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ABSTRACT
Sesame (Sesamum indicum L.) is a worldwide cultivated oil crop that belongs 
to the family Pedaliaceae. Sesame seeds possess high nutritional value, 
enriching fats, proteins, carbohydrates, and vitamins. Various phytochemical 
constituents are found in sesame seeds and/or oil, such as phenolic acids, 
flavonoids, phytosterols, tocopherols, phospholipids, and unique class of 
lignans such as sesamin and sesamolin, showing specific health potential 
to the human body (antioxidant, antimutagenic, estrogenic, anti- 
inflammatory, antimicrobial and hypolipidemic). Bioavailability is composed 
of two components: bioactivity and bioaccessibility. However, because phy
tochemicals are treated by the body as xenobiotics, their bioavailability is 
poor, and their presence in the body is temporary. Although specific meth
ods for determining phytochemical bioavailability in sesame are being estab
lished using both in vitro and in vivo approaches, the results are still 
inconclusive. Several factors will impact bioavailability in the human body, 
including molecular structure, transport mechanisms, and food-drug inter
actions. To improve the bioavailability of phytochemicals in sesame and 
thereby enhance the bioactivities, specific methods such as the application 
of sesamol solid lipid nanoparticles, the application of colloidal systems, and 
changing the solubility of phytosterols will be discussed.
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Introduction

Sesame (Sesamum indicum L., family Pedaliaceae) is regarded as one of the earliest cultivated crops. It 
is known as the “queen of oilseeds” due to the high quality of oil, sterols, and antioxidative agents such 
as sesamin, sesamolin, and tocopherols, which function as nutraceuticals and provide physiological 
and nutritional benefits.[1] Tropical, subtropical, and southern temperate regions support the growth 
of the sesame plant. Developing countries such as India, China, Myanmar and Sudan are the world’s 
primary sources of sesame exports.[2] Due to its strong aroma and mild flavor, sesame is extensively 
produced and well-liked. Sesame seeds are frequently used in people’s daily lives to prepare a range of 
dishes, such as sesame oil and paste, or to adorn other cuisines. In addition, the color of the seed coat 
varies between sesame varieties, the most common being milky white, brown, and charcoal black. In 
recent years, certain sesame varieties, for example, black and white sesame, have gained popularity for 
containing high levels of phenolics, such as lignans, flavonoids, and phenolic acids (ferulic, p-cou
maric, and 4-hydroxybenzoic acids).[2,3] Furthermore, previous research has shown that sesame seeds 
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are an excellent source of various nutrients, such as protein, dietary fiber, iron, phosphorous, calcium, 
copper, manganese, zinc and vitamin B1.[4] Therefore, sesame seeds are thought to possess antioxidant 
activity, anti-cancer impacts, constipation protection, and anti-diabetes properties, all of which are 
favorable for human health.[5]

Phytochemicals are nowadays becoming more widely recognized as health-promoting, preserva
tion, and fixing agents in cells, tissues, and the entire human body.[6] Phytochemicals are plant-derived 
compounds with specific health potential, and they do not always belong to essential nutrients 
(carbohydrates, proteins, lipids, minerals, or vitamins), medicines, or toxins. Phenolics, carotenoids, 
organic acids, and distinct bioactive compounds such as saponin, along with sterols, are among the 
phytochemicals frequently associated with human health.[1] The contributions of phytochemicals in 
public health cover a wide range of issues around the world. As a result, researchers, industries, the 
general public, and policymakers see it as a new strategy for monitoring public health.[7]

Lignans are considered the primary phenolic source in sesame seeds. They are responsible for many 
biological functions, including preventing cardiovascular disease, obesity, and high blood pressure.[8] 

Moreover, Wang, et al.[9] mentioned that certain bioactive components present in sesame seeds, such 
as phenolics, vitamins, and phytosterols, exhibit therapeutic benefits. Sesame tannins, for example, 
have antimicrobial properties which can be used as an antibacterial agent in medical care.[10] 

Phytosterols, such as β-sitosterol, have been extensively researched for their benefits in reducing 
cholesterol, boosting immunity, and relieving inflammation.[11] Hence, specific phytochemicals 
derived from sesame seeds are bioavailable in humans, with beneficial health advantages.

Analyzing the extent of bioavailability and bioaccessibility of health-related components is essential 
when assessing the link between food and nutrition. Bioavailability, in nutritional terms, refers to the 
fraction of a provided food that the body can utilize.[12,13] LADME relates to the stages involved in 
bioavailability, followed by liberation, absorption, distribution, metabolism, and excretion through the 
food matrix. Bioaccessibility refers to the quantity of a compound which is released from the food 
matrix in the gastrointestinal tract, becoming available for absorption. In vivo and in vitro studies often 
help analyze the bioaccessibility and bioavailability of substances. Pavez-Guajardo, et al.[14] showed 
that in vitro digestion as an essential part of in vitro research refers to simulating bodily digestion to 
determine the bioavailability of specific nutrients. However, in vivo research has some ethical limita
tions and requires a lot of time. Also, careful design and particular resources are needed to control the 
experiment. Manach, et al.[15] demonstrated that using bioactive food compounds as functional 
ingredients would be inhibited by limited bioaccessibility and bioavailability. However, studying 
bioaccessibility and bioavailability shows many limitations, especially the complex nature of biological 
systems. These limitations mainly include complex mechanistic pathways, the lack of broad repre
sentation of human subjects and food materials, and the interaction of specific food components and 
chemicals to alter their functional properties during a series of processes such as harvesting, storage, 
and processing. Moreover, understanding the digestion, absorption, metabolism of food-derived 
substances plays an essential role in improving bioaccessibility and bioavailability of certain bioactive 
compounds in sesame seeds, thereby expanding health benefits on the human body.

