investigate this is to impose a background magnetic field matching the Earth’s
magnetic field at the core–mantle boundary, with varying structure in the bulk (potentially
guided by the mean state of geodynamo simulations [40]), in order to further move towards
a geophysically realistic model of the core. In the future, additional satellite data from the
recently launched Macau Science Satellite 1 [67,68] and the prospective ESA mission NanoMag-
Sat [69] will further improve the data quality, especially near the Equator, the region that is
most relevant for the observation of interannual QGMC modes. Except for the better spatial
coverage in the observations, there is no reason to constrain this work to the satellite era. Longer
period modes, constrained by historic or archaeomagnetic observations, could contribute new
insights.
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Appendix A: Velocity and magnetic field bases terms
(a) Inviscid velocity basis
Poloidal and toroidal scalars for an inviscid velocity basis are given by:

(A 1)Pln = 5 +  2l +  4n
4l l +  1 n +  1 2rl Pn1, l + 1/2 2r2 − 1 , 0 ≤ n ≤ N − l + 1 /2 − 1 ,

(A 2)Qln = 3 +  2l +  4nl l +  1 rlPn0, l + 1/2 2r2 − 1 , 0 ≤ n ≤ N − l /2 .

Note, the range of the radial degree n depends on the truncation degree N and the spherical
harmonic degree l.
For these scalar functions, the resulting basis vectors are orthonormal, i.e.:

(A 3)
V
Plmn∗ ⋅ Pl′m′n′dV =

V
Qlmn∗ ⋅ Ql′m′n′ dV = δll′δmm′δnn′ .

The projections onto the Coriolis term can be calculated analytically as:

(A 4)
V
Plmn∗ ⋅ ez × Pl′m′n′ dV =

V
Qlmn∗ ⋅ ez × Ql′m′n′ dV = iml l + 1 δll′δmm′δnn′,

and
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(A 5)
V
Plmn∗ ⋅ ez × Ql′m′n′ dV = −

V
Ql′m′n′
∗ ⋅ ez × Plmn dV =

δmm′
l2 − 1 l −m l + ml2 4l2 − 1

δl l′ + 1 δnn′ + l + 2l + 1
l l −m + 1 l + m + 1l + 2 2l + 1 2l + 3 δl l′ − 1 δn n′ + 1 .

(b) Insulating magnetic field basis
Poloidal and toroidal scalars satisfying the insulating boundary conditions (2.16) are given by:

(A 6)Sln = fsrl∑k = 0

2
−1 k 1 + δk1 2l + 4n + 2k − 3 Pn − k0, l + 1/2 2r2 − 1 , 1 ≤ n ≤ N − l + 1 /2 ,

(A 7)Tln = ftrl Pn0, l + 1/2 2r2 − 1 − Pn − 1
0, l + 1/2 2r2 − 1 , 1 ≤ n ≤ N − l /2 .

The normalization factors

(A 8)fs = 2l l + 1 2l + 4n − 3 2l + 4n − 1 2l + 4n + 1 −1/2,

(A 9)ft = 2l + 4n − 1 2l + 4n + 3
2l l + 1 2l + 4n + 1

1/2
,

ensure that

(A 10)ℝ3
Slmn ⋅ Slmn∗ dV = ℝ3

Tlmn ⋅ Tlmn∗ dV = 1.

The basis is not orthogonal, but tridiagonal, so that

(A 11)ℝ3
Tlmn ⋅ Tl′m′n′ dV = δll′δmm′ δnn′ −

1
2 1 − 3

2l + 4 n − 1 + 1 + 3
2l + 4 n − 1 + 5δ n − 1 n′

(A 12)ℝ3
Slmn ⋅ Sl′m′n′ dV = δll′δmm′ δnn′ −

1
2 1 + 3

2l + 4n − 1 −
3

2l + 4n − 5δ n − 1 n′ .

