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Abstract— The topic of equipment health monitoring (EHM) 

for robotics, including condition monitoring (CM), process 

monitoring (PM) and predictive maintenance (PdM) is of great 

interest within the literature, however, there is a significant lack 

of historical datasets for techniques to be tested upon. 

Commercial offerings in this area are often manufacturer 

specific, meaning that fleets that include robots from multiple 

suppliers cannot easily have performance/condition compared 

across the fleet. To address this, the work presented within this 

paper includes an accelerated wear test (AWT) conducted on an 

industrial robotic arm whilst being monitored using a suite of 

retrofitted sensors. The resulting data from the AWT is then 

analysed through a variety of techniques, including 

regression models, classification models, and a long short-

term memory (LSTM) autoencoder, to demonstrate the 

potential for such methods to be utilised for robot EHM. 

 Additionally, the associated dataset captured during the AWT 

is to be made openly available through the University of 

Sheffield’s online research data repository, ORDA, to allow 
further research to be conducted. 

I. INTRODUCTION 

It is widely known that robotic arms generally demonstrate 

good performance when it comes to repeatability, but do not 

perform as well in absolute accuracy due to the cumulative 

errors associated with the serial configuration of rotary axes. 

This has meant they are traditionally employed for lower-

precision applications (e.g. welding and manipulation in 

automotive manufacture). However, due to the advantages in 

flexibility, larger working volumes, dexterity, and lower costs 

compared to traditional forms of manufacturing equipment 

(e.g. CNC milling/turning centres, additive manufacturing 

systems, etc.), there is a desire from within industry to move 

to industrial robotic arms as platforms for higher-precision 

applications [1]. 

Technologies such as factory-fitted external encoders are 

gradually becoming a more common option available on 

robots (e.g. FANUC and MABI) to help improve the absolute 

accuracies from the order of ±1 mm to ±0.1 mm. This goes 

some of the way to enabling the adoption of robotic arms for 

higher-precision operations. However, currently the only 

widely accepted method for testing the geometric 

performance of a robot is ISO 9283:1998 [2]. This relies on 

lengthy and complex measurement routines utilising typically 

very expensive equipment, such as high-accuracy laser 

trackers. Having an ongoing measure of a robot’s 
performance is therefore not feasible for most manufacturers, 

so it is impossible to determine if a robotic arm in is a good 
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enough condition to undertake critical operations until after 

the fact. By this point any issue with the robot may have been 

transferred onto the component/assembly which may result in 

scrap or repair. 

There is therefore a need for simpler, more regular 

performance checks for industrial robotic arms. To this end, 

the research presented investigates methods of equipment 

health monitoring (EHM) for robots. The term EHM in this 

case refers to the use of signals (whether they be sensor-, 

drive-, or controller-based) to characterise the baseline 

performance of equipment and provide an indication that its 

performance may have changed if deviations from this 

baseline are detected.  

This paper is organised as follows: A brief review of related 

academic literature and commercial solutions are presented in 

Section II; a description of the equipment used for the trials, 

and of the experimental trials themselves is provided in 

Sections III and IV, respectively; Section V discusses the 

analysis methodology and machine learning techniques tested 

on the data. The results and discussion are provided in Section 

VI and concluding remarks in Section VII. 

II. REVIEW 

A. Academic Literature 

There is significant interest within the literature in topics 

related to EHM for robots, such as CM, PM, predictive 

maintenance (PdM), and condition-based maintenance 

(CBM). However, one common theme that was noted is that 

the lack of historical datasets from industrial robots is a major 

limiting factor for such research. Although some researchers 

were able to source historical industrial robot datasets, while 

others were able to develop techniques by employing either 

datasets captured from laboratory-based robotic arms, or by 

focussing on specific components from robotic arms. 