In recent years, among the reviews on sesame, only two reviewed the phytochemistry of sesame in 
detail.[16,17] There are few reviews on the bioaccessibility and bioavailability of phytochemicals in 
sesame. The remaining reviews were either on specific chemical constituents and pharmacological 
effects of sesame,[18] or on the production aspects of sesame and by-products.[19] This current review 
not only highlights the nutritional composition of sesame seeds, but also phytochemicals along with 
their bioactivities, bioaccessibility, and bioavailability studying in sesame seeds. Further, general 
absorption along with metabolism pathways of specific phytochemicals, as well as certain enhance
ment methods for bioavailability in sesame are illustrated.
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Phytochemical profile of sesame seeds

Sesame seeds are regarded as a healthy food in the Middle East, which can provide nutritional along 
with physiological benefits to the human body.[20] Table 1 shows the nutritional composition of 
sesame seeds.[21–28] Sesame seeds are rich in oil with 83–90% unsaturated fatty acids. Various types of 
minerals such as iron, phosphorous, calcium, magnesium, and copper are also detected in sesame.[21] 

More importantly, sesame enriches certain phytochemicals, including lignans, phytosterols, flavo
noids, and phospholipids.[24,26,28–33] The contents and structures of various phytochemicals in sesame 
seeds are presented in Table 2.

Lignans

Lignans refer to compounds originating from C6C3 units and possess two β, β0 linkages (8–80 bond). 
The mixture produced by two p-hydroxyphenylpropane molecules is called lignin, and lignans are 
a type of lignin. There are two types of lignans in sesame seeds, one is the oil-soluble lignans 
containing sesamin, sesaminol, sesamolin, pinoresinol, and sesamolinol, and the other is glycosylated 
water-soluble lignans which contain sesaminol monoglucoside, pinoresinol triglucoside, sesaminol 
triglucoside, pinoresinol monoglucoside as well as two isomers of sesaminol diglucoside and pinor
esinol diglucoside.[34] Figure 1 shows the related compounds of sesame lignans.

Brar and Ahuja[35] suggested that a substance called lignans in the oil gives sesame strong 
antioxidant properties. It was precisely because of the existence of sesamin, sesamolin and other 
derivatives that provide sesame oil with its antioxidant, high-stability and high-quality characteristics. 
Yamashita, et al.[36] showed that the activity of vitamin E could be improved because of the coordina
tion between tocopherols and lignans. Namiki[37] proposed that the bioactive compounds found in 
sesame seeds cannot explain the solid oxidative stability of roasted sesame oil. In contrast, the 
accumulated effect of all sesame oil components prevents the roasted oil from lipid oxidation.

Sesamin, a type of lignan, has now been shown to fight chronic diseases, including breast cancer 
along with cardiovascular diseases.[38] Episesamin is an isomer of sesamin, mainly from the oil refining 
process. The presence of functional methylenedioxyphenyl groups in sesamin and sesamolin confers 
their activity, allowing them to exert their utility by inhibiting liver microsome oxidases.[18,29] The 
levels of lignans in sesame seeds differ by a significant degree. Several researchers have discovered 
distinctions in lignan composition in both cultivars and accessions.[2,18] Selected results are shown in 
Table 2.

Table 1. Nutritional composition in sesame seeds.

Nutrient Quantity (%) References

Moisture 6-7 [21–28]

Protein 20-28
Carbohydrates 14-16
Minerals 5-7
Fibers 6-8
Oil 48-55
Saturated fatty acids (% in oil) 10-17
Unsaturated fatty acids (% in oil) 83-90
Linoleic acid (% in oil) 37-47
Oleic acid (% in oil) 35-43
Stearic acid (% in oil) 5-10
Palmitic acid (% in oil) 9-11
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Tocopherols

Tocochromanols contain both hydrophilic and hydrophobic components with a lipophilic isoprenoid 
side chain connected to membrane lipids and a polar chromanol ring pointing towards the membrane 
surface. Tocochromanols scavenge reactive oxygen species and prevent membrane lipid peroxidation. 
Tocopherols operate as scavengers of reactive oxygen species, reducing free radical impact and 
preventing lipid peroxidation. Yoshida, et al.[39] reported that by scavenging free radicals, cell 
membranes could be protected, and lipids could be replaced and repaired. Heart disease and cancer 
were also effectively prevented by tocopherols.

Hofius and Sonnewald[40] demonstrated that tocopherols helped metabolism in plants by transport
ing sugar from leaves to the phloem. Colombo[41] reported that tocopherol has a chroman ring with one 
alcoholic hydroxyl group, two methyl groups in the middle of the 12-carbon aliphatic side chain and 
more than two methyl groups at the end. Further, there are 8 distinct forms of vitamin E synthesized in 
plants which are α-, β-, γ-, and δ-tocopherols along with α-, β-, γ-, and δ-tocotrienols. A chromanol 
ring, along with a varied quantity of methyl groups on the chromanol ring, is present in all tocopherols 

Table 2. Phytochemicals in sesame seeds.

Bioactive 
components of 
sesame

Name of 
component Chemical structure Method of analysis Findings Reference

Lignans Sesamol High performance 
liquid 
chromatography 
analysis

Sesame seed: 1.20  
mg/g

[29] 

[30]

Sesamin Sesame seed: 8.80  
mg/g 
Sesame oil: 6.20  
mg/g

Sesamolin Sesame seed: 4.50  
mg/g 
Sesame oil: 2.45  
mg/g

Sesaminol Sesame seed: 1.40  
mg/g 
Sesame oil: 0.01  
mg/g

Tocopherols α-tocopherol High-performance 
liquid 
chromatography 
diode array 
detector- 
fluorescence light 
detector

Sesame seed: 
118.43 mg/kg 
Sesame press 
cake: 57.16 mg/ 
kg

[31]

γ-tocopherol Sesame seed: 
290.37 mg/kg 
Sesame press 
cake: 146.16 mg/ 
kg

(Continued)
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Table 2. (Continued).

Bioactive 
components of 
sesame

Name of 
component Chemical structure Method of analysis Findings Reference

Phytosterols β‑sitosterol Gas-liquid 
chromatography 
analysis

Sesame seed: 3.35  
mg/g 
Sesame oil: 2.63  
mg/g

[32]

Campesterol Sesame seed: 1.00  
mg/g 
Sesame oil: 1.35  
mg/g

Stigmasterol Sesame seed: 0.37  
mg/g 
Sesame oil: 0.47  
mg/g

Sitostanol Sesame oil: 0.04 mg/ 
g

Campestanol Sesame oil: 0.02 mg/ 
g

∆5‑avenasterol Sesame oil: 0.82 mg/ 
g

Total 
phytosterols

- Sesame seed: 4.72  
mg/g 
Sesame oil: 5.33  
mg/g

Phospholipids Phospholipids - High performance 
liquid 
chromatography 
analysis

Unroasted: 3.3% of 
total lipids 
Roasted: 0.9– 
3.2% of total 
lipids

[28]

(Continued)
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Table 2. (Continued).