The basis is, however, orthogonal with respect to the vector Laplacian [71]:

(A 13)

ℝ3
blmn ⋅ ∇2bl′m′n′ dV =

V
∇ × blmn ⋅ ∇ × bl′m′n′ dV

= − 1
2δll′δmm′δnn′

(2l + 4n + 1)(2l + 4n − 3),b = S
(2l + 4n − 1)(2l + 4n + 3),b = T .

The magnetic field basis, designed to be orthogonal w.r.t. the vector Laplacian, was found to
behave asymptotically like the single Jacobi polynomial only when projecting over all space.
The coefficients of the poloidal scalar (A 6) take a ratio of [1, −2,1] for large values of n, reducing
to a single Jacobi polynomial through the recurrence identities [47, eqn (3)]. The same holds for
the toroidal scalar, with coefficients [1, −1].

Appendix B: Projections of Lorentz force and induction term
To calculate the projection of the Lorentz force, the individual projections are:

(B 1a)

V
Pi∗ ⋅ ∇ × Sj × Sk dV =

− Ajki∗2 Pi ℓi ℓj + ℓk − ℓi DjSj ∂r rSk + ℓk ℓj − ℓk + ℓi r∂r DjSj Sk dr,
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(B 1b)

V
Pi∗ ⋅ ∇ × Sj × Tk + ∇ × Tk × Sj dV =

−Ejki∗ Pi ℓir DjSj Tk + ℓj + ℓk + ℓi SjTkr−1

− ℓj + ℓk − ℓi ∂r SjTk + r∂rSj∂rTk − ℓkrTk∂r2Sj − ℓjrSj∂r2Tk dr,

(B 1c)

V
Pi∗ ⋅ ∇ × Tj × Tk dV =

− Ajki∗2 Pi ℓi ℓj + ℓk − ℓi ∂r rTj Tk + ℓj ℓk + ℓi − ℓj r∂r TjTk dr,
(B 1d)

V
Qi∗ ⋅ ∇ × Sj × Sk dV = − Ejki∗ Qiℓk DjSj Skrdr,

(B 1e)

V
Qi∗ ⋅ ∇ × Sj × Tk + ∇ × Tk × Sj dV =

Ajki∗
2 Qiℓk ℓk − ℓj − ℓi ∂r rSj Tk − ℓj ℓj − ℓk − ℓi Sj∂r rTk dr,
V
Qi∗ ⋅ ∇ × Tj × Tk dV = Ejki∗ QiℓjTjTkrdr,

with ℓi = li(li + 1) and DiSi = ∂r2Si + 2/r∂rSi − li(li + 1)/r2Si .
For the induction term, the projections are:

(B 2a)

ℝ3
Si∗ ⋅ ∇ × Pj × Sk dV =

Ajki∗
2 0

1 Si, −ℓj ℓi + ℓk − ℓj Pj∂r rSk + ℓk ℓi + ℓj − ℓk Sk∂r rPj r−2 r2dr
+liℓk ℓi + ℓj − ℓk ∂r Pj SkSi r = 1 ,

(B 2b)ℝ3
Si∗ ⋅ ∇ × Pj × Tk dV = Ejki∗ Si, ℓjPjTkr−1 r2 dr,

(B 2c)ℝ3
Si∗ ⋅ ∇ × Qj × Sk dV = Ejki∗ Si, ℓkQjSkr−1 r2 dr + liℓk QjSkSi r = 1 ,

(B 2d)ℝ3
Ti∗ ⋅ ∇ × Pj × Sk dV =

Ejki∗ Ti ℓi + ℓj + ℓk PjSkr−1 − ℓj + ℓk − ℓi ∂r PjSk + r ∂r Pj ∂r Sk
− ℓjrPj∂r2Sk − ℓkrSk∂r2Pj dr,

(B 2e)ℝ3
Ti∗ ⋅ ∇ × Pj × Tk dV =Ajki∗

2 Ti −ℓi ℓj + ℓk − ℓi Tk∂r rPj + ℓj ℓj − ℓi − ℓk r∂r PjTk dr,
(B 2f)ℝ3

Ti∗ ⋅ ∇ × Qj × Sk dV =Ajki∗
2 Ti ℓi ℓj + ℓk − ℓi Qj∂r rSk − ℓk ℓk − ℓi − ℓj r∂r QjSk dr,

(B 2g)ℝ3
Ti∗ ⋅ ∇ × Qj × Tk dV = Ejki∗ TiQjTkrdr,

25

royalsocietypublishing.org/journal/rspa Proc. R. Soc. A 480: 20240184
 D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//r
oy

al
so

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
10

 O
ct

ob
er

 2
02

4 



where Si, F = SiFℓi + ∂r rSi ∂r rF /r2 .