For the most part, the literature favours a combination of 

vibration monitoring of gears (resolvers) and/or motors 

through the use of accelerometers (e.g. Nentwich and 

Reinhart [3], Uhlmann et al.[4], and Wang et al.[5]); as well 

as internal PLC/controller signal monitoring, such as joint 

motor torque or motor current (e.g. Izagirre et al.[6], 

Panicucci et al.[7], and Yang et al.[8]). This outcome is 

perhaps unsurprising, as similar techniques are widely 

employed for diagnostics for other industrial equipment and 

machinery (pumps, turbines, machine tools, etc).  

There is a wide range of models presented within the 

literature, however, they generally fall into two categories: 
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physics-based, and data-driven. Although Aivaliotis et al.[9], 

[10] were able to develop a sophisticated physics-based 

model that included components such as bearing degradation 

curves, the work the authors presented highlights the 

complexity of developing such models. It is likely that 

adapting such models for various configurations of robot 

would be extremely involved and time-consuming. It is for 

such reasons that Chen et al.[11] state the literature tends to 

favour data-driven models. 

The data-driven models identified were comprised of 

statistical models and machine learning (ML) models. 

Statistical models (e.g. statistical process control (SPC)) are 

widely used in industry and offer a relatively simple method 

for monitoring and controlling a process. This type of model 

has been demonstrated to be successful in detecting faults in 

robots by Jaber & Bicker [12] and Yang et al.[8]. It should be 

noted that statistical models are heavily reliant on selecting 

the most appropriate signal feature(s) to be successful in 

detecting the targeted fault(s). 

The strength of ML-based models is the ability to 

automatically identify relationships within datasets and 

therefore extract the most relevant indicators/features that 

correspond to known faults (if datasets are suitably labelled). 

However, such techniques are often data-hungry, and require 

relatively large datasets to accurately characterise these 

relationships. As mentioned above, such datasets are few and 

far between. Nonetheless, techniques such as data 

augmentation and transfer learning can be employed to help 

alleviate this shortcoming.  

Previous work conducted by the University of Sheffield 

Advanced Manufacturing Research Centre (AMRC) has 

already demonstrated the capability of ML for EHM and PM 

of machine tools [13]. Various ML techniques were tested 

including traditional ML models, as well as convolutional 

neural networks (CNNs) – a form of deep learning; all of 

which were successful in providing accurate classifications of 

various failure modes of the machine tool and workpiece. 

Ideally, the data and models mentioned above could be 

used to develop prognostic tools, such as remaining useful life 

(RUL). However, this generally requires in-depth knowledge 

about component degradation, or extensive run-to-failure 

data, which again, is limited for industrial robots. Although a 

few examples of these kind of tools being developed for 

robots were demonstrated in the literature, these often could 

not be validated on real-world failures. Only one exception to 

this, provided by Yang et al.[8], was identified where the 

authors were able to develop a domain-generalisation 

adversarial long short-term memory (DGALSTM) model that 

provided RUL estimations on data captured from display 

screen transfer robots that included real-world servo motor 

failures. 

B. Commercial Solutions 

In terms of commercially available solutions for robotic 

EHM, there is little that could be identified beyond the 

products developed by the robot manufacturers. ABB have 

two tools that fall within this category, Service Information 

System (SIS) and Mechanical Condition Change (MCC). SIS 

can provide information to help highlight which robots might 

be under most stress and help inform which may require more 

regular maintenance. However, this system is based purely on 

the historical log of the amount and severity of work a robot 

has undertaken (i.e. “duty factor”), rather than utilising any 

monitoring methods to provide live health indicators [14]. 

MCC on the other hand helps identify a change in a robot’s 
condition through a short routine that moves each axis in turn. 

Torque energy and torque noise (equivalent to total torque and 

torque signal variability, respectively) can be compared each 

time the routine is run with the aim of detecting any issues or 

change in the motor or gearbox [15]. It should be noted that 

this approach is reminiscent of the fingerprint routine 

approach developed for machine tools by the AMRC [13]. 