Bioactive 
components of 
sesame

Name of 
component Chemical structure Method of analysis Findings Reference

Flavonoids Procyanidins - Reversed-phase high- 
performance liquid 
chromatography 
coupled with diode 
array detection and 
electrospray 
ionization- 
quadrupole-time-of 
-flight-mass 
spectrometry and 
tandem MS

Sesame oil: 0.03% 
(area of 
chromatographic 
profiles of all 
characterized 
metabolites)

[33]

Catechins - Reversed-phase high- 
performance liquid 
chromatography 
coupled with diode 
array detection and 
electrospray 
ionization- 
quadrupole-time-of 
-flight-mass 
spectrometry and 
tandem MS

Sesame oil: 0.57% 
(area of  
chromatographic 
profiles of all 
characterized 
metabolites)

High performance 
liquid  
chromatography 
analysis

Raw sesame seed: 
280.35 µg/100 g 
Roasted sesame 
seed: 173.56 µg/ 
100 g

[24]

Total 
flavonoids

- Spectrophotometric 
(490 nm)

Sesame seed: 18.03  
mg/100 g

[26]

Tannins Tannins - Spectrophotometric 
(720 nm)

Sesame seed: 3.87  
mg/100 g

[26]

Phenolic acids Ellagic acid High performance 
liquid 
chromatography 
analysis

Raw sesame seed: 
1076.40 µg/100 g 
Roasted sesame 
seed: 772.27 µg/ 
100 g

[24]

Ferulic acid Raw sesame seed: 
14.65 µg/100 g 
Roasted sesame 
seed: 9.68 µg/ 
100 g

Gallic acid Raw sesame seed: 
3.39 µg/100 g 
Roasted sesame 
seed: 4.52 µg/ 
100 g

Chlorogenic 
acid

Raw sesame seed: 
75.70 µg/100 g 
Roasted sesame 
seed: 68.70 µg/ 
100 g

(Continued)
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and tocotrienols. Tocopherol’s metabolic fate and bioactivities are determined by their morphological 
characters. Herbers[42] found that the entire isoforms played an essential role in lipid antioxidants, with 
α-tocopherol possessing the maximum vitamin E activity. Tocotrienols and tocopherols are distin
guished by the presence of an unsaturated tail in tocotrienols and a saturated tail in tocopherols.

Moreover, tocopherols were detected in nearly all parts of higher plants, such as in roots, stems, 
leaves, flowers, fruits, and seeds.[43,44] Nonetheless, different tissues’ forms and levels of tocopherols 
vary greatly. For example, the predominant form of tocopherol in plants’ stem and leaf tissues is alpha- 
tocopherol. DellaPenna[45] showed that γ- and δ-tocopherols were present in relatively high amounts 
in most seed crops, while the level of α-tocopherol was relatively low. For instance, Pathak, et al.[21] 

noted an 800 mg/kg of γ-tocopherol content determined in sesame seeds. Besides, Melo, et al.[31] 

measured the profile of α-tocopherol and γ-tocopherol in sesame, totalizing 218 and 436 mg/kg in 
sesame cake and seeds, respectively (Table 2).

Phytosterols

Phytosterols, including sterols and stanols, are triterpenoids found in plants, can restrain cancer and 
other chronic diseases, and exhibit antibacterial, anti-inflammatory, and antioxidant properties.[45–47] 

Moreau, et al.[48] stated that phytosterols show an extra methyl group at the C-24 position and are 
structurally similar to cholesterol. Thus, they compete with cholesterol during digestion and reduce 
blood cholesterol levels. Phytosterols extracted from plant sources are commonly found in functional 
foods, and processed foods fortified with phytosterols are sometimes labelled as cholesterol-lowering 
foods. Phytosterols content in sesame seeds is nearly 400 mg/100 g, much higher than that in legumes 
often used for phytosterols extraction.[21]

β-sitosterol was detected as the principal constituent of phytosterols in sesame seeds, followed by 
campesterol and stigmasterol.[49] Unlike other phytosterols, β-sitosterol has been significantly 
explored for its advantages in suppressing inflammation, enhancing immunity, and lowering choles
terol levels.[11] The content of Δ5-avenasterol and stigmasterol present in sesame oil was about 10% 
and 6.5%, respectively. Δ7-avenasterol and Δ7-stigmasterol were observed in small amounts in total 
sterols. In addition, the total sterols level in sesame oil was noted at 5.4 mg/g oil.[49]

Phospholipids

Phospholipids, composed of phosphatidic acid and phosphatidylcholine, are known antioxidant 
enhancers, which help to improve product stability over shelf-life and overall food quality, including 
smoothness, mouthfeel, etc.[22]

Table 2. (Continued).

Bioactive 
components of 
sesame

Name of 
component Chemical structure Method of analysis Findings Reference

Alkaloids Caffeine High performance 
liquid 
chromatography 
analysis

Raw sesame seed: 
57.60 µg/100 g 
Roasted sesame 
seed: 67.58 µg/ 
100 g

[24]

Total alkaloids - Spectrophotometric 
(568 nm)

Sesame seed: 4.80  
mg/100 g

[26]

Saponins Saponins - Spectrophotometric 
(550 nm)

Sesame seed: 5.60  
mg/100 g

[26]
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The level of phospholipids in sesame is lower, only accounting for 2.3–3.5% of total lipids, but they 
are the main components of biological membranes.[34] Phospholipids are widely classified, and 
different chemical compositions establish other physical properties affecting membrane function.

In sesame seed oil phospholipids studied, the primary fatty acids were palmitic (26.5%), oleic 
(26.4%) and linoleic (34.0%).[27] Mares, et al.[50] also reported that sesame seeds enriched in unsatu
rated fatty acids displayed a greater level of unsaturation. Abou-Gharbia, et al.[51] noted that phos
pholipids in sesame could provide many benefits, including improved memory and learning in mice.

