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Abstract 

Background Early detection and diagnosis of cancer are vital to improving outcomes for patients. Artificial intel-
ligence (AI) models have shown promise in the early detection and diagnosis of cancer, but there is limited evidence 
on methods that fully exploit the longitudinal data stored within electronic health records (EHRs). This review aims 
to summarise methods currently utilised for prediction of cancer from longitudinal data and provides recommenda-
tions on how such models should be developed.

Methods The review was conducted following PRISMA-ScR guidance. Six databases (MEDLINE, EMBASE, Web of Sci-
ence, IEEE Xplore, PubMed and SCOPUS) were searched for relevant records published before 2/2/2024. Search terms 
related to the concepts “artificial intelligence”, “prediction”, “health records”, “longitudinal”, and “cancer”. Data were 
extracted relating to several areas of the articles: (1) publication details, (2) study characteristics, (3) input data, (4) 
model characteristics, (4) reproducibility, and (5) quality assessment using the PROBAST tool. Models were evaluated 
against a framework for terminology relating to reporting of cancer detection and risk prediction models.

Results Of 653 records screened, 33 were included in the review; 10 predicted risk of cancer, 18 performed 
either cancer detection or early detection, 4 predicted recurrence, and 1 predicted metastasis. The most common 
cancers predicted in the studies were colorectal (n = 9) and pancreatic cancer (n = 9). 16 studies used feature engineer-
ing to represent temporal data, with the most common features representing trends. 18 used deep learning models 
which take a direct sequential input, most commonly recurrent neural networks, but also including convolutional 
neural networks and transformers. Prediction windows and lead times varied greatly between studies, even for mod-
els predicting the same cancer. High risk of bias was found in 90% of the studies. This risk was often introduced due 
to inappropriate study design (n = 26) and sample size (n = 26).

Conclusion This review highlights the breadth of approaches to cancer prediction from longitudinal data. We 
identify areas where reporting of methods could be improved, particularly regarding where in a patients’ trajectory 
the model is applied. The review shows opportunities for further work, including comparison of these approaches 
and their applications in other cancers.
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Background
Cancer is a leading cause of death globally and the bur-
den of cancer continues to grow annually, with approxi-
mately 20 million cases and 10 million deaths reported 
in 2022, and cases expected to reach 35 million in 2050 
[1]. Early diagnosis of cancers can lead to improved 
outcomes due to earlier intervention and a potentially 
increased range of treatment options [2, 3]. Prediction 
models aim to facilitate earlier diagnosis by finding 
patients at high risk of developing cancer, perform-
ing early detection of cancer, or by signalling patients 
at risk of metastasis or recurrence [4]. These models 
have the potential to influence future research, or to 
directly influence care through use as decision sup-
port tools. Traditionally, risk prediction models have 
been built using statistical methods, however, artifi-
cial intelligence (AI) has shown promise in improving 
the predictive capabilities of models [5]. AI is a set of 
technologies which aim to mimic human decision mak-
ing [6]. More specifically, AI technologies are systems 
which are developed to provide an informative out-
put based on human objectives [7]. Machine learning 
(ML) is a subset of this field which utilises algorithms 
that ‘learn’ from experience to optimize a defined task. 
While these terms have different meanings, within this 
field they are often used interchangeably given the sub-
set of AI that is most appropriate for this application.

Cancer prediction models often utilise electronic 
health records (EHRs), which contain retrospective data 
collected by healthcare professionals during the course of 
a patient’s care, for example, laboratory tests or diagno-
ses. These are used to inform predictions as the records 
contain data that is routinely collected for patients. The 
increasing use and availability of EHRs provides a vast 
amount of data for prediction models and allows studies 
to be conducted retrospectively at a fraction of the cost of 
traditional prospective studies [8].

Many cancer prediction models use a cross-sectional 
approach to using EHR data, without considering the 
temporal aspect of the data; however, longitudinal 
data could be explored to fully exploit the informa-
tion stored in EHRs [8]. Patients’ measurements should 
be viewed in context - changes over time may provide 
more information about a patients’ health than view-
ing static observations, and more recent observations 
may be more informative than more distant ones. For 
example, while long-standing diabetes is a risk factor 
of pancreatic cancer, new-onset diabetes has been sug-
gested to be an indicator of asymptomatic cancer [9–
11]. Quantities such as laboratory tests are also subject 
to inter-patient variability, and changes in these values 
may be more informative than instantaneous measure-
ments [12]. Longitudinal data has been successfully 

used in other healthcare domains, such as mortality 
and sepsis prediction [13–15].

Problems requiring analysis of longitudinal data 
occur in many applications, such as meteorology, 
finance, transportation, and audio processing [16, 17]. 
These scenarios require specialized methods due to 
particular challenges introduced by the temporality, 
including correlation between consecutive inputs and 
high dimensionality where time points are treated as 
individual inputs. Time-series data in healthcare pre-
sent specific additional challenges, including: data 
irregularity, as time-intervals between observations are 
often irregular; data sparsity, which occurs as a result 
of both infrequent healthcare interactions and one-hot 
encoding of categorical medical encounters; data het-
erogeneity, referring to highly diverse trajectories and 
outcomes of patients; and model opacity, as many mod-
els for time-series modelling require complex methods 
that are not interpretable [18].

A number of reviews have evaluated methods used 
for longitudinal health data [18–20]. Cascarano et  al. 
provided a narrative review of ML methods that may 
be applied to longitudinal biomedical data [20] , while 
Carrasco-Ribelles et  al. systematically reviewed stud-
ies that use longitudinal data from EHRs for AI-based 
prediction models [19] and Xie et  al. systematically 
reviewed deep learning approaches for represent-
ing temporal data in health records. None focused on 
cancer and incorporating all possible methods, includ-
ing deep learning and feature engineering approaches. 
In the current review, maintaining a focus on cancer 
prediction means the reviewed studies are address-
ing common data challenges; due to the long-term and 
progressive nature of cancer, they will generally rely on 
sparse data collected over a longer period of time.