KUKA provide a fleet monitoring platform for their robots 

called iiQoT. It is claimed that tools such as condition 

monitoring and fault diagnosis are included within this system 

[16], but no details on the techniques used, or the output of 

the system are provided. 

Despite the solutions from ABB and KUKA being 

available for their respective robotic arms, these are not 

solutions that could be used across a fleet made up of robots 

from a range of manufacturers – meaning that it would make 

it near-impossible to directly gauge health/performance 

across the entire fleet. For this, a more generic or third-party 

solution would be required. This may become a more 

pertinent issue in the coming years as the availability and use 

of low-cost robots become more ubiquitous throughout 

manufacturing. 

III. EQUIPMENT 

This sections below describe the equipment used for the 

trials, including details on the industrial robotic arm (Section 

A), and sensors and data acquisition hardware (Section B). 

A. Industrial Robotic Arm 

The robot selected for testing was a KUKA KR16 L6 with 

KRC2 controller, which, despite being in full working order, 

had been designated as being at the end of its useful life within 

the AMRC. This was advantageous as it was planned that the 

robot would undergo accelerated wear testing (AWT) which 

would ideally lead to some form of degradation which would 

not subsequently require repairing upon completion of the 

trials.  

To simplify the testing and analysis required during this 

project, it was decided that only two of the robot’s six joints 
should be monitored: joint 3 as the joint under test, and the 

joint 2 as a control. These joints were chosen as they have the 

same configuration as each other, as well as being 

representative of joint configurations on other robotic 

platforms. 

To maximise the stress placed on the robot during testing, 

payloads were fabricated to achieve the maximum payloads 

for the end effector and supplementary payload mounting 

positions (6 kg and 10 kg limits, respectively). The end 

effector payload was machined from an aluminium block, 

whilst the supplementary payload was cut from box section 

steel; each with mounting holes drilled to allow the necessary 

bolts to be fitted. These are illustrated in Fig. 1. 



  

B. Sensors and data acquisition hardware 

As discussed in Section II, a combination of tip- and joint-

mounted accelerometers, motor power monitoring and joint 

resolver monitoring were identified as providing the best 

detection capability for EHM of a robotic arm. Due to the age 

of the KUKA, it was not feasible to collect high frequency 

data directly from its KRC2 control unit, meaning resolver 

data could not be captured, nor internal motor power. 

However, it was possible to conduct current monitoring by 

installing a current transducer (current clamp) around one of 

the three phase cables running between the motor drive unit, 

and the joint motor itself. For this task, a LEMO AT 10 B10 

current transformer was installed on one of the phase cables 

for both joint 2 and 3 directly below each of the motor drive 

units within the control cabinet. An additional current clamp 

was also added to joint 6 for the triggering purposes. 

To capture motor and gearbox vibration of both the joints, a 

tri-axial accelerometer was adhesively mounted to the link 

arm mounting plate for each joint. The accelerometers used 

were MMF KS903B.100, that have a frequency range of 0.15-

12,000 Hz and sensitivity of 100 mV/g. To help ascertain if 

ambient temperature or the temperature of each joint has a 

notable effect on the robot’s characteristics, self-adhesive 

resistance temperature detectors (RTDs) were also mounted 

to both joints, as well as to the robot cell wall. An example of 

the mounting of these sensors is provided in Fig. 2. 

The signals from the sensors were captured by a National 

Instruments (NI) cDAQ-9174 loaded with two NI 9234 sound 

and vibration input modules for the six accelerometer 

channels; one NI 9217 RTD input module for the three RTD 

channels; and one NI 9201 voltage input module for the three 

current clamp channels. Data was logged on a local PC 

running NI’s FlexLogger software with the sampling rates as 

shown in Table I. 

IV. METHOD 

The following sections describe the robot’s routine for the 

accelerated wear trials (Section A), and as no catastrophic 

failure was induced, the additional interventions undertaken 

to attempt to accelerate the degradation of the robotic arm 

further (Section B). 