Furthermore, Yoshida, et al.[28] found that phospholipid levels gradually decreased with increasing 
roasting time, with significant losses followed by phosphatidylethanolamine, phosphatidylcholine, and 
phosphatidylinositol. The breakdown of phospholipids or the formation of complexes with proteins or 

Figure 1. Major (first two rows) and minor (the middle two rows) lignans of sesame and transformation products (bottom row) 
(adapted from [18]).
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carbohydrates causes the phospholipid content to drop during roasting.[52] Phosphatidylethanolamine 
could significantly enhance the activity of primary antioxidants’ activity in vegetable oils by appro
priately increasing the roasting temperature.[53]

Flavonoids

Flavonoids, abundant in plants, are classified as phenolic compounds. Asghar, et al.[22] reported that 
procyanidins, epicatechin, β-catechin, and guercint are at high levels in sesame seeds. Reportedly, 
C-glycosides are the main flavonoids present in sesame cakes.[33] Samuel and Genevieve[26] reported 
the phytochemical levels of sesame seeds grown and consumed in Abakaliki, Nigeria, showing a result 
of 18.03 mg per 100 g of sesame seeds.

Proanthocyanidins, as flavonoid polymers, reportedly have antibacterial, anti-inflammatory, anti
oxidant, and anti-cancer activities and can reduce cardiovascular disease risk, lower blood sugar levels, 
and protect from degenerative diseases.[54] Further, Asghar, et al.[22] reported that procyanidins, the 
subclass of proanthocyanidins, were good scavengers capable of suppressing lipid peroxidation of low- 
density lipoprotein cholesterol in the human body.

Phenolic acids

Phenolic acids, classified into hydroxybenzoic and hydroxycinnamic acids, participate in several 
biochemical processes and enrich various vegetal products.[55,56] Laura, et al.[57] noted that, as 
insoluble substances, phenolic acids are often found to combine with other molecules on the cell 
wall. Further, phenolic acids have a phenyl group substituted by a carboxylic group and at a minimum 
of one OH group, which are classified as hydroxycinnamic acids (C6–C3 backbone), acetophenones 
and phenylacetic acids (C6–C2 backbones), as well as hydroxybenzoic acids (C6–C1 backbone).[56,57]

Gallic, vanillic, salicylic, and protocatechuic acids belong to the group of common hydroxybenzoic 
acids. While caffeic, p-coumaric, and chlorogenic acids will be classified into the group of hydro
xycinnamic acids.[57,58] According to Chen, et al,[2] their findings showed that the major phenolics in 
three processing conditions (raw, roasted, and digested) of sesame were gallic acid, ferulic acid, 
4-hydroxybenzoic acid, protocatechuic acid along with quercetin. And these compounds may posi
tively influence the antioxidative activities of sesame products. Furthermore, the level of quercetin, 
protocatechuic acid, 4-hydroxybenzoic acid, along with gallic acid in sesame would significantly rise 
after roasting. In another study, Hassan[24] reported that ellagic acid (1076.40 µg/100 g) was the most 
abundant of the sixteen phenolic acids found in sesame seed samples, and roasting treatment would 
increase the levels of gallic acid, vanillic acid, and benzoic acid in sesame seeds.

Bioactivities of phytochemicals in sesame seeds

Budowski and Markley[59] reported sesamin and sesamolin as the dominant lignans in sesame seeds. 
Later, sesaminol was claimed as another dominant lignan in sesame seeds.[60] Shimizu, et al.[61] noted 
that sesamin, sesamolin, along with sesaminol had the ability to reduce lipids and arachidonic acid 
levels in humans. They also reported that the lignans from the sesame seed helped lower the level of 
cholesterol in the blood via suppressing its synthesis and absorption. Other studies noted that these 
lignans have anti-inflammatory and anticarcinogenic effects and assist in enhancing fatty acid oxida
tion in the liver.[62,63] In addition, these lignans are neuroprotective and antihypertensive, which can 
inhibit brain damage or hypoxia.[64,65]

Furthermore, sesame lignans possess tocopherol-sparing as well as antioxidative activities.[66,67] In 
addition to anti-inflammatory and antihypertensive properties, lignans are reported to influence lipid 
metabolism where the actions of gene expression and hepatic enzyme are improved, including 
3-ketoacyl-CoA-thiolase, bifunctional enzyme, carnitine palmitoyl transferase, and acyl CoA 
oxidase.[68] Lim, et al.[68] demonstrated that the activity of enzymes that participated in lipogenesis 
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could be decreased through lignans by altering gene expression, containing fatty acid synthase, 
glucose-6-phosphate dehydrogenase, acetyl-CoA carboxylase, pyruvate kinase, and ATP citrate clea
vage enzymes. Thus, sesame can play an important part in reducing vulnerability and growing 
protection against cancer, atherosclerosis, and heart disease.[69]

Due to the high amount of lignan and its antioxidative, anticholesterolemic, and antihypertensive 
effects, sesame possesses both preventive and therapeutic significance in various diseases. After being 
absorbed by the human body, the sesamin in sesame lignans will undergo enterohepatic circulation 
and produce potent antioxidant metabolites.[18] Bacteria metabolize this vital antioxidant metabolite 
in the gut to produce biologically active substances such as mammalian lignan enterolactone and 
enterodiol compounds. In addition, the effects of such compounds on specific diseases such as breast 
cancer, colon cancer, bone disease and cardiovascular disease are studied, all illustrating good trends 
of risk-lowering.[70,71]

In addition to lignans, sesame seeds possess several tocopherol homologues with potential health- 
promoting effects containing α-tocopherol, γ-tocopherol, δ-tocopherol and tocotrienols. 
Hemalatha[25] reported that tocopherols and lignans have synergistic effects on the activity of vitamin 
E and can inhibit the oxidative metabolism of fatty acids in the human body. Lignans are the 
influencing factors that bring high nutritional value to sesame seeds, and tocopherols play an essential 
part in promoting the application of sesame seeds in the global daily diet.