In addition, the most recent systematic review iden-
tified had records published up to January 2022 [19]. 
In such a fast moving field, it is likely that the methods 
used have developed in the two years before the current 
work. Cascarano included work published up to 2023, 
however this review was not performed systematically 
[20].

To fully realise the potential of cancer prediction mod-
els in improving cancer outcomes worldwide, prediction 
models require rigorous methods in both development 
and validation. To date, no reviews have examined the 
quality of studies investigating the use of longitudinal 
data for cancer prediction.

This review aims to provide a summary of AI 
approaches that have been used to predict cancer from 
longitudinal data in EHRs. To this end, a scoping review 
was conducted [21]. The objectives of the review are as 
follows:
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1. Identify and summarise approaches used for predic-
tion of cancer from longitudinal data stored in EHRs.

2. Evaluate time windows used within prediction mod-
els against a framework.

3. Identify common areas where risk of bias is increased 
in cancer prediction research to guide future research 
using the Prediction model Risk Of Bias ASsessment 
Tool (PROBAST) [22].

4. Provide recommendations for design and reporting 
of longitudinal prediction models for cancer.

Methods
This scoping review followed the Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses exten-
sion for scoping reviews (PRISMA-ScR) [23].

Databases and search strategy
The search strategy was developed iteratively by the 
authors. Six databases were searched: MEDLINE, 
EMBASE, Web of Science, IEEE Xplore, SCOPUS, and 
PubMed. The search strategy was adapted to be appro-
priate for each database, however, each search included 
terms relating to each of the concepts relevant to the 
scoping review question. These concepts were “artifi-
cial intelligence”, “prediction”, “EHRs”, “longitudinal”, and 
“cancer”. Full search terms are provided in Additional 
File 1. The search was conducted on  15th August 2023 
and updated on both the  2nd February 2024 and the  9th 
August 2024 with no limitation by year.

Citations and reference lists were searched for each 
of the eligible studies to retrieve additional records that 
were not retrieved in the initial search.

Eligibility criteria and study selection
All records were imported to Rayyan, a platform devel-
oped to support systematic reviews, and duplicates were 
removed. The titles and abstracts were then screened by 
V.M and evaluated against the exclusion criteria. Where 
there was ambiguity within the inclusion criteria, records 
were discussed with L.S. and O.J. until a decision was 
reached. The resulting records were screened for full-text 
eligibility.

Eligible studies were those using longitudinal data from 
EHRs to predict cancer, including prediction of metasta-
sis and recurrence. The EHR data was not restricted to 
structured data.

Articles were excluded based on the following criteria:

1. Not a primary research article.
2. The study does not predict cancer.
3. The study does not use AI/ML methods.
4. The study does not use longitudinal predictors.

5. The study is purely an implementation or validation 
study.

6. The cancer predictions are not patient level.
7. The method does not predict a specific outcome (i.e., 

clustering or phenotyping studies are not eligible).

Longitudinal predictors were defined as those allow-
ing some representation of change between different 
time points, i.e., simply using the maximum value of a 
blood test within a time window was not considered to 
be longitudinal. Not all predictors were required to be 
time-varying. Methods were considered to be AI or ML 
methods if the authors described the methods as such, or 
if the methods were more complex than standard statisti-
cal methods such as logistic regression.

Data extraction and synthesis
Data were extracted relating to several areas of the arti-
cles: (1) publication details, e.g. author, journal, date; (2) 
study characteristics, including outcome of interest, study 
design, population and setting, and sample size; (3) input 
data, including data type and fields used; (4) ML meth-
ods, including any feature engineering, the models used, 
evaluation metrics, and validation methods; (5) repro-
ducibility, including data and code availability; and (6) 
quality assessment using the PROBAST framework [22]. 
The PROBAST tool is a framework for evaluation of Risk 
of Bias in prediction models. This tool is primarily aimed 
at statistical models; an AI extension is being developed, 
however, there is not currently an equivalent tool for AI 
models [24]. Therefore, the original PROBAST tool was 
used. Full extraction tables are provided in Additional 
File 2.

Terminology
To assess the models used by studies in the review, we 
have used a modified version of the taxonomy used in 
[25] to define specific intervals relevant to each type of 
model: cancer detection models, risk prediction models, 
and metastasis/recurrence prediction models. This tax-
onomy is demonstrated in Fig. 1.

Cancer detection models (Fig.  1a) use the diagno-
sis date of a cancer patient and define an index date for 
controls. Data before the diagnosis or index date, within 
the observation window, is used to predict the outcome 
at that point. Early cancer detection models should also 
have a lead time, which is a gap between the last meas-
urement in the model and the outcome. Data within the 
lead time window are not used in the model. Cancer 
detection models can include follow-up period to reduce 
bias: this reduces the possibility that a control has an 
undetected cancer.
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Risk prediction models (Fig.  1b) aim to find high risk 
populations. They often define a study-wide time-frame, 
the prediction window, and use data before this window 
to predict the risk of a patient developing cancer within 
this window.

Models that predict recurrence or metastasis are more 
varied; they may use surveillance data from the initial 
diagnosis of cancer to predict the likelihood of recur-
rence or metastasis in the future (Fig. 1c). They may also 
use data from before the diagnosis.

A more detailed framing is provided in [25], however 
for this review less granular classifications were required.

Results
Retrieved studies
Searching the 6 databases returned 1214 studies, of 
which 414 were duplicates. A further 61 studies were 
retrieved from reference and citation searches. Fol-
lowing screening and eligibility assessment, 35 studies 
were included in the final review. A flowchart showing 
the selection process is provided in Fig.  2. The num-
ber of studies published by year is shown in Fig. 3.