A. Accelerated Wear Test 

The robot underwent AWT, whereby joint 3 was rotated in 

isolation back and forth across 284° of its travel (between -

130° and 154°) at 100% speed and acceleration continuously 

(i.e. 24 hours a day, seven days a week). The AWT was run 

for a total of 28 weeks. There were only brief intermittent 

breaks every 1,000 repetitions of this motion, in which a 

fingerprint routine could be run to gauge any change in 

performance.  

The fingerprint routine itself consisted of three repetitions 

of the same motion conducted on joint 3, repeated at 10%, 

50% and 100% speed. A similar motion was then conducted 

on the control joint, joint 2, (travelling between -153° and -

46°) at the same speed intervals. 

Due to the extended period over which this testing was 

conducted, data could only feasibly be captured during these 

fingerprint routines. It was also imperative that the whole 

process could be left to run unmanned, including the data 

capture, so a method for automatically triggering the data 

capture was required. To do this, a short rotation of joint 6 

was programmed at the very start of the fingerprint routine. It 

was then possible to set up a trigger condition within the 

FlexLogger software that could initiate the data capture based 

on the rising edge of the joint 6 current clamp signal. As the 

fingerprint routine was repeatable in duration, the acquisition 

window was fixed at 80 s, matching the length of the routine. 

B. Additional Interventions 

Once 12 weeks had passed, no noticeable change in the 

performance of the robot had been identified (i.e. no 

significant change in the sound or operating temperatures; and 

nothing visual was apparent). It was therefore decided that it 

would be pertinent to implement intermittent cool-downs at 

1-2 week intervals, as well as additional steps towards the end 

of the 26 week period that could be employed to accelerate 

any degradation further.  

The cool-down procedure meant stopping the robot and 

allowing the robot to cool down to ambient temperature, 

before resuming the accelerated wear routine. The reasoning 

 

Figure 2.  Sensor mounting on joint 3. 

 

Figure 1.  The KUKA KR16 L6 robot with payloads and axis naming. 

TABLE I.  SAMPLING RATES FOR DATA ACQUISITION 

NI Module Sampling rate (Hz) 

NI 9234 (Accelerometers) 25,600 (10,240a) 

NI 9217 (RTDs) 1 

NI 9201 (Current clamps) 1,000 

a. Lower sampling rate used for the first 228 instances to test robustness of system. 



  

behind this was that although running the robot continuously 

was observed to be generating significant amounts of heat in 

joint 3, up until that point joint 3 had been running at a 

relatively stable temperature (between 60°C-70°C as 

measured by the RTD). The cool-downs were therefore 

intended to present an extra stress by thermally cycling the 

robot. 

Shortly after the second cool-down procedure had taken 

place (around 14 weeks into the AWT), oil was noticed to be 

dripping onto the floor from joint 3. As this was the type of 

natural degradation that could potentially occur within a 

factory without being noticed, the robot was left to continue 

the AWT without any maintenance (i.e. repair of any seals, or 

refilling the oil) in the hope that this could instigate further, 

more serious degradation. 

Towards the end of the AWT period (~26 weeks), there had 

still been no further obvious degradation, or catastrophic 

failure to the robot – although oil did continue to leak slowly 

for several weeks after it was first noticed. It was therefore 

decided that further intervention should be conducted upon 

the robot to accelerate any further degradation. This was done 

in two ways: draining the remaining oil from joint 3; and 

conducting a controlled crash. 

1) Draining Oil 

At week 27, all the remaining oil (108 ml) was drained 

from the joint 3 gear unit. To then accelerate the effects of the 

oil leak, only half of this oil (55 ml) was returned to the gear 

unit before it resumed the AWT routine. After another three 

days of testing, no significant change in the robot’s 
performance was observed, so the remaining oil was drained, 

and the gear unit left empty upon returning to the AWT 

routine for another two days of testing. 