Kamal-Eldin[72] noted that α-tocopherol exhibited antioxidant properties by damaging lipoproteins 
and free radical chains in membranes. At the same time, the incidence of various chronic diseases, 
including cardiovascular disease, is also reduced because of the antioxidant activity of α-tocopherol 
and diverse functional properties at the molecular level. Other tocopherols, although possessing low 
levels, also contain antioxidant biological activity. For example, Li, et al.[73] discovered that γ- 
tocopherol was more advantageous than α-tocopherol in reducing low-density lipoprotein oxidation, 
platelet aggregation, and arterial thrombosis. Tocotrienols can inhibit cholesterol synthesis and help 
lower breast cancer risk.[74,75] Generally, tocopherols have antioxidative, anti-tumor, and cholesterol- 
lowering effects.[18] In sesame, the most abundant type of tocopherol is γ-tocopherol, while α- 
tocopherol and δ-tocopherol are in trace levels. Although γ-tocopherol is not the primary form of 
vitamin E, it has the most potent activities of antioxidants in comparison with other types.[76]

Tocopherols block the cyclic chain reaction of polyunsaturated fatty acid-free radicals, a response 
that results from lipid oxidation. Subsequently, lipid peroxidation free radicals are converted into 
tocopherol free radicals under the action of tocopherol. The corresponding tocopherols can be 
generated under certain antioxidants, such as ascorbic acid.[77] Thus, the tocopherol molecule under
goes multiple fragmentations of the lipid peroxidative chain until final degradation.

It is commonly accepted that the amounts of phytochemicals in nutraceuticals are impacted by 
manufacturing and storage procedures, affecting their bioactivities. Sesame food and oil are processed 
mainly through roasting, which imparts a distinctively tasty flavor. Mannan, et al.[20] noted the impact 
of roasting on total phenolic compounds as well as the γ-tocopherol level of Iranian sesame seeds. 
They found that with the roasting temperature increasing, the total phenolic content grows consider
ably. Meanwhile, germinated sesame seeds were illustrated with a higher level of sesamol (4.75 mg/g) 
along with α-tocopherol (0.32 mg/g), both providing beneficial antioxidative effects to the human 
body.[50] However, during storage, the total phenolic content, as well as antioxidant activity, was 
reported to be reduced to a large extent.[29]

Sesame plays a vital role in conventional Chinese and Indian medicinal systems, such as Ayurveda, 
and has a wide range of medical applications. Sesame oil is applied to treat toothaches and dental 
problems in China.[69] In India, sesame oil is seen as an antibacterial mouthwash to treat insomnia, 
anxiety, dizziness, blurry vision, and headache.[25] Additionally, Ang, et al.[78] have reported that 
sesame oil assists in healing skin burns. A pure herbal formula originating from China, known as 
moist-exposed burn ointment, is mainly made up of sesame oil, accompanied by small levels of β- 
sitosterol and other plant extracts, typically utilized to treat burns to the face, neck, as well as hand.[78] 

Table 3 demonstrates the specific bioactivities of phytochemicals in sesame seeds.[69,79–96]
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Bioaccessibility and bioavailability of phytochemicals in sesame seeds

Bioaccessibility of phytochemicals

Metabolism of polyphenols
Phenolic compounds are associated with organoleptic properties and oxidative stability and are, 
therefore, important for the quality of plant foods. These phytochemicals have several biological 
activities that favor the human body. Phenolic compounds have antioxidant, anti-inflammatory, 
antibacterial, antiallergic, antiarteriosclerotic and antithrombotic effects, with most studies performed 
as in vitro models.[2,97–99] Nonetheless, the physiological activities of polyphenols are not directly 
related to those substances in the human diet. In fact, those compounds cannot be absorbed or 
metabolized in the colon and are therefore excreted rapidly. Metabolites of phenolics formed in the 
digestive tract may no longer have the same biological activity as the original substance after being 
transferred to the target organ in the blood.[100,101] Antioxidants containing phenolic compounds have 
different activities in individual organelles than in whole cells. Acting as a barrier, the cell membrane 
impacts the bioavailability of intracellular antioxidants, potentially reducing genotoxicity or gene 
protection.[97,101] The comparatively low absorption rate in the upper digestive tract retains the 
biological effects of polyphenolic compounds on organisms. D’Archivio, et al.[102] noted that the 
chemical structure is an important factor affecting polyphenols’ intestinal absorption and their 
metabolites circulating in plasma. Molecular weight, esterification, and glycosylation affect the poly
phenols’ bioavailability. Most phenolic glycans are originally hydrophilic and may be absorbed via 
biofilms by diffusion, as shown in Fig. 2. Nonetheless, almost all polyphenols present in fruits, as well 
as vegetables, exist in the form of glycosides, which impacts intestinal absorption.[103]

Flavonoids
Flavonoids are broad polyphenolic compounds diversified according to the oxidation state of hetero
cyclic compounds. According to different structures, flavonoids are divided into 6 subclasses: flavo
nols, flavonoids, flavonoid-3-ols, isoflavones, flavonoids, and anthocyanins. Other flavonoids, such as 
dihydroflavonoids, coumarins, and flavan-3,4-diols, make up a smaller proportion of the diet.[104] So 
far, over 6,000 flavonoids have been described, and novel substances from this group are still being 
identified.[105]

Ferreyra, et al.[105] found that except for catechins, most flavonoids exist in plants in close 
association with β-glycoside sugars. In metabolizing flavonoids, hydrolysis of glycosidic bonds begins 
first, which may occur directly in enterocytes or the intestinal lumen.[106] The difference in the type of 
substituted sugar groups will affect the metabolic process. For example, the substrate of human 
endogenous cellular β-glucosidase is phenolic substances comprising glucose, xylose and 
arabinose.[44] Since the flora also destroys the released aglycones and generates a variety of simple 
aromatic acids in the metabolism process, absorption effectiveness is frequently decreased when the 
flora is present. Some studies demonstrated that phenolics metabolites produced by microflora activity 
seem to be more active than their precursors.[107,108] Numerous enzymes are responsible for poly
phenol metabolism, either endogenous or generated by the micro-flora in the human gastrointestinal 
system. These contain the previously mentioned cytosolic β-glucosidase, which is found in many 
tissues but is primarily found in the liver, and lactase, which is found simply in the intestine and may 
be able to account for the hydrolysis among several polyphenol glycosides, particularly quercetin- 
3-O-glucoside. In the liver and enterocytes, phenolic compounds are conjugated during absorption. 
Polyphenol methylation is catalyzed by catechol methyltransferase. UDP-glucuronidase catalyzes 
conjugation with glucuronide conjugates, and aglycones are converted into sulphate derivatives by 
phenol sulfotransferase. Phenolic compounds are eliminated in the urine or bile after metabolizing 
them in the body. They are significantly different in the bioavailability, metabolization process, and 
chemical state than polyphenolic compounds found in plasma.[107] Ferreyra, et al.[105] noted that the 
degradation of compounds would be prevented if there is a free hydroxy group shown at C-position 4, 
5, or 7. The origin of polyphenolic compounds, i.e., the food source, also plays an essential part in 
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influencing the metabolism, as the molecules can exist in diverse types. In the human digestive system, 
gallic acid, along with isoflavones, are the main readily absorbed, which are followed by catechin, 
quercetin glycosides, as well as flavanones.[107]