Study characteristics
Study setting and population
Studies used populations from the USA (19, 54%), the 
Netherlands (4, 11%), Taiwan (5, 14%), Denmark (2, 
6%), Sweden (1, 3%), South Korea (1, 3%), Israel (1, 
3%), and Singapore (1, 3%). One study did not report 
where the population originated from, and one study 
used an additional dataset from the UK as a valida-
tion set. Five studies (14%) used single-centre data for 
model development, 20 (57%) used data from multiple 
centres linked by location or healthcare provider, nine 
studies (25%) used nationwide datasets, and one study 
(3%) did not report the study setting. The nationwide 
studies originated from Sweden, Taiwan, South Korea, 
and Denmark, while the multi-centre studies using data 
from affiliated practices originated in the USA (n = 15), 
the Netherlands (n = 4), and Israel (n = 1). The stud-
ies used case–control (9, 26%), nested case–control 
(6, 17%), or cohort (20, 57%) study design. Of the set-
tings for the datasets used, four studies used primary 
care (11%), seven used secondary care (20%), 23 used 
both primary and secondary care data (66%), and one 
did not report.

Fig. 1 Definition of terminology used in this review to describe different time windows relevant to prediction models using longitudinal data
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Outcomes/Prediction Task
Ten studies predicted the risk of cancer within a specific 
time-frame. Twenty studies focused on either detection 
or early detection of cancer. One study predicted metas-
tasis and four studies predicted recurrence.

The most common cancers included in the studies 
were pancreatic and colorectal cancer (both 9 studies, 
26%). There were 6 studies predicting lung cancer (17%), 
3 studies (9%) each considering liver and gastric can-
cer and 2 (6%) considering breast, skin, leukaemia, and 

Fig. 2 Flow diagram for study identification and selection. Developed using the PRISMA template provided in [21]

Fig. 3 Number of retrieved studies by year of publication. *Year to date 09/08/2024
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oesophageal cancer respectively. Brain metastasis, can-
cer of the small intestine, anal cancer, cervical cancer, 
and prostate cancer were each predicted in one study 
respectively. Additionally, one study predicted cancer as 
a generic outcome, with no site specified. Note that some 
studies developed models for multiple sites.

Clinical features
The most commonly included features were demo-
graphics (25, 71%), diagnoses (22, 63%), laboratory tests 
(22, 63%), and prescriptions (18, 51%). Other features 
included symptoms, referrals, procedures, free text notes, 
lifestyle factors, images, tumour staging, and histological 
features. Frequency of the features is shown in Fig. 4.

The clinical variables selected varied between the 
approaches taken. All of the studies using feature engi-
neering used laboratory tests in their models, whereas 
only a third of the models using sequential inputs did the 
same. In addition, all but one of the feature engineering 
models used demographic data, in contrast to around 
two-thirds (n=12) ofthe sequential input models.

Model characteristics
Methods for representing temporal information 
within predictive models can be divided into two main 
approaches. The first approach utilises feature engineer-
ing, a process where data are extracted and manipu-
lated to form informative variables, to find meaningful 
representations of temporal data or capture key tempo-
ral characteristics. These features, generated for each 
patient, can be used as inputs in downstream AI models 
to generate an individual classification or risk score. For 

this approach, we analyse the methods for representing 
the longitudinal information, rather than the subsequent 
AI model as these are generally not directly tailored to 
handle longitudinal data. The second approach uses tem-
poral sequences as direct inputs. This approach generally 
includes a model that has specific mechanisms to model 
the sequential nature, namely the dependence between 
time steps.

Feature engineering for representation of sequential data
Sixteen models used feature engineering for the repre-
sentation of temporal data. Various approaches were 
taken; these are summarised in Table 1.

Three studies used ‘trend’ or ‘slope’ features [26–28]. 
Five used the absolute change between defined time 
points, for example, the 12  month change before pre-
diction date [29–33]. For two of these studies [29, 30], 
the values used to calculate the absolute change were 
inferred from models trained on each patients individ-
ual trajectory for that variable. Kinar et al. [29] fit linear 
regression models which were used to predict values at 
18 and 36  months before to the index, and the change 
between those time points was used as the trend feature. 
A similar approach was used by Rodriguez et al. [30], fit-
ting a linear mixed effects model to log-transformed lab-
oratory measurements to provide a ‘smoothed’ trajectory 
(i.e., with reduced measurement error). Predictions were 
then used to calculate the 6-month change in log-trans-
formed measurement.

Rubenstein et  al. used the largest increase and total 
variation of a measurement as features [34]. Labaratory 
dynamics were used by Beinecke et. al. [35] One study 

Fig. 4 Frequency of studies using each type of clinical feature, where the total number of studies is 35. The category ‘Other’ includes studies using 
images, histology features, and tumour staging



Page 7 of 17Moglia et al. BMC Medical Research Methodology           (2025) 25:24  

Ta
bl

e 
1 

Fe
at

ur
e 

en
gi

ne
er

in
g 

m
et

ho
ds

 u
se

d 
by

 s
tu

di
es

 in
 th

e 
re

vi
ew

N
am

e 
of

 M
et

ho
d

H
ow

 it
 w

or
ks

A
dv

an
ta

ge
s

Li
m

ita
tio

ns

Tr
en

d 
Fe

at
ur

es
Re

pr
es

en
t c

ha
ng

e 
be

tw
ee

n 
nu

m
er

ic
al

 fe
at

ur
es

 b
y 

ca
l-

cu
la

tin
g 

th
e 

sl
op

e 
be

tw
ee

n 
tim

e 
po

in
ts

Si
m

pl
e 

m
et

ho
d 

fo
r r

ep
re

se
nt

in
g 

ch
an

ge
. I

f p
ai

re
d 

w
ith

 a
n 

in
te

rp
re

ta
bl

e 
M

L 
m

et
ho

d,
 c

an
 b

e 
ea

si
ly

 
un

de
rs

to
od

Tr
ea

ts
 c

ha
ng

e 
as

 li
ne

ar
, m

ay
 n

ot
 c

ap
tu

re
 m

or
e 

co
m

pl
ex

 
be

ha
vi

ou
rs

. C
an

no
t b

e 
us

ed
 fo

r c
at

eg
or

ic
al

 fe
at

ur
es

A
bs

ol
ut

e 
ch

an
ge

U
se

 c
ha

ng
e 

be
tw

ee
n 

tw
o 

de
fin

ed
 ti

m
e 

po
in

ts
 

as
 in

pu
t. 

