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Wearable technology and the cardiovascular system: 

the future of patient assessment

Gareth J Williams, Abdulaziz Al-Baraikan, Frank E Rademakers, Fabio Ciravegna, Frans N van de Vosse, Allan Lawrie, Alexander Rothman, 

Euan A Ashley, Martin R Wilkins, Patricia V Lawford, Stig W Omholt, Ulrik Wisløff , D Rodney Hose, Timothy J A Chico, Julian P Gunn, Paul D Morris

The past decade has seen a dramatic rise in consumer technologies able to monitor a variety of cardiovascular 
parameters. Such devices initially recorded markers of exercise, but now include physiological and health-care 
focused measurements. The public are keen to adopt these devices in the belief that they are useful to identify and 
monitor cardiovascular disease. Clinicians are therefore often presented with health app data accompanied by a 
diverse range of concerns and queries. Herein, we assess whether these devices are accurate, their outputs validated, 
and whether they are suitable for professionals to make management decisions. We review underpinning methods 
and technologies and explore the evidence supporting the use of these devices as diagnostic and monitoring tools in 
hypertension, arrhythmia, heart failure, coronary artery disease, pulmonary hypertension, and valvular heart disease. 
Used correctly, they might improve health care and support research.

Introduction
To predict, prevent, diagnose, and treat cardiovascular 
diseases, physicians require an assessment of 
symptoms, activity, comorbidity, and context before 
prescribing targeted investigations and recommen­
dations for treatment. The patient also needs 
information on what the physician considers their state 
of health to be, the basis for this view, and the risks and 
benefits of any treatment. Here we examine the 
potential for wearable technologies to enhance care in 
all these areas of cardiovascular medicine. We review 
devices that are accessible to the public, the underlying 
sensor technologies, the data acquired, and their 
application, providing a perspective on where these 
tools could sit within cardiovascular health care, the 
challenges that need to be resolved, and the studies 
required to confirm their utility. We also discuss the 
incorporation of sensor technologies into wearable 
clothing, apparel, and cutaneous patches and how these 
have been applied to clinical research in cardiovascular 
medicine.

Devices, data, and apps
Wearable medical devices such as ambulatory blood 
pressure and Holter (GEHealthCare, Chicago, IL, US) 
electrocardiogram (ECG) monitors, have been used in 
health care for decades; nowadays, devices purchased by 
the public, including smartphones, wristbands, watches, 
scales, shirts, rings, and eyeglasses are equipped with 
this type of functionality (figure 1). Patients instinctively 
recognise the potential of these technologies, and often 
present their doctor with health app­derived data. 
Although doctors recognise their potential usefulness, 
they are uncertain about the evidence base and 
appropriate use of such data. Measurements range from 
established parameters such as heart rate, blood 
pressure, and oxygen saturation, to step counts, minutes 
of activity, heart rate variability, and intrathoracic 
impedance. Wireless technology allows multiple sensors 
to integrate different signals, enabling body area sensor 

networks that can augment measurement accuracy 
(eg, heart rate) or compute parameters indirectly by 
combining different signals (eg, blood pressure). WiFi 
connectivity permits near­constant data upload to cloud 
storage, enabling continuous and simultaneous 
monitoring of multiple parameters, which can alert 
clinicians to significant changes (figure 2). A summary 
of relevant wearable sensor technologies is shown in the 
table. Software apps are designed to process, curate, and 
present data from raw sensor signals into relevant 
information within a user­friendly graphical display, 
usually on a smartphone, smart watch, or linked to a 
personal computer. These data can be presented in 
familiar formats such as resting heart rate and daily 
step count, with multiple sensor signals combined by 
the app and displayed in device­specific formats (eg, the 
Apple Move Ring, the Garmin Fitness Age, or the Fitbit 
Sleep Score). Apps can also provide user functions, such 
as providing health advice based on physical activity 
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Figure 1: The use of PPG in wearable apparel and its application to 

cardiovascular health assessments

PPG has been adapted to a variety of wearable apparel in published literature 

(left panel) and how signals generated from this sensor can be applied to 

cardiovascular health assessments (right panel). PPG=photoplethysmography

Examples of wearable apparel 
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Clinically useful PPG metrics

• Heart rate monitoring

• Arrhythmia detection

• Arterial oxygen saturations

• Respiratory rate

• Blood pressure

• Sleep assessment

• Maximal oxygen consumption

• Pulse rate variability

• Arterial stiffness
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levels or forwarding relevant sensor data directly to 
health­care providers.