Phenolic acids
Phenolic acids (C6-C3) are non-flavonoids found everywhere in the human diet. Studies on bioavail
ability show that gallic acid has a very high absorption rate, absorbed by the stomach, small intestine, 
or both.[109] Gallic acid occurs primarily as 4-O methylated and O-glucuronic acid conjugates in 
plasma and urine after ingestion of pure form or food-derived gallic acid.[109] Also, in one in vitro 
study, two phenolic acids were found in all three digestion phases: protocatechuic acid and gallic 
acid.[110]

Hydroxycinnamic acids, such as ferulic acid, caffeic acid, p-coumaric acid, along with caprylic acid, 
are rarely found in their free form in food. Generally, they undergo esterification with the participation 
of tartaric acid, quinic acid, or carbohydrate derivatives.[111] However, when such hydroxycinnamic 
acids are consumed in free form, they will be quickly absorbed in either stomach or small intestine and 
subsequently combined with intestinal or liver detoxification enzymes.[109,112] Olthof, et al.[113] 

showed that the colon would be the digestion site for the esterified hydroxycinnamic acids. 
Comparing the digestion of dextrin-rich and wholemeal bread, one study showed low bioaccessibility 
for p-coumaric acid as well as ferulic acid in both types of bread, while high bioaccessibility for sinapic 
acid along with caffeic acid.[114]

Lignans
During mammalian digestion, lignan glycosides are altered by the gut bacteria and, thus, deglycosy
lated, enabling the primary metabolism of lignans. In the laboratory, the total aglycone concentration 
is measured by deglycosylation, therefore, requiring preparative purification to maximize the yield of 
aglycones.[115]

Figure 2. Absorption and metabolism routes for dietary polyphenols in humans (adapted from [103]).
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Aglycon hydrolysis of pinoresinol diglucoside was successfully achieved via a commercial β- 
glucosidase.[116] Commercial β-glucosidases cannot hydrolyze the mono- and di-glucosides of sesamol 
due to steric hindrance inhibiting the enzyme’s catalytic action.[117] Katsuzaki, et al.[118] noted that 
glycosidases could hydrolyze glucosides of lignans successfully, except for sesamolinol. Mixing 
cellulases and glycosidases could help deglycoylate the lignan glucosides.[119] A study discovered 
that monoglycosides were the significant sesamin hydrolysates triglycosides, even after combined 
treatments of β-glucosidase and cellulase.[120] Although Peng, et al.[121] thoroughly optimized the 
procedure for using the identical combination of enzymes, there was merely a half output of aglycone 
in pure form.

Glucose will be eliminated from the glucosides of lignans by bacteria in the intestine[122] before the 
lignan aglycons are transformed into designated enterolignans.[123] Several studies showed that 
enterolactone and enterodiol were the major types of enterolignans formed by the microbes in the 
human digestive tract.[124–127] The conversion product of lignans to enteric lignans was found in 
sterile cultures of microbes separated from the human gut and in cultures inoculated with human fecal 
inoculum in vitro.[71,126] Further, deglycosylation, demethylation, dehydrogenation, along with dihy
droxylation are the four conversion steps, while the types of lignans also determine the reduction 
steps.[126,128]

Bioavailability of phytochemicals in sesame seeds

In vitro gastrointestinal digestion, including oral, gastric and intestinal stages, has been shown to affect 
defatted sesame meal’s antioxidant capacity and lignan bioavailability.[23] In their study, Chen, et al.[23] 

found that different structures of lignans were influenced distinctly during various stages of in vitro 
gastrointestinal digestion. Specifically, pinoresinol, along with pinoresinol diglucoside contents, sig
nificantly increased along the passage of the intestinal track stages. In contrast, the contents of sesamol 
and pinoresinol diglucosides significantly decreased at the oral stage of digestion. At the same time, the 
content of sesamol derived from the food matrix was found to reduce after intestinal digestion but 
increase during gastric digestion. Nonetheless, sesamolin could not be found in all phases of in vitro 
digestion. Meanwhile, analogous trends could be found for sesamolin, sesamol, and pinoresinol levels 
extracted from 6 distinct varieties of sesame seeds.[2] Chen, et al.[23] found that the antioxidative 
activity in defatted sesame meal was confirmed to decrease during simulated gastrointestinal digestion 
using ABTS, DPPH, along with FRAP assays.

The effect of in vitro digestion on the content of water-soluble phenolic constituents extracted from 
six distinct sesame varieties was measured by Chen, et al.[23] Through in vitro gastrointestinal 
digestion, they noted that the mean total phenolic levels were highest in the small intestine, followed 
by the stomach and oral phases. Further, the existence of several phenolic compounds detected in 
sesame seeds gradually decreased during upper tract digestion. At the same time, different types of 
phenolic acids were found to be abundant during gastrointestinal digestion, including chlorogenic 
acid, protocatechuic acid, gallic acid, as well as 4-hydroxybenzoic acid. Further, Chen, et al.[2] detected 
the most outstanding amount of chlorogenic acid in roasted sesame seeds in the small intestine (77.3– 
84.9 mg/100 g dry weight). In contrast, relatively higher levels of protocatechuic acid and gallic acid 
were found in the gastric and intestinal phases. In addition to the high levels of 4-hydroxybenzoic acid 
(63.6–91.3 mg/100 g dry weight) detected in the gastric stage, p-coumaric acid and quercetin were also 
manifested during in vitro gastrointestinal digestion. Ferulic acid was elevated in the later intestinal 
phase but was not found in the oral phase. However, Chen, et al.[2] found that the antioxidative activity 
of sesame was significantly reduced during in vitro digestion. The use of a DPPH assay indicated 
a decrease in the antioxidant capacity of sesame, but FRAP and ABTS assays showed an increase in the 
antioxidant capacity after digestion.