So
m

et
im

es
 c

al
cu

la
te

d 
us

in
g 

es
tim

at
ed

 
va

lu
es

 a
t t

he
 ti

m
e 

po
in

ts
, f

or
 e

xa
m

pl
e 

by
 u

si
ng

 li
ne

ar
 

re
gr

es
si

on
 w

ith
 e

xi
st

in
g 

m
ea

su
re

m
en

ts

Si
m

pl
e 

m
et

ho
d 

fo
r r

ep
re

se
nt

in
g 

ch
an

ge
. I

f p
ai

re
d 

w
ith

 a
n 

in
te

rp
re

ta
bl

e 
M

L,
 c

an
 b

e 
ea

si
ly

 u
nd

er
st

oo
d

O
nl

y 
us

ef
ul

 fo
r n

um
er

ic
 fe

at
ur

es
, c

an
no

t b
e 

us
ed

 
to

 re
pr

es
en

t s
eq

ue
nt

ia
l d

ia
gn

os
es

 fo
r e

xa
m

pl
e

Su
m

m
ar

y 
st

at
is

tic
s 

of
 v

ar
ia

tio
n

Su
m

m
ar

is
e 

m
os

t s
ig

ni
fic

an
t c

ha
ng

es
, e

.g
. t

ot
al

 v
ar

ia
-

tio
n,

 la
rg

es
t i

nc
re

as
e

Le
ss

 li
ke

ly
 to

 b
e 

aff
ec

te
d 

by
 n

oi
se

 d
ue

 to
 in

tr
a-

su
bj

ec
t 

va
ria

bi
lit

y
D

oe
s 

no
t g

iv
e 

an
 in

di
ca

tio
n 

of
 h

ow
 q

ui
ck

ly
 c

ha
ng

es
 

oc
cu

rr
ed

. C
an

no
t b

e 
us

ed
 fo

r c
at

eg
or

ic
al

 v
ar

ia
bl

es

La
bo

ra
to

ry
 te

st
 d

yn
am

ic
s

Re
pr

es
en

t d
yn

am
ic

s 
by

 c
al

cu
la

tin
g 

do
ub

lin
g 

tim
e 

an
d 

ve
lo

ci
ty

 fr
om

 tw
o 

co
ns

ec
ut

iv
e 

da
ta

 p
oi

nt
s

U
se

d 
in

 c
lin

ic
al

 re
se

ar
ch

 fo
r P

SA
 a

na
ly

si
s 

[4
].

O
nl

y 
us

ef
ul

 fo
r n

um
er

ic
 fe

at
ur

es
, c

an
no

t b
e 

us
ed

 
to

 re
pr

es
en

t s
eq

ue
nt

ia
l d

ia
gn

os
es

 fo
r e

xa
m

pl
e

Pa
tt

er
n 

M
in

in
g

Fi
nd

 c
om

m
on

 p
re

di
ct

iv
e 

pa
tt

er
ns

 b
y 

de
fin

in
g 

po
ss

i-
bl

e 
pa

tt
er

ns
 it

er
at

iv
el

y—
e.

g.
 d

ia
gn

os
is

 1
 b

ef
or

e 
di

ag
-

no
si

s 
2.

 U
se

 b
in

ar
y 

in
di

ca
to

rs
 o

f p
re

se
nc

e 
of

 p
at

te
rn

s 
as

 a
 fe

at
ur

e

Ca
n 

be
 u

se
d 

fo
r n

um
er

ic
al

 a
nd

 c
at

eg
or

ic
al

 v
ar

ia
bl

es
. 

Ea
si

ly
 in

te
rp

re
ta

bl
e 

fe
at

ur
es

(d
ep

en
di

ng
 o

n 
th

e 
m

od
el

 
us

ed
)

U
se

 fo
r n

um
er

ic
al

 v
al

ue
s 

(e
.g

. l
ab

or
at

or
y 

va
lu

es
) 

re
qu

ire
s 

ca
te

go
ris

in
g 

th
em

 in
to

 lo
w

, m
ed

iu
m

, a
nd

 h
ig

h 
w

hi
ch

 m
ay

 in
tr

od
uc

e 
bi

as

Si
gn

al
 d

ec
om

po
si

tio
n

D
ec

om
po

se
 th

e 
tim

e 
se

rie
s 

in
to

 m
ea

ni
ng

fu
l f

ea
tu

re
s 

us
in

g 
si

gn
al

 p
ro

ce
ss

in
g 

tr
an

sf
or

m
s 

su
ch

 a
s 

th
e 

w
av

e-
le

t a
nd

 F
ou

rie
r t

ra
ns

fo
rm

s

Co
m

m
on

ly
 u

se
d 

fe
at

ur
es

 in
 s

ig
na

l p
ro

ce
ss

in
g

M
ay

 re
qu

ire
 d

en
se

r d
at

a 
th

an
 is

 p
re

se
nt

 in
 m

an
y 

EH
Rs

U
ns

up
er

vi
se

d 
m

et
ho

ds
D

ee
p 

le
ar

ni
ng

 m
et

ho
ds

 to
 fi

nd
 g

en
er

al
is

ed
 re

pr
es

en
-

ta
tio

ns
 o

f t
he

 d
at

a.
 U

se
 m

et
ho

ds
 s

uc
h 

as
 a

ut
oe

nc
od

-
er

s 
w

hi
ch

 le
ar

n 
by

 it
er

at
iv

el
y 

re
du

ci
ng

 a
nd

 re
co

n-
st

ru
ct

in
g 

a 
si

gn
al

, m
in

im
iz

in
g 

th
e 

re
co

ns
tr

uc
tio

n 
er

ro
r. 