All devices that claim to provide measurements of 
human physiology need to show safety, accuracy, 
reliability, and reproducibility in a variety of settings. An 
example of this is blood pressure devices, for which 
stringent, overarching guidelines are offered by 
standards organisations such as the International 
Organization for Standardization.1 These validating 
bodies approve and regulate the use of such devices to 
ensure that health app­derived data can be relied on by 
patients and health­care providers to accurately identify 
or exclude cardiovascular disorders. Here, there is a 
specific need for greater involvement of clinical bodies 
in the development of regulatory guidelines and 
evaluation methods.

Symptoms
Symptom context (duration, frequency, and association 
with physical activity, eating, sleeping stress, etc) is 
crucial to medical decision making. Traditionally, this 
information is obtained by asking patients to recall what 
they were doing when they had symptoms. This 
information is subjective and might be misleading, 
especially for patients with memory or communication 
difficulties. Mobile and wearable devices allow the user to 
record symptoms and physical parameters simul­
taneously and has been successfully applied to mental 
health and Parkinson’s disease.2,3 The MyHeart Counts 
App study showed the feasibility of large­scale physical 
activity measurement through self­reported ques­
tionnaires, and smartphone and wearable movement 
data from accelerometer and gyroscope sensors with a 
global positioning system (GPS). This study recruited 
48 968 participants and discovered relationships between 
patterns of physical activity and self­reported health.4 The 
authors did, however, observe recording fatigue, limiting 
long­term effectiveness. Nevertheless, there is potential 
to discriminate cardiac from non­cardiac symptoms and 
identify patients warranting further assessment, 
investigations, or monitoring.

Activity
Cardiovascular diseases such as heart failure and angina 
are classified according to the level of physical activity a 
person reports; this, in turn, drives important treatment 
decisions. Although useful, this approach is subjective 
and imprecise. Wearable device data provide objective 
measurements over long periods of time. Physical 
activity can be quantified by accelerometers to measure 
parameters such as step count, or more sophisticated 

Figure 2: ECG data transmission from wearable technology

ECG data are sent via Bluetooth to a device with internet connectivity (eg, a mobile phone; step 1). Data are 

transferred to the cloud storage database from the device via internet connectivity (step 2). A local platform 

connects to the cloud storage database and the ECG recordings are reviewed by a health-care provider. 

ECG=electrocardiogram

1

2 3

Sensor principle Applications Wearable device

Accelerometer Force sensor to measure the acceleration in a single or 

multiple directions

Movement classification and recording: 

step counting, physical activity, and fall 

detection

Smartphone, wristwatch, 

wrist band, armband, or belt

Ballistocardiography Measures the body’s mechanical recoil from ventricular 

contraction to quantify cardiac outputs and dynamics

Cardiac energetics and cuffless blood 

pressure measurement

Wristwatch or wristband

Electrocardiogram Measurement of electrical activity of cardiac impulse Heart rate monitoring, and heart 

rhythm assessment 

Wristwatch or shirt or vest

Impedance-

plethysmography 

(bioimpedance)

Detect changes in blood electrical conductivity to 

measure cardiovascular characteristics (radial pulse 

volume, and blood volume in ascending aorta)

Cuffless blood pressure measurement, 

and measurement of intrathoracic 

impedance in heart failure

Wristwatch, wristband, 

shirt, or vest

Magnetoplethysmography 

or giant magnetoelastic 

effect

Hall effect sensors track cardiovascular activity via 

movement of magnets, and giant magnetoresistance 

sensors use the diamagnetic property of water to detect 

magnetic flux created by pulsatile blood flow

Cuffless blood pressure measurement Wristwatch or wristband

Phonocardiogram Detects subaudible vibrations created through the 

opening and closing of heart valves

Heart rate Patch

Photoplethysmography Optical sensor to detect blood volume changes within 

the microvascular structure of perfused tissue

Heart rate and rhythm, blood oxygen 

saturation, VO2 max, and cuffless blood 

pressure measurement

Wristwatch, wrist band, or

eyeglasses

Remote dielectric sensing Quantifies the dielectric coefficient of tissues, which 

correlates with fluid concentration

Detection of pulmonary oedema Shirt or vest

Table: Summary of the sensor technologies used in wearable technologies in cardiovascular disease research
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GPS­based measurements of speed, location, and 
terrain tracking over weeks or months. Ready access to 
such detailed and objective data at a patient­specific 
level will allow for a more personalised approach to 
medicine in terms of individually tailored exercise 
advice, as well as monitoring response to treatment, 
which is consistent with the concept of precision 
medicine.