Luo, et al.[129] measured the antioxidant activities and bioaccessibility of selected phenolic com
pounds during in vitro digestion and colonic fermentation of white, brown, and black sesame seeds. 
They reported that the bioaccessibility of total phenolic compounds in all varieties peaked at the 
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colonic stage, followed by the intestinal phase (more significant than the oral and gastric phases). 
Furthermore, the level of syringic acid was highly bioaccessible in all varieties throughout the digestion 
and fecal reaction, most likely due to gallic acid metabolism. Nevertheless, kaempferol was noted as the 
least bioavailable phenolic compound in all three sesame seeds due to its dependence on the action of 
gut microbiota. After 24 hours of colonic fermentation, all phenolic compounds were wholly bioac
cessible and metabolized. In addition, the production of short chain fatty acids was estimated. White 
sesame seeds produced more individual and total SCFAs than black sesame seeds, which could be 
favorable for gut health. Nonetheless, because sesame seeds contain a high concentration of lipid and 
protein fractions, interactions between phenolic compounds and proteins may affect the bioavail
ability and bioactivity of bioactive compounds, which displays certain limitations.

Factors affecting bioavailability

Bioactive molecule structure

The molecular structure of a bioactive substance considerably affects absorption.[130] For instance, 
Appeldoorn, et al.[131] indicated that the complex lipids, as well as oligomeric proanthocyanidins (high 
molecular weight compounds), would only permeate the intestinal cells if they are initially decom
posed. In addition, human absorption is also determined by the sugar moiety of flavonoids. As one of 
the most abundant forms in nature, flavonoids conjugated with β-glucosides are claimed to be less 
absorbed in the small intestine and are discovered to be absorbed by enzymes, including lactase- 
phlorizin hydrolase along with β-glucoside hydrolase.[132]

However, Erlund, et al.[133] showed that quercetin, a flavonoid in tea leaves, reaches the large 
intestine after combining with an additional rhamnose moiety that gut microbiota will break down 
before being absorbed. Furthermore, the isomeric configuration, along with the chemical structure of 
bioactive components in food, can influence absorption. In specific drugs, flavonoids with distinct 
stereochemistry reveal various bioefficacy and bioavailability. The metabolism of hesperidin,[134] (–)- 
epicatechin and (+)-catechin bioavailability,[135] and the bioactivity of equol,[136] are all the same case.

Mechanisms of transport

One of the most significant elements influencing the bioavailability of consumed food substances and 
drugs is the multiple transport mechanisms that occur in the intestine’s lumen. Facilitated diffusion, 
passive diffusion, and active transport are examples of these. The initial two mechanisms entail the 
diffusion of a concentration gradient into the bloodstream via intestinal cells. The final mechanism 
functions against the gradient of concentration and leads to either increased compound levels in the 
blood or secretion of the substances back into the gut lumen.[137]

Metabolism and food – drug interactions

After drugs or biologically active food molecules enter the intestinal cells, they may be metabolized by 
cytochrome 450 enzymes (CYP), changing the biologically foreign bodies through oxidation or 
reduction. Generally, polyphenols are not substrates for CYP enzymes, while some phase II enzymes 
affect and act on polyphenols, resulting in polyphenols interacting with sulfotransferases, uridine-5’- 
bisphosphate glucuronyltransferases, catechol-O-methyltransferase and glucuronic acid. As a result, 
molecular structures that vary from the initial components of the digested food are constituted.[138] 

Co-administered bioactive compounds or specific drugs could suppress or activate the activity of 
enzymes belonging to the CYP family. For example, circulating amounts of vitamins that are lipid 
soluble can be enhanced by inhibiting CYP enzymes, while CYP enzymes could be inhibited by 
lignans, such as sesamin, thereby assisting in significantly improving the concentration of g-toco
pherol in the human body.[139,140]
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Bioavailability enhancement method for phytochemicals in sesame seeds

Enhancing the bioavailability of biologically active substances is critical for increasing their bioefficacy. 
To enhance the bioavailability of bioactive substances, specific methods have been determined. These 
methods include modifications on chemical and functional aspects of molecules to improve their 
solubility or absorption sites, the application of nanosystems, and the application of colloidal systems 
(Table 4).[140–153]

Sesamol possesses various biological activities; however, its low oral bioavailability prevents it from 
exerting these effects. To increase the bioavailability of sesamol, solid lipid nanoparticles (SLNs), 
spherical solid lipid particles possessing the ability to disperse in surfactant solutions, are one of the 
promising alternative drug delivery systems to colloidal drug delivery systems. The generation of SLNs 
can be achieved by micro-emulsification, a fact shown by many studies. For example, Kakkar, et al.[142] 

adopted the micro-emulsification technique to make a sesamol solid lipid nanoparticle with materials 
of Compritol 888, Tween 80, and polysorbate 80. Finding an average particle size of 122 nm for 

Table 4. Research works on bioavailability enhancement method for phytochemicals in sesame.

Formulations Materials Methodology
Entrapment 

Efficiency
Loading 
Capacity Reference

Solid lipid 
nanoparticles

Sesamol, polysorbate 80, soy lecithin, Tween 80, 
compritol 888

Micro- 
emulsification

75.9% 97.5% [141]

Solid lipid 
nanoparticles

Sesamol, soy lecithine, Tween 80, Compritol 888, 
polysorbate 80

Micro- 
emulsification

75.9% 86.5% [142]

Solid lipid 
nanoparticles

Sesamol, soy lecithine, Tween 80, Compritol 888, 
polysorbate 80

Micro- 
emulsification

72.57% 94.26% [143]

Solid lipid 
nanoparticles

Sesamol, Tween 80, and egg lecithin Microemulsion 88.21% 95% [144]

Solid lipid 
nanoparticles

Sesamol, polysorbate 80, soy lecithin, Tween 80, 
compritol 888

Microemulsification 73.92% 75.68% [145]

Solid lipid 
nanoparticles

Sesamol, polyethylene glycol, Na2SeO3 Microemulsification - 84.7% [146]

Solid lipid 
nanoparticles

Sesamol, carbon tetrachloride, polysorbate 80, soy 
lecithin, Tween 80, compritol 888