Th
e 

le
ar

ne
d 

re
du

ce
d 

re
pr

es
en

ta
tio

n 
ca

n 
be

 u
se

d 
as

 a
n 

in
pu

t t
o 

ot
he

r c
la

ss
ifi

ca
tio

n 
m

od
el

s

Th
e 

fe
at

ur
es

 le
ar

ne
d 

ar
e 

no
t o

pt
im

is
ed

 fo
r a

 s
in

gl
e 

ta
sk

 a
nd

 c
an

 th
er

ef
or

e 
be

 u
se

d 
fo

r o
th

er
 d

ow
ns

tr
ea

m
 

ta
sk

s. 
D

oe
s 

no
t r

eq
ui

re
 h

um
an

 k
no

w
le

dg
e 

to
 d

es
ig

n 
an

d 
se

le
ct

 th
e 

fe
at

ur
es

, a
nd

 th
er

ef
or

e 
ca

n 
re

ve
al

 
pr

ev
io

us
ly

 u
nk

no
w

n 
fe

at
ur

es

D
iffi

cu
lt 

to
 tr

ai
n.

 G
en

er
al

 re
pr

es
en

ta
tio

ns
 m

ay
 in

cl
ud

e 
irr

el
ev

an
t f

ea
tu

re
s 

fo
r t

he
 ta

sk
, a

dd
in

g 
in

cr
ea

se
d 

co
m

-
pl

ex
ity

 w
ith

ou
t a

dd
ed

 b
en

efi
t



Page 8 of 17Moglia et al. BMC Medical Research Methodology           (2025) 25:24 

stated ‘trending’ features were used, but did not describe 
how these were calculated [36]. In three studies, pattern 
mining was used to find predictive temporal patterns 
[37–39]. One study applied Wavelet and Fourier trans-
forms to longitudinal data and used the coefficients as 
features to a model [40].

Unsupervised approaches were also used to extract 
features from time-series. Lasko et al. and Ho et al. both 
use autoencoders to learn general representations of a 
patient’s trajectory [40, 41].

Models taking sequential data as direct input
Twenty studies used deep learning models with a sequen-
tial input, either the raw sequence or ‘binned’ into dis-
crete time intervals. The methods used are summarised 
in Table 2.

Ten studies used models based on recurrent neural 
networks (RNNs): seven used long Short-Term memory 
models (LSTMs) [40, 46–51] and seven used gated recur-
rent units (GRUs) [40, 46, 49, 50, 52–55]. Two studies 
[53, 54] used the reverse time attention model (RETAIN) 
proposed by Choi et  al. which introduces an attention 
mechanism to a GRU to prioritise the most meaningful 
visits in a patient’s input sequence [56].

Five studies used convolutional neural networks 
(CNNs) [40, 57–60], while one study [61] used a CNN-
LSTM, representing diagnoses and medications as a 2D 
matrix and performing 2D convolutions over the input.

Three studies [62–64] used a standard feed-forward 
neural network, where each time-step was represented by 
a node in the architecture. In two of these, Park et al [63, 
64] trained a separate neural network for each variable as 
an ‘embedding network’ to reduce the dimensionality of 
the input, and these reduced features were concatenated 
to form an input to a final classification network.

Six studies utilised transformer architectures [40, 49, 
54, 55, 61, 65]. Positional encodings were derived in one 
study using the common approach of evaluating sinu-
soidal functions of varying frequencies at the point the 
token appears in the input sequence [40]. Two studies 
adjusted this approach so that the sinusoidal functions 
were evaluated at a patient’s age, rather than the posi-
tion within the sequence [49, 55]. Rasmy et al. introduce 
multi-layered embeddings for position, denoting not 
only the order of visits, but also the order of codes within 
the visits [54]. Two studies did not report the method of 
position embedding [61, 65].

The deep learning methods used require inputs of 
uniform length. There were a number of approaches to 
addressing missing data along the temporal axis. Five 
studies had categorical features representing the presence 
of an event within a specific window, hence the length 

of inputs did not need specific attention [51, 58–61]. 
Where events are represented as embeddings or numeri-
cal values are used, any sequence that is shorter than the 
maximum sequence length must be coerced in some way. 
Five studies [40, 47, 48, 50, 65] ‘padded’ the input by add-
ing zero vectors to the sequence. Three studies [46, 52, 
57] used forward-filling, where missing data along the 
temporal axis is filled by using the most recent present 
measurement. Six studies did not report the method of 
addressing input sequence length [54, 55, 62–64].

Prediction windows
The prediction windows for each model, as defined in 
2.4, are shown in Tables 3 and 4. Table 3 shows the time 
windows used in each of the risk prediction models. For 
the observation window, all but one of the risk predic-
tion studies used the full available data within the study 
period and did not impose any limit on data before the 
index date. The prediction windows varied between 3 
and 60 months, with 36 months being the most common. 
Only one of the risk prediction studies investigated mul-
tiple prediction windows [55]. This study presented the 
majority of their results with respect to the 36-month 
prediction window, stating that it is a reasonable window 
for screening.

Table  4 shows the time windows for the 20 cancer 
detection models. Five of these used the full history of 
the patient as the observation window. The observa-
tion windows of those studies that restricted the win-
dow ranged between 6 and 60 months. Two studies did 
not report their observation window. One study did not 
define their observation window by time period, but 
rather by number of measurements. Nine of the studies 
have no lead time, instead detecting cancer using all data 
that was available before cancer diagnosis. Eleven stud-
ies investigated early detection of cancer using a lead 
time, these varied between 3 and 36 months. Five studies 
investigated numerous lead times. Follow-up time was 
poorly reported in most studies, with 14 studies not pro-
viding information on this window. Four studies did not 
follow-up controls for diagnosis, while two studies gave a 
follow-up time of 36 months.

The windows for metastasis and recurrence prediction 
models are shown in Table 5. One study included follow 
up of controls [53]. Two studies defined the start of the 
observation window as a specific clinical event relating to 
the primary cancer [35, 40].