Heart rate
The relationship between heart rate and cardiovascular 
risk is well established, with long­term studies showing 
an association between a higher resting heart rate and 
cardiovascular disease and adverse clinical outcomes.5 
Heart rate monitors using chest strap electrodes have 
been used in sports for decades. Photoplethysmography­
based measurements from wrist­worn devices provide 
continuous monitoring with greater convenience. 
Although individual device accuracy varies, recent 
devices typically utilise peak detection algorithms which 
report median error ranges of less than 5% in 
comparison with telemetry in healthy individuals.6 
Improvements in photoplethysmography sensor 
miniaturisation has enabled incorporation into other 
common apparel, including rings and eyeglasses 
(figure 3).7,8 Peak detection algorithms can be confounded 
by irregular rhythms—including atrial fibrillation and 
premature atrial or ventricular contractions—which 
produce photo plethysmography signals that vary from 
the underlying electrical activity. This can lead to 
incorrect measurements of heart rate. Sophisticated 
algorithms have been developed to reduce the errors of 
photoplethysmography signals in this context.9 Modern 
smartwatches can offer ECG recording functions 
alongside limited rate and rhythm analysis software.10 
The development of self­powered wearable devices using 
triboelectric nano generator technology with pulse­
sensing capabilities also shows the potential for 
uninterrupted heart rate monitoring over prolonged 
periods.11 By harvesting the biomechanical energy 
released by the radial artery pulse in the wrist, the self­
sustaining sensor converts the mechanical movement 
into energy as well as a signal with a strong agreement 
with ECG (R² 0·98).

Respiratory function
Commonly used respiratory parameters can also be 
measured by wearable devices. Photoplethysmography 
can be used to measure oxygen saturation. Many fitness 
devices also estimate maximal oxygen consumption 
during exercise (VO2 max). Respiratory rate can be 
measured with smart clothing using accelerometer, 
gyroscopic, or magnetometer­based detection of chest 
wall movements, circumference, or impedance 
pneumography.12 There has been a significant rise in the 
use of wearable devices to assess respiratory function 
since the COVID­19 pandemic.13

Figure 3: PPG sensor principles

The intensity of either transmitted (A) or reflected (B) non-absorbed light reflects variations in blood volume. 

A range of cardiovascular metrics can be calculated from the dynamic signal intensity (C). Analysis of derivatives of 

this signal (D) yield additional information about blood acceleration, pressure, and arterial stiffness. PPG signal 

analysis can be combined with other sensor modalities to generate parameters such as PAT (the time interval 

between the R wave and the PPG waveform) (E) and PTT (the time interval between the troughs of the proximal 

distal PPG waveforms) (F), which can be used to estimate blood pressure. ECG=electrocardiogram. 

PPG=photoplethysmography. PAT=pulse arrival time. PTT=pulse transit time.
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Ultrasonography
Ultrasound is central to cardiovascular assessment in 
secondary care but is not widely available in primary 
care. Patch­based ultrasound devices now enable 
continuous haemodynamic measurements of arterial 
Doppler waveforms and can detect changes in stroke 
volume.14 Obtaining such data in the community without 
the need for constant specialist oversight and interval 
hospital visits might enhance early detection of 
haemodynamic deterioration, particularly in valvular and 
ventricular disease.

Promoting physical activity to reduce 
cardiovascular disease
Physical inactivity is considered the fourth leading risk 
factor for global mortality, associated with 6% of deaths 
and 30% of ischaemic heart disease worldwide.15 In 
patients with symptomatic disease, activity improves 
event­free survival and might delay disease progression.16 
Despite these messages, global estimates suggest more 
than 25% of people do not achieve recommended activity 
levels.17 Multiple smartphone apps have been developed 
to reinforce healthy behaviours. One example is Active 10, 
which records activity levels.18 Analysis of 129 010 users 
showed a significant improvement in physical activity, 
including those with a very low initial baseline activity 
levels. There are many other similar initiatives, including 
the Smart Walk and MyHeart Counts apps.