Microemulsification 73.92% 69.8% [147]

oleic-acid 
conjugated 
nanoparticles

Sesamol, gelatin type A from porcine skin, 
gluteraldehyde, glycine, 1-ethyl-3-(3-dimethyl- 
aminopropyl) carbodiimide hydrochloride, oleic 
acid, N-hydroxysuccinimide, and 
2-Meracaptoethanol

Micro- 
emulsification

44.6% 37.16% [148]

Nano 
structured 
lipid carriers

Sesamol, cetyl palmitate and oleic acid, poloxamer 
188, Tween 80

High-pressure 
homogenization

94.3% 82.3% [149]

Phosphatidyl 
choline 
micelles

Sesamol, phosphatidylcholine, deoxysodium cholate, 
2,2-diphenyl-1-picrylhydrazyl, pepsin, pancreatin, 
bile extracts porcine, lucifer yellow dipotassium 
salt, 20,70-dichlorodihydrofluorescein-diacetate, 
lipopolysaccharide 
(LPS) and lipoxygenase.

Microemulsification 96.8% 74.4% [150]

Casein micelle Sesamol, sodium caseinate, dibasic potassium 
phosphate, sodium hydroxide, hydrochloric acid, 
calcium chloride anhydrous, sodium citrate 
tribasic dihydrate

Microemulsification 34.9% - [151]

Phosphatidyl 
choline 
micelles

Sesamol, phosphatidylcholine from soybean, 
deoxysodium cholate, 2,2-diphenyl- 
1-picrylhydrazyl, pepsin, pancreatin, bile extracts 
porcine, lucifer yellow dipotassium salt, 2′,7′- 
dichlorodihydrofluorescein-diacetate, 
lipopolysaccharide (LPS) along with lipoxygenase

Microemulsification 97% 74% [152]

Nano 
structured 
lipid carriers

Sesamol, sesame oil, Compritol 888, ATO (glyceryl 
behenate, tribehenin), a mixture of mono-, di-, and 
triglycerides of behenic acid (C22), Miglyol 812 
(caprylic/capric triglycerides), Lutrol F68 
(Poloxamer 188), Sodium polyacrylate

US, HSH 82.5% and 
91.2%

- [153]
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sesamol-filled solid lipid nanoparticles, the loading capacity and entrapment efficiency were reported 
as 86.5% and 75.9%, respectively. Additionally, Kakkar and Kaur[143] later showed a loading capacity 
and entrapment efficiency of 94.6% and 72.57%, respectively, with a particle size of 106 nm, using soy 
lecithin, Compritol 888, Tween 80, and polysorbate 80 for preparing the solid lipid nanoparticles. 
However, in another study by Puglia, et al,[153] sesame oil, sesamol, Compritol 888 ATO, Miglyol 812, 
Lutrol F68, behenic acid mixture, and sodium polyacrylate were used to produce lipid carriers. The 
methods of ultrasonication, as well as high shear homogenization, were also adopted. With a particle 
size of 200 nm, the entrapment efficiency for using the two methods was 91.2% and 82.5%, respec
tively. Hassanzadeh, et al.[149] prepared the nanostructured sesamol lipid carrier with a particle size of 
66.3 nm by utilizing the high-pressure homogenization method, displaying the entrapment efficiency 
and loading capacity of 94.3% and 82.3%, respectively. In another study, soy lecithin, polysorbate 80, 
and lipid were added to produce an average particle size of 40 to 70 nm of solid lipid nanoparticles.[141] 

The loading capacity and entrapment efficiency were noted at 97.5% and 75.9%, respectively.[141] 

Yashaswini, et al.[152] found an entrapment efficiency of 96.8% by combining phosphatidylcholine- 
mixed micelles with sesamol, thereby improving its bioavailability.

Another example of improving bioavailability by increasing bioaccessibility is to use of phytoster
ols. Recrystallization occurs when phytosterols are combined with foodstuff, and product texture 
changes accordingly. A limited bioavailability is shown in crystalline phytosterols, as they cannot be 
absorbed in the intestine. To solve this limitation, changing the solubility of phytosterols will be 
employed to enhance bioaccessibility and bioavailability. Several techniques may be applied, including 
crystallization retardation, emulsification, and colloidal phytosterol synthesis.[154]

Conclusion

The sesame seed plays the role of a microcapsule containing bioactive components with high 
variability and medical significance. Sesamin, sesamolin, tocopherols, phytosterols, phospholipids, 
and other phenolics are among the bioactive and health-promoting phytochemicals found in sesame 
seeds. Sesamin, sesamol, and other lignan constituents are extremely beneficial to human health and 
have a wide range of pharmacological impacts. They can be used to treat disorders like anti- 
inflammatory, antimicrobial, antioxidant, anti-cancer, antimutagenic, antiaging, and anti- 
cholesterol, as well as to prevent diseases of the heart, breast, and liver.

Generally, when evaluating the relationship between food and nutrition, it is crucial to evaluate the 
degree of bioaccessibility and bioavailability of health-related components. The results are still 
ambiguous even though techniques for figuring out phytochemical bioavailability in sesame are 
being developed using either in vitro or in vivo methodologies, while eventually leading to the 
unsustainability of the data. In addition, the use of bioactive compounds in sesame will be inhibited 
by limited bioaccessibility and bioavailability since most polyphenols are present in food in the form of 
esters, glycosides, or polymers which cannot be easily absorbed. Meanwhile, other aspects can 
influence bioavailability, such as the molecular structure of the bioactive compound, transport 
mechanisms, as well as food-drug interactions.

Specific methods have been developed to enhance the bioavailability of sesame based on the 
practical level, including changing the solubility of phytosterols by crystallization retardation, the 
manufacture of sesamol solid lipid nanoparticles by adding lipid matrices, surfactants, and other 
excipients, along with the application of colloidal systems, such as colloidal phytosterol synthesis. 
More importantly, a better understanding of the digestion, absorption, and transportation of food- 
derived compounds is critical in enhancing the bioaccessibility and bioavailability of certain phyto
chemicals in sesame and will require further research in the future. Possessing various qualities and 
beneficial nutrients, the sesame crop has enormous potential to improve human health, and it may be 
one of the most valuable ecological foods over time.
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