Comparison to cross‑sectional models
Of the studies included in this review, seven compared 
longitudinal methods to cross-sectional approaches, 
using data from only a single timepoint [26, 37–39, 52]. 
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Ioannou et  al. reported improvement in discrimination 
and calibration over cross-sectional results when using 
the sequential input model, but no significant improve-
ment using engineered features [52]. Kop et al. found in 
one study that engineered temporal features improved 
predictions [37], but this result was not repeated in later 
work [38]. Hoogendoorn et al. did not report an improve-
ment in predictive performance, but did observe that 
performance was more stable across different data types 
in sensitivity analysis [39]. Read et  al. noted a trend 
towards improvement, but the results were not definitive 
[26]. In the multimodal study by Li et al., longitudinal was 
found to improve predictions in modalities integrating 
both image data and clinical data, but not in all modali-
ties [65].

Table 3 Time windows used in risk prediction models

a The risk prediction window starts 6 months after the prediction point

Study Cancer Type Observation 
window (months)

Prediction window
(months)

[57] Skin Full study period 60

[62] Any site 36 48

[52] Liver Full study period 36

[49] Liver Full study period 36

[32] Pancreatic Full study period 18

[33] Pancreatic Full study period 36

[31] Pancreatic Full study period 18

[55] Pancreatic Full study period 3, 6, 12, 36, 60

[28] Pancreatic Full study period 18a

[61] Lung Full study period 36

Table 4 Time windows used in each of the cancer detection models

a Defined by number of visits, not time-period

Study Cancer Site Observation window 
(months)

Lead time (months) Follow up time
(months)

[46] Colorectal Full history 0, 12, 24, 36 0

[29] Colorectal Full history 3–6 Unspecified

[37] Colorectal 6 0 Unspecified

[38] Colorectal 6 0 Unspecified

[58] Colorectal 36 12 Unspecified

[39] Colorectal 6 0 Unspecified

[47] Gastric Unreported 0 Unspecified

[26] Luminal GI 36 6, 12, 36, 60 0

[34] Oesophageal, Gastric 48 12 Unspecified

[41] Leukaemia Full history 0 0

[51] Leukaemia 12 6 Unspecified

[63] Pancreatic Full history 0, 3, 6, 12, 24, 36 Unspecified

[64] Pancreatic Full history 0, 3, 6, 12, 24, 36 Unspecified

[54] Pancreatic Unreported 0 Unspecified

[27] Pancreatic 36 0 36

[50] Breast, Lung, Cervix, Liver N/aa 0 0

[36] Lung 60 3–6, 9–12 Unspecified

[65] Lung 60 0 36

[59] Lung 36 12 Unspecified

[60] Skin 36 12 Unspecified

Table 5 Time windows used in metastasis or recurrence prediction models

Observation Window Prediction Window Follow-up

[35] From date of initial diagnosis to date of recurrence diagnosis Unclear -

[53] Unclear Unclear 12 months

[30] 6 months 12 months -

[48] Defined by number of observations 12 months -

[40] From date of surgery to date of recurrence diagnosis Unclear -
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Explainability
Twenty-two studies considered either explainability of 
predictions or model reasoning. Thirteen of these (10 
feature engineering models, 3 sequential input models) 
presented model level interpretability such as feature 
importances to demonstrate what information is used by 
the model to make predictions. Nine studies (1 feature 
engineering model, 8 sequential input models) had pre-
diction level explanations, where the factors contributing 
to an individual prediction are calculated. The methods 
used for individual prediction explanations were local 
interpretable model-agnostic explanations (LIME) [47], 
attention-based interpretation [49, 53, 54], integrated 
gradients [55, 61], and Shapley additive explanations 
(SHAP) [34, 36, 53, 64].

Reproducibility of research
Thirteen studies (36%) had code available to use online. 
Two studies used data that was adapted to a common 
data model: Kim et  al. used the Observational Medical 
Outcomes Partnership Common Data Model (OMOP-
CDM) [47], and Jia et al. [28] used data adhering to the 
TriNetX standard data model [66]. One study [47] used 
data which is freely available online. Fifteen studies used 
datasets which can be requested or purchased: the Vet-
erans’ Affairs Corporate Data Warehouse [31, 32, 34, 52, 
55], the Kaiser Permanente Southern California databank 
[30–33, 36], the Julius General Practitioner Network [38, 

39, 46], Cerner Health Facts [53, 54], HCUP State Inpa-
tient Databases (SID) [50], IQVIA datasets [51], and 
TriNetX [28]. Six studies used data that is available to 
researchers within the country of origin only [27, 55, 58, 
59, 61, 62].

Quality Assessment
An overview of the domain judgements for the 
PROBAST assessment are shown in Fig. 5 and individual 
judgements are provided in Additional File 2. The overall 
risk of bias was high for 90% of the studies in the review, 
low for 7.5%, and unclear for 2.5%.

Discussion
This scoping review analysed AI methods applied to lon-
gitudinal EHRs for the prediction of cancer. A range of 
approaches were identified for prediction of cancer from 
longitudinal EHRs. These approaches were categorised 
into those using feature engineering for representation of 
temporal data and those using a sequential input directly.

The review highlights common methods and feature 
sets used the field, and also the lack of consistency in pre-
diction windows between studies.

Main findings of the review
Nationwide studies were conducted in Sweden, Taiwan, 
South Korea, and Denmark, however these studies are 

Fig. 5 A summary of risk of bias judgements assessed using the PROBAST framework. Note that some studies may have multiple risk of bias 
assessments where external validation was performed or the study included more than one predictive model
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not currently possible in many countries due to the lack 
of national datasets. All studies using data from multi-
centre organisations originated in three countries: the 
USA, the Netherlands, and Israel. There are benefits to 
using multi-centre data and nationwide data, including 
larger datasets and increased generalisability of results, 
however researchers are often limited by the availability 
of appropriate datasets [8].