Appendix C: External contributions to the induction equation
(a) Inner product
Consider the poloidal magnetic field Slmn in the interior and the associated exterior poloidal

field Ŝlmn. The inner product over all space can be divided:

(C 1)ℝ3
S ⋅ S′ dV = VS ⋅ S′ dV + V̂ Ŝ ⋅ Ŝ′ dV .

Focusing on the integral over the exterior domain, we find:

(C 2)V̂ Ŝ ⋅ Ŝ′ dV = ll′Sln 1 Sl′n′ 1
1

∞

0

π ∇Iml ⋅ ∇Im′
l′ r2sin  θdϕdθdr

(C 3)= Sln(1)Sl′n′(1)l2(l + 1)δll′δmm′,

where we used eqn (B.3.3) of Livermore [72], but with fully normalized spherical harmonics.

(b) Induction term
For an inviscid fluid, with u ≠ 0 at r = 1, we need to calculate additional surface terms in the
calculation of the magnetic induction term.

(C 4)ℝ3
b ⋅ ∇ × u × b dV = Vb ⋅ ∇ × u × b dV + V̂b ⋅ ∇ × u × b dV .

Only poloidal magnetic fields are non-zero in the exterior, and we consider only

(C 5)V̂ Ŝi ⋅ ∇ × uj × Ŝk dV = lilkSi 1 Sk 1 V̂∇Ii ⋅ ∇ × uj × ∇Ik dV ,

where Ŝi and Ŝk are the respective potential fields associated with the poloidal components in
the interior Si and Sk. We can further simplify

(C 6)

V̂∇Ii ⋅ ∇ × uj × ∇Ik dV = V̂∇ ⋅ uj × ∇Ik × ∇Ii dV
=

∂V̂ ∇Ii ⋅ uj ∇Ik − ∇Ii ⋅ ∇Ik uj ⋅ ndA
=

∂V̂ ∇Ii ⋅ uj n ⋅ ∇Ik dA
The contribution from a toroidal velocity Qj is given by

(C 7)

∂V̂ ∇Ii ⋅ Qj n ⋅ ∇Ik dA = − ∇Ii ⋅ ∇ × Qj r Yjr ∂Ik
∂r r = 1

sin θ dθdϕ

= lk + 1 Qj 1 Yk ∂Y i∂θ ∂Yj∂ϕ − ∂Y i∂ϕ ∂Yj∂θ dθdϕ

= lk + 1 Qj 1 Eijk
In summary
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(C 8)V̂ Ŝi ⋅ ∇ × Qj × Ŝk dV = lilk lk + 1 Qj 1 Sk 1 Si 1 Eijk .

The contribution from a poloidal velocity Pj is given by:

(C 9)

∂V̂ ∇Ii ⋅ Pj n ⋅ ∇Ik dA = − ∇Ii ⋅ ∇ × ∇ × Pj r Yjr ∂Ik
∂r r = 1

sin θ dθdϕ

= lk + 1 ∂Pj∂r r = 1
Yk ∂Y i∂θ ∂Yj∂θ + 1

sin2 θ ∂Y i∂ϕ ∂Yj∂ϕ sin θ dθdϕ

= 1
2 lk + 1 ∂Pj∂r |r = 1 lj lj + 1 − lk lk + 1 + li li + 1 Aijk,

so that

(C 10)V̂ Ŝi ⋅ ∇ × Pj × Ŝk dV = 1
2 liℓk ℓj − ℓk + ℓi ∂Pj∂r r = 1

Sk 1 Si 1 Aijk .
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