2) Controlled Crash 

It was decided that conducting a controlled crash of the 

robot would be a suitable final test that could be representative 

of a real-world event in industry that could affect a robot’s 
performance. The crash was intended to focus as much of the 

force of the impact on joint 3. To do this, the end effector 

payload was removed and joint 5 was rotated to be 

perpendicular to the arm to ensure the force of the impact was 

not absorbed in damaging the payload fixing bolts or snapping 

the drive belt. To provide a relatively rigid, immoveable 

target, a cast iron machining tombstone was moved into the 

cell with a steel plate laid on top. 

As additional fingerprint routines were required after the 

crash had occurred to allow data to be captured on the robot’s 
subsequent performance, the crash needed to be not too severe 

that it would incapacitate the robot. Equally, it needed to be 

severe enough to make it likely that some mechanical damage 

would be sustained. It was therefore decided that the 

controlled crash would involve a series of crashes, with each 

collision incrementing in speed from 5% to 25% of joint 3’s 
maximum rotational speed; equating to 107 mm/s to 535 

mm/s linear speed at the end effector. 

After the final crash, there was a subtle grinding and 

clicking noise present when moving joint 3 that could not be 

heard before. This was deemed a suitable point to conclude 

the crash testing, as it was thought that this could be an 

indication of damage to the gear unit. The tombstone was 

removed from the cell, the end effector payload reinstalled, 

and the AWT routine was resumed for a further six days to 

gather the post-crash fingerprint data. 

V. ANALYSIS 

This section presents the methodology conducted in the 

data preparation (Section A), data cleansing (Section B), data 

labelling (Section C), and training of ML models (section D). 

A. Data preparation 

Each of the 3621 recordings contained all the signals 

recorded during a single fingerprint routine. As described in 

Section IV, this comprised of a motion on each joint 3 and 

joint 2 in isolation, run at 10%, 50% and 100% speed – giving 

six individual motions. Rather than calculating a single set of 

features on each fingerprint, the signals were segmented into 

the six motions, to allow a set of features to be extracted from 

each. This is illustrated for the accelerometer data in Fig. 3. 

The features calculated in this project were those 

recommended by Saidi et al. [17] for the diagnosis of wind 

turbine bearings. The equations to calculate these features are 

given in Equations 1 to 11:  

Mean 
 

(1) 

Standard deviation 
 

(2) 

RMS  
 

(3) 

 

Figure 3.  Example of the segmentation of accelerometer data for a single fingerprint routine with each motion labelled. 



  

Kurtosis 
 

(4) 

Skewness 

 

(5) 

Peak to peak 
 

(6) 

Crest factor 
 

(7) 

Shape factor 
 

(8) 

Impulse factor 
 

(9) 

Margin factor 
 

(10) 

Energy 
 

(11) 

 

These statistical features were calculated in the time-

domain for each signal (except RTD channels which only 

included maximum, minimum, mean, and standard 

deviation), in each motion – yielding a total of 696 features 

for each fingerprint. These were calculated for all fingerprint 

routines and consolidated into a feature table, with each 

feature having its own column, and each row representing 

each fingerprint run. This format also made it possible to 

easily produce comparison plots of the various features, as 

well as utilise MATLAB’s ML toolboxes (i.e. Regression 

Learner and Classification Learner) which require such a 

format. 

B. Data Cleansing 

After an initial exploration of the data, it became apparent that 

there were some entries that appeared anomalous/spurious 

and so some cleansing of the data was necessary. A summary 

of these actions is presented below: 

• Several features showed sensitivity to operating 

temperature, so to remove the effect of cool-downs, 

any fingerprint routines that had taken place where 

the mean joint 3 temperature was below 39.5°C were 

excluded from the analysis. 

• A significant step-change in the output of the joint 2 

accelerometer at around 4200 hours of the AWT was 

observed. This was not related to any known event 

occurring on the robot, and no change in 

performance was observed over this time. All 

features calculated from this accelerometer were 

therefore omitted from the analysis. 