The challenges of using EHR data for prediction mod-
els are well documented [8], primarily relating to data 
quality issues and inconsistent recording between differ-
ent clinicians and sites [67]. Recording of data may also 
change over time within a healthcare centres, therefore 
additional care should be taken when developing longi-
tudinal models to ensure models are robust to temporal 
shift [68]. While EHR poses extra challenges to analysis, 
if models are intended for use within EHR systems they 
are likely to encounter the same quality issues. Consid-
eration of these aspects in model development should 
make the resulting algorithms more robust to similar 
issues upon deployment. EHR data provides numerous 
benefits over prospectively collected data as it is more 
reflective of clinical practice and is not as expensive or 
time-consuming to collect.

The intended use case of models is a key considera-
tion when selecting data sources. If a model is intended 
to be used for early detection, this should be reflected 
in the dataset by utilising data that would be available at 
the point of use. Where studies are to use linked primary 
and secondary data, it should be considered whether 
these data would be linked in practice as this has implica-
tions for clinical applicability. However, proof of concept 
research demonstrating improved disease detection from 
linked data can still be valuable as it provides motiva-
tion for cohesive electronic health record systems across 
healthcare networks and many countries are aiming 
towards linked health data in practice.

The most frequently considered cancers were colorec-
tal and pancreatic, accounting for more than 50% of the 
included studies. These are likely commonly chosen due 
to the impact they have globally; colorectal cancer is the 
third most common cancer and the second leading cause 
of cancer death. Pancreatic is less common, ranking 
around 12th, but contributes to the 6th largest number 
of deaths, and is known to be difficult to diagnose. There 
is an unmet need for earlier diagnosis of rarer cancers. 
Although more data is available for patients with more 
common cancers, there is an opportunity to establish 
methods on those datasets so they can then be imple-
mented and optimised for rarer cancers.

The choice of features has an impact on the choice of 
model and vice versa—many of the approaches to fea-
ture engineering shown in Table 1, such as trend features 

and signal decomposition, would not be appropriate for 
categorical information such as diagnoses. Similarly, 
approaches to missing data differ between different types 
of variables; for categorical features, where the feature 
indicates whether the feature was present or not at that 
time, missing data do not need addressing, whereas for 
numerical features such as laboratory tests missing data 
must be imputed. This is particularly a problem in mod-
els requiring fixed inputs length inputs such as RNN 
based models and CNNs.

The methods identified in this review are summarised 
along with their advantages and limitations in Tables 1 and 
2 respectively. The most commonly used feature engineer-
ing method was absolute change in measurement, which 
is likely commonly chosen due to the ease of computation 
but requires expert knowledge to determine which times 
to calculate change between. The most common approach 
using sequential inputs was to use models based on RNNs. 
A general advantage of feature engineering is that the fea-
tures can be used in relatively simple artificial intelligence 
algorithms, reducing the computational cost, although 
they require human input in crafting meaningful features. 
Alternatively, deep learning approaches have the capabil-
ity to learn hidden patterns without the need for explicit 
crafting by an expert, including potentially undiscovered 
predictors. This gives rise to a key question; does added 
complexity increase accuracy, and does this increase jus-
tify the increase cost. The two approaches are rarely com-
pared, and future research should aim to do this.

In addition, research should consider whether longi-
tudinal data does improve the predictive capability of 
models. Few studies in this review compared longitudinal 
models to cross-sectional approaches, and those that did 
were not definitive in finding an improvement in perfor-
mance although there was weak evidence to support an 
improvement, and no studies reported that longitudinal 
data harms predictions. Given the additional complexity 
and cost of incorporating longitudinal data, the question 
of whether this is justified should be considered.

As previously described, longitudinal data in healthcare 
provide specific challenges for prediction models. The 
methods found in this review address these in varying ways. 
Data irregularity was commonly addressed in feature engi-
neering models by modelling patients’ trajectories individu-
ally to infer values at specific time-points or by calculating 
slopes from available data. Sequential methods often coded 
the relative times of observations to provide context to the 
models or required direct imputation of missing data in the 
temporal axis. Data opacity was considered in a number of 
studies aiming to develop explainable methods. The level of 
explainability achieved by models varied by the approach 
taken; feature engineering models were more likely to pro-
vide model level explanations, which are often simple to 
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implement. However, these may not be as useful for clini-
cians as prediction level explanations, which can help a 
user understand why the model classified a patient a certain 
way, but do require more complex methods to implement, 
increasing the computational cost of a model.

Risk prediction models were evaluated against the longi-
tudinal model framework described in Fig. 1. All risk pre-
diction models except one used the full study period as the 
observation window, and no studies evaluated models using 
different observation windows. In risk predictions studies, 
this was generally a universal time window for the entire 
cohort, for example, from 2003–2011. Using all available 
data as the observation window may result in better perfor-
mance as the full history is used, providing more context for 
patient data. Conversely, using all available data may hinder 
performance, by introducing additional noise into mod-
els. In addition, using longer time sequences may increase 
complexity of models and increase computational expense. 
Given this potential trade-off, studies should aim to evalu-
ate the impact of various observation windows on model 
performance. Similarly, only one study experimented with 
different prediction windows. The risk prediction windows 
used by other studies varied significantly, even when pre-
dicting the same cancer, suggesting there is not clear win-
dow that should be assumed without investigation.

Cancer detection models should report three quan-
tities: the observation window, lead time window, and 
follow-up time. A number of studies used the full patient 
history as the observation window, which has the poten-
tial to introduce bias to models as cancer patients may 
have systematically shorter trajectories as a result, which 
may be detected by sequential input models. Potential 
bias should also be mitigated by ensuring there is suf-
ficient follow up of the control population, as patients 
may have been diagnosed with the cancer of interest at 
a later date, indicating a present but as yet undiagnosed 
cancer. Only one study reported including any follow 
up time [27]. Lead time is a key parameter to consider 
in early detection models. Most early detection studies 
experimented with different lead times, which allows for 
interpretation of how prediction accuracy changes with 
distance from the event of interest.

In general, the reporting of time-windows was poor in 
metastasis and recurrence prediction models. This makes 
it difficult to not only assess potential bias in the models, 
but also makes the intended use-case unclear, i.e., where 
would the prediction be made and how would this aid a 
clinician. As previously explained, follow-up time should 
be reported in studies predicting recurrence or metasta-
sis to rule out potentially undiagnosed patients and hence 
mislabelled occurrences.