Wearable technology lends itself to personalised 
feedback and guidance. The Personal Activity Intelligence 
(PAI) system personalises activity targets using maximal 
heart rate data, questionnaires, and clinical data, as 
opposed to standard generic targets (10 mins brisk 
walking, 10 000 steps, etc).19 In 39 298 participants, 
obtaining 100 PAI points per week was associated with a 
23% reduction in cardiovascular disease mortality in 
women and 17% in men when compared with those 
achieving zero PAI points per week.19 A systematic review 
of studies investigating the effect of personalised mobile 
health interventions in older adults showed the potential 
to improve step count and sedentary time, although none 
achieved statistical significance.20

Hypertension
Hypertension is the leading preventable cause of death 
worldwide.21 Manufacturers have sought to incorporate 
blood pressure measurements into commercially available 
wearable devices. Several sensor modalities have been 
assessed and developed in preclinical and clinical stages 
(table). Devices are now available to the public with the 
purpose of providing validated measurements of blood 
pressure from the wrist. The Omron HeartGuide, the first 
clinically validated wristwatch blood pressure device, uses 
an inflation cuff within the strap to measure blood pressure 
(Omron Healthcare, Kyoto, Japan).22 It compared well with 
office­based sphygmomanometer measurements (diff­
erence in systolic blood pressure <5mm Hg [SD 8]), but 

less well against simultaneous ambulatory blood pressure 
monitoring outside the office (3·2 mm Hg [SD 17]).23 More 
recently, Huawei have released an inflatable cuff­based 
blood pressure wristwatch that has also shown sufficient 
accuracy to meet the Association for the Advancement 
of Medical Instrumentation, European Society of 
Hypertension, and International Organization for 
Standardization universal standards (differences between 
test and reference systolic and diastolic blood pressure 
–1·4 mm Hg [SD 6·47] and –0·2 mm Hg [SD 5·85], 
respectively);24 however, the manufacturer states that the 
data obtained by the device should not be used for medical 
research, diagnostic, or treatment purposes and are for 
reference use only. Both products are listed as validated 
blood pressure devices by Science and Technology for 
Regional Innovation and Development in Europe, an 
international organisation associated with the European 
Society of Hypertension, International Society of 
Hypertension and World Hypertension League that aims 
to improve the accuracy of hypertension assessment, 
diagnosis, and management by providing guidance and 
practice tools along with the latest scientific and validation 
evidence.25 The Aktiia bracelet (Aktiia, Neuchâtel, 
Switzerland) is a cuffless blood pressure device that derives 
measurements from an optical photo plethy smo graphy 
sensor. It requires an initial calibration step against a 
separate sphygmomanometer device, and this must be 
repeated intermittently. Given that there are currently no 
guidelines for the validation of cuffless blood pressure 
devices, the Aktiia bracelet was validated against an adapted 
international standard (difference between test and 
reference systolic and diastolic blood pressure 0·46 mm Hg 
[SD 7·75] and 0·39 mm Hg [SD 6·86], respectively).26

These developments highlight the willingness of the 
commercial sector to generate and make available 
validation data in response to calls for better regulation.27 
Although these wearable devices might be more 
comfortable and practical for home use, and are likely to 
avoid white coat hypertension due to the stress of the 
clinical environment, they do present new challenges for 
validation; body position (particularly the position of the 
wrist and arm relative to the heart) and activity have been 
shown to influence the blood pressure measurement.23,28 
Because of this, and the fact that these devices are 
validated against traditional office­based measurements, 
the instructions for use advise only recording blood 
pressure while in an upright, seated, relaxed position. 
This is an important point for physicians to consider 
when interpreting blood pressure recordings from 
wearable devices. As the use of these devices expands it 
might be beneficial for international organisations to 
develop and adapt standards to consider validation of 
wearable sensors in the ambulant patient.

Arrhythmia
Prolonged ECG monitoring devices such as Holter 
monitors are cumbersome, can only be worn for short 
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periods, and might miss paroxysmal arrhythmias. 
Furthermore, implantable devices (loop recorders) are 
invasive and require specialist training to insert and 
analyse. Wearable technology can be advantageous for 
arrhythmia detection; several modern smartwatches use 
photo plethysmography sensors, and more recently ECG 
technology, to detect heart rate and rhythm. Photo­
plethysmography sensors can detect atrial fibrillation, the 
most common significant arrhythmia, with a sensitivity 
and specificity of 91–100% in comparison with ECG.29,30 

The Apple Heart study investigated the use of smartwatch­
based arrhythmia detection in 419 297 participants (Apple, 
Cupertino, CA, USA).31 Through the watch’s photo­
plethysmography sensor, if an irregular cardiac rhythm 
was detected, a notification advised a telemedicine 
consultation and to wear an ECG recording patch for 
7 days. Within a median monitoring period of 117 days, 
2 161 participants received an irregular pulse notifi­
cation (0·52%). After exclusions, 450 participants 
returned usable ECG data, 34% of which were confirmed 
to have atrial fibrillation. Although undergoing simul­
taneous ECG monitoring, the positive predictive value of 
subsequent irregular pulse notifi cations was 84%. In a 
similar study performed across China, 246 541 people 
downloaded a mobile atrial fibrillation app that used data 
from a photoplethysmography wristband or watch. Of 
these, 187 912 people used the app via their smartphone 
and 0·23% received a notification of a suspected atrial 
fibrillation. After follow­up, the positive predictive value 
of the photoplethysmography detected signal was 91·6%.32 
These studies were the first demonstration of a general 
population­wide approach to arrhythmia screening using 
a commercially available wearable device with tele­
medicine. Given that atrial fibrillation was diagnosed in 
asymptomatic participants, future research should 
consider whether major sequelae such as the incidence of 
stroke can be reduced by this approach in adequately 
powered prospective controlled trials.