C. Data Labelling 

For simplifying manual analysis, as well as training ML 

models (particularly those produced using supervised ML 

techniques) the feature tables would require labels of the 

ground truth. The most straightforward approach was to 

include an ‘Elapsed time’ column which was calculated from 
the difference in hours between the timestamp of each 

fingerprint routine and that of the first fingerprint run. This 

would be useful in creating plots, as well as in training 

regression models, which generally require a continuous 

output/response. 

Additionally, a column containing categorical labels was 

also included for the purpose of training classification type 

ML models. These were based on the various stages and 

observations from the AWT: 

None – the first 1456 fingerprint routines where no 

significant change or event had been observed. 

Oil leaking – the 1598 fingerprint routines where oil had 

been observed ‘naturally’ leaking from the robot.  
Oil partially drained – the 57 fingerprint routines conducted 

after half of the remaining oil had been drained from the gear 

unit. 

No oil – the 34 fingerprint routines conducted after the oil 

had been completely drained from the gear unit. 

After crash – the final 226 fingerprint routines conducted 

following the controlled crash. 

D. Machine Learning 

The approach taken within this phase of work was 

exploratory, and a wide range of techniques were employed 

to provide indications of certain areas that could be promising 

for further development in robot EHM. It should be noted that 

due to this style of approach, combined with a limited time 

frame, it was not possible to be exhaustive in the testing of the 

various techniques. 

1) Regression 

This type of model is useful for EHM when trying to make 

predictions such as time to failure or RUL. MATLAB’s 
‘Statistics and Machine Learning Toolbox’ includes the 
‘Regression Learner’ application, which automates the 
process of training a range of regression model types, 

including linear regression, regression trees, support vector 

machines (SVMs), Gaussian process regression, kernel 

approximation regression, and neural networks. 

Although the robot did not suffer a catastrophic failure 

during the trials, if regression models could be used to 

correctly predict the elapsed time, this indicates that gradual 

changes in the signals that might be associated with wear 

could be used to predict failures in the future. As the potential 

sudden changes caused by the draining of oil, or crash testing, 

are not representative of natural degradation (and hence RUL 

would not be appropriate for detecting such events), these 

final stages were omitted and only the data from the first 3054 

fingerprint routines were used for this analysis. Cross-

validation with five folds was utilised to prevent overfitting, 

and 10% of the data was also held back as an unseen test data 

set for once the training process had been completed. 

To help reduce the computational effort in training the 

models, overfitting, as well as noise from features that have 

little relationship to the condition of the robot, it was possible 

to utilise the application’s feature selection tool. This utilises 
the minimum redundancy maximum relevance (MRMR) 

algorithm for feature ranking to assess the importance of each 

feature, as well as reduce redundancy within the feature set. 

2) Classification 

Classification models are used to predict a discrete 

classifier (or label) from a set of input data. This could be 



  

useful in EHM for providing detection of known faults. 

MATLAB’s ‘Statistics and Machine Learning Toolbox’ also 
includes the ‘Classification Learner’ application, which 
automates the process of training a range of regression model 

types, including decision trees, discriminant analysis, support 

vector machines, logistic regression, nearest neighbours, 

naive Bayes, kernel approximation, ensemble, and neural 

networks.  

This method of analysis was conducted to test if the data 

would be suitable for identifying various conditions of the 

robot throughout the AWT, and if so, which type of model 

provides the most success in doing so.  

Like the regression analysis, reducing the number of 

features was also trialled. This was done using the feature 

selection tool within the ‘Classification Learner’ application, 
with the MRMR algorithm. And again, cross-validation with 

five folds was utilised, and 10% of the data was held back as 

an unseen test data set for once the training process had been 

completed. 