Given that current research into the use of longitudi-
nal health records is in the early stages and studies are 

generally proof-of-concept, the reproducibility of the 
research is vital to ensure future work can build upon 
findings. Despite this, only around a third of studies 
included in the review have code that is available. Due to 
the confidential nature of health data, open access data 
is rare, however the availability of commercial datasets 
such as those used by studies in this review provides the 
opportunity for comparative works. For research using 
these sources it is especially important to be clear about 
how cohorts were selected. Clear reporting of meth-
ods and study setting is vital for reproducibility. The 
recent publication of an AI extension to the Transparent 
Reporting of a multivariable prediction model for Indi-
vidual Prognosis or Diagnosis (TRIPOD-AI) statement 
provides a checklist of reporting items that should be fol-
lowed by predictive models using AI [69].

The PROBAST assessment showed that most studies 
were at high risk of bias, with only three studies achiev-
ing low risk of bias overall. This is unsurprising given that 
the studies are generally exploratory, however the results 
highlight the common areas where risk of bias is intro-
duced. The highest risk domains were domains 1 and 4, 
concerning study participants and analysis respectively. 
High risk in domain 1 was introduced due to case–con-
trol study designs and restrictions on participants (e.g., age 
based) without acknowledgement of how this affects the 
applicability of the model. These factors may be unavoid-
able due to data access restrictions; however, researchers 
should make the potential impact on the risk of bias clear 
and nested case–control studies should adjust for outcome 
frequency as described in the PROBAST framework [22]. 
In domain 4, common areas introducing risk of bias were 
an insufficient number of participants with the outcome, 
lack of follow-up periods for controls, inappropriate per-
formance measures, and no accounting for overfitting. 
While low numbers of patients with the outcome is often 
determined by available data, the remaining areas can be 
mitigated by researchers through the following actions: 
ensuring follow-up of controls; reporting comprehensive 
performance measures, including both discrimination and 
calibration measures; and using cross-validation or boot-
strapping to account for overfitting in the model.

Recommendations for future work
In conducting this review, we identified several common 
areas for improvement which future work should aim to 
address:

1. Models should be reported using clear terminol-
ogy, provided here or by Lauritsen et  al. [25] Given 
the clinical application, it is especially important to 
clearly explain at which point the prediction model 
would be used, and which data would be available.
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2. Given the lack of consensus on appropriate predic-
tion windows for each of the cancers, studies should 
evaluate models at various time points to assess the 
optimal time windows for prediction. In addition, 
models should be evaluated against cross-sectional 
methods. It is not a given that adding longitudinal 
data improves performance, but it is likely to increase 
complexity. Researchers should aim to evaluate 
whether this added expense is justified for the prob-
lem.

3. To ensure reproducibility of research, studies using 
AI for prediction of cancer should adhere to the TRI-
POD + AI statement to ensure methods are transpar-
ent [69]. Where possible, data should be made avail-
able for sharing. As this is often not appropriate for 
patient data, reporting of datasets should be compre-
hensive. Researchers should make the code used in 
the research publicly available.

4. When conducting cancer prediction research, 
researchers should be mindful of how bias may 
be introduced to the model. The forthcoming 
PROBAST-AI will provide guidance [24]. Mitigation 
strategies include ensuring sufficient follow-up of 
controls; reporting a variety of performance meas-
ures, including discrimination and calibration; and 
accounting for optimism and overfitting in the model 
using cross-validation or bootstrapping.

Strengths of the current study
This review has multiple strengths. Firstly, the scope of 
the review covered all longitudinal methods to include a 
wide range of methodologies, found through an exhaus-
tive search strategy. In addition, the review adheres to the 
PRISMA guidance for conducting scoping reviews. The 
review also provides a PROBAST assessment, highlight-
ing common areas where risk of bias is high in longitudi-
nal models.

Limitations of the current study
This review has four main limitations:

1. Firstly, the records were only screened by one author. 
The impact of this was mitigated by taking a lenient 
approach to inclusion; articles were only excluded 
initially if the author was confident in their ineligibil-
ity. Where this was not the case, fellow authors were 
consulted to reach a consensus.

2. Secondly, a number of studies included in this review 
were found via citation and reference searching and 
were not captured as part of the initial search strat-
egy. These studies were missed by the search strategy 
due to several factors; some did not state in the title 

or abstract that they included temporal data while 
some did not mention health records. Two terms 
were identified from these results that can be used to 
describe longitudinal data: ‘sequential’ and ‘trajectory’. 
While we are confident the most significant studies in 
the area were found, inclusion of these terms could 
have made the search strategy more comprehensive.

3. This review did not quantify the retrieved works as 
precisely as the framework described by Lauritsen 
[25] as this granularity would have impeded the abil-
ity to compare similar studies.

4. Finally, this review does not comment on the relative 
performances of each of the methods due to the het-
erogeneity of applications and datasets. The review 
can also not provide an answer as to whether longi-
tudinal methods improve upon cross-sectional meth-
ods as this was rarely evaluated in the studies and is 
likely to be problem dependent.

Conclusion
This review found a range of techniques that have been 
applied to longitudinal EHRs, including engineering of 
trend features and RNN based models. These models 
were used to predict a range of cancers, but most com-
monly pancreatic or colorectal cancer. Minimising the 
risk of bias is vital to ensuring progress towards deploy-
able research. Key areas of potential bias were found, 
often relating to selection of cohorts and analysis of data. 
Potential mitigation strategies for these include sufficient 
follow-up of control populations and robust evaluation of 
model performance. Future research in this area should 
aim to evaluate prediction models with a range of tem-
poral windows to find optimal timelines for application 
of the model; this analysis was rarely present in retrieved 
studies. To assist in the progression of these models from 
exploratory research to clinical practice, researchers 
should aim for clear reporting of methods, adhering to 
available taxonomies and reporting guidelines.
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