3) Long Short-Term Memory (LSTM) Autoencoder 

An LSTM autoencoder is a hybrid model of an LSTM 

neural network and autoencoder, which is also based on a 

neural network. The autoencoder learns to encode input data 

into a lower dimensional (compressed) representation, and 

then decode this back to reconstruct the original higher 

dimensional input. The LSTM portion of the model makes the 

autoencoder capable of dealing with a sequence of data, such 

as time series. This means that rather than processing a data 

point in isolation, the ‘memory’ allows it to consider how this 
relates to the previous data point, which is often crucial in 

time-series data. By measuring the error in the model’s 
reconstruction, it is possible to detect changes or anomalies in 

the input data, as is demonstrated by Jeon et al for anomaly 

detection in the operation of quadcopters [18].  

One of the advantages of LSTM autoencoders is that they 

are semi-supervised, meaning they are only trained on 

examples of ‘good’ data, and therefore do not require 
extensive examples of ‘bad’ data – which is often what is 

lacking when it comes to data sets from industrial equipment, 

such as robots. The process followed for training and testing 

the LSTM autoencoder was based on that set out in the 

MathWorks example “Anomaly Detection in Industrial 
Machinery Using Three-Axis Vibration Data” [19], including 

the definition of the LSTM autoencoder structure, which is 

shown in Table II. 

The LSTM autoencoder was trained on the data that had the 

label ‘None’, i.e. the data that was captured with no fault on 

the robot observed. Validation was not used within the 

training process, but 10% of the data was excluded from the 

training data for validation purposes. Once trained, the model 

could then make predictions on the validation data, and the 

reconstruction error could be found by calculating the root 

mean squared error (RMSE) between the input data and the 

reconstructed data. By observing the difference in the 

reconstruction errors produced by the ‘None’ data and for the 
remaining labels, a threshold could be manually set at which 

an anomaly would be classified.  

VI. RESULTS AND DISCUSSION 

Due to the range of results and plots produced in the 

exploratory analysis of this data, it is not practicable to present 

a comprehensive record of this within this paper. Instead, an 

overview of the findings that are most pertinent to EHM from 

regression, classification, and LSTM autoencoder are 

presented in Sections A, B and C, respectively. 

A. Regression 

It can be seen in Fig. 5 that several regression models 

provide accurate predictions of the elapsed time, with Bagged 

Tree ensemble achieving the lowest test data RMSE value of 

30.74 hours (i.e. less than 1% error with respect to the 

duration of the AWT). No catastrophic failure resulted from 

the AWT, so it was not possible to set up a RUL or time to 

failure prediction model. However, as these regression 

techniques have proved capable in predicting the elapsed time 

with good accuracy, it is conceivable that when being used on 

a data set that includes component failure that they could be 

adapted relatively easily to provide RUL predictions. 

B. Classification 

The classification models tested resulted in very good 

performances, with most approaching or achieving 100% test 

data accuracy, with only a few exceptions (see Fig. 6). 

C. LSTM Autoencoder 

The LSTM autoencoder approach was tested using nine 

features all from the joint 3 motion selected through a trial-

and-error approach – listed in Table III. The anomaly 

detection threshold was also selected through trial and error, 

with 0.4 (reconstruction error) found to be the most accurate. 

TABLE III.  LSTM AUTOENCODER FEATURES 

No. Feature 

1 Energy of joint 3 z-axis accelerometer at 100% speed 

2 Shape Factor of joint 3 z-axis accelerometer at 100% speed 

3 Kurtosis of joint 3 z-axis accelerometer at 100% speed 

4 Kurtosis of joint 3 z-axis accelerometer at 10% speed 

5 RMS of joint 3 z-axis accelerometer at 10% speed 

6 RMS of joint 3 y-axis accelerometer 50% speed 

7 Margin factor of joint 3 z-axis accelerometer at 50% speed 

8 RMS of joint 3 z-axis accelerometer at 50% speed 

9 RMS of joint 2 current draw at 10% speed 

TABLE II.  LSTM AUTOENCODER STRUCTURE 

Layer Size 

Sequence input layer 1-dimension 

Bi-LSTM layer 16 hidden nodes 

ReLU layer - 

Bi-LSTM layer 32 hidden nodes 

ReLU layer - 

Bi-LSTM layer 16 hidden nodes 

ReLU layer - 

Regression layer - 



  

The resulting model provided a relatively accurate (98.52%) 

method for detecting anomalies on the robot from only a small 

feature set – illustrated in Fig. 7. Additionally, this technique 

has the major advantage of only being trained on ‘normal’ 
data, meaning there is no requirement for examples of 

abnormal/faulty data to be provided during the training stage.  

Obviously, it is beneficial to have some examples of fault 

data to be able to test the accuracy of the model upon, 

however, these do not have to be in large numbers as is 

normally necessitated by other ML techniques. As it has 

already been highlighted in Section II, there is a significant 

lack of data from industrial robots, hence techniques that 

require little or no abnormal/faulty data examples such as 

LSTM autoencoders are desirable. 

VII. CONCLUSIONS 

This paper has presented a range of techniques that have 

been tested for the purpose of EHM in industrial robotic arms, 

including regression models, classification models, and an 

LSTM autoencoder. It has been found that regression models 

were accurate in predicting the elapsed time of the AWT with 

RMSE values down to 30.74 hours in the case of Bagged Tree 

Ensemble. These models have the potential to be adapted for 

RUL predictions on other similar data sets which do include 

examples of catastrophic failures. 

Most of the classification models tested achieved close to 

100% accuracy in classifying the condition of the robot. 

However, the biggest weakness of these techniques is that 

they ultimately require a suitable number of examples of 

‘faulty’ data and would likely not perform well if any unseen 
fault occurs.  

To try and mitigate for this limitation in classification 

techniques, a LSTM autoencoder model was also tested. This 

only requires examples of ‘normal’ data for training, and so is 
a potentially desirable technique for use on industrial robots 

where there is a notable lack of historical data sets. With a 

small feature set, consisting of only nine features selected 

through trial-and-error, it was possible for the LSTM 

autoencoder to achieve 98.52% accuracy in detecting 

anomalous data (i.e. data captured after the oil leak occurred). 

It might be possible to increase the accuracy of this further 

Figure 6.  Classification model accuracies (higher values indicate more successful models). 

 

Figure 5.  Regression model RMSEs (lower values indicate more successful models). 



  

with additional feature selection and model structure 

optimisation. 

Below are areas that have been identified for further 

investigation based on the research presented in this report: 

• Develop a system that can provide an online, real-

time output based on the fingerprint routine.  

• Investigate how data streams from more modern 

robot controllers could be included within such a 

system. 

• Test the developed techniques on data sets that 

include catastrophic component failure to develop 

RUL capability.  

• Validate the approach on a robot employed within 

industry. 

By continuing development in the above areas, it may be 

possible for the research presented to be eventually translated 

into an industrial solution. Such a solution could be employed 

on robots that require a high confidence of their 

performance/condition immediately prior to conducting 

critical, high-precision operations, thus reducing the risk to 

the workpiece. 

It could also be used regularly on a fleet of robots to help 

gauge how the performance of each robot progresses over 

time. Significant or accelerated changes could provide early 

detection of impending failures, allowing maintenance to be 

scheduled in a timely manner (i.e. CBM).  

If it were possible to also develop RUL capability as part of 

this industrial solution, this would enable scheduling of 

maintenance activities well in advance based on each robot’s 
actual condition (i.e. PdM). This would reduce unplanned 

downtime due to early component failure, as well as reduce 

unnecessary planned downtime due to premature preventative 

maintenance activities. 

Finally, the dataset produced during the AWT is to be made 

available through the University of Sheffield’s online 
research data repository, ORDA. It is hoped this dataset will 

go some way in helping to fill the gap in openly available 

performance data for industrial robots; providing a platform 

for other researchers to analyse, develop and test their own 

models upon. 
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