Heart rate­sensing wearable technology has also been 
applied to multiple types of apparel, leading to a variety of 
potential arrhythmia detection modalities. The smart shirt 
design Cardioskin (BioSerenity, Paris, France) can record 
a 15 lead ECG continuously with quality comparable to 
Holter monitors.33 ECG vests or chest straps worn for 
28 days were investigated in the assessment of 146 patients 
with a diagnosis of cryptogenic stroke.34 Atrial fibrillation 
was detected in 21·9% of patients, with the number 
needed to screen to detect one incidence of atrial 
fibrillation being 4·8 patients. Smart eyewear might also 
provide additional opportunities. A smartphone camera­
based program can detect atrial fibrillation through facial 
photo plethysmography using variations detected in skin 
colour, with a sensitivity of 95% and specificity of 96% in 
discriminating atrial fibrillation from sinus rhythm.35 This 
introduces the potential for facial photo plethysmography 
to be developed for eyeglasses.8 Miniaturisation of 
photoplethysmography has led to a heart rate monitoring 

ring (Oura Health, Oulu, Finland), but it has only been 
tested in sinus rhythm to date.7 A variety of wearable 
designs might soon become available for consumer­driven 
arrhythmia monitoring, allowing device selection that 
best suits patient preference and comfort.

Heart failure
In the management of congestive heart failure (CHF), 
reduced activity levels are predictive of worse outcomes, 
including mortality.36 Wearable actigraphy devices have 
been validated against patient diaries and physical activity 
during cardiac rehabilitation.37 Wrist­based actigraphy 
enabled the dichotomisation of 50 patients with CHF into 
higher and lower physical activity groups, with the lower 
physical activity group having a five times higher rate of 
hospital admission.38 A systematic review of wearable 
actigraphy monitoring in patients with CHF revealed 
reduced physical activity was associated with poor clinical 
outcomes, mortality, and morbidity.39 The AWAKE­HF 
study, which assessed the effect of combination sacubitril 
and valsartan versus enalapril on quality of life in patients 
with heart failure with reduced ejection fraction, used 
wearable actigraphy to detect physical activity. The study 
showed no significant difference in activity between either 
treatment group, despite an improvement in patient­
reported quality of life in the group who received sacubitril 
and valsartan, suggesting a divergence between objectively 
gathered patient data and subjective outcomes.40 A band 
electrode design integrated in shirts or vests can measure 
and detect changes in intrathoracic impedance which 
correlates with weight reduction secondary to diuresis 
(figure 4). Monitoring this parameter might predict 
hospital admission more reliably than change in weight 
alone.41,42 One study investigated heart failure patients 
wearing such a vest for only 5 min a day after discharge 
from hospital, with data transmitted via Bluetooth and 
mobile phone.43 For 106 participants, there were 64 heart 
failure events (18 readmissions and 46 up­titrations of 
diuretic medication). An algorithm analysing intrathoracic 
impedance was consequently developed, which showed 
87% sensitivity and 70% specificity in identifying patients 
with recurrent admissions due to decompensated heart 
failure. Remote dielectric sensing (ReDS) uses electro­
magnetic signals emitted across the chest. It correlates 
well with pulmonary congestion and has been developed 
for home monitoring and wearable apps.44,45 Daily ReDS 
monitoring in 50 patients with CHF for 90 days, with 
appropriate medication changes, resulted in an 
87% reduction in admissions compared with the pre­
monitoring period, and 79% reduction compared with 
the post­monitoring period.46 Retrospective studies 
corroborate these findings.47,48

Ischaemic heart disease
Despite the evidence supporting physical activity and 
cardiac rehabilitation after acute coronary syndrome (ACS) 
and revascularisation, studies using activity­monitoring 
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devices report daytime sedentary periods in excess of 9 h 
within the first month of recovery.49,50 A prospective study 
of 72 patients with stable ischaemic heart disease taking 
optimal medical therapy demonstrated an improvement in 
exercise time following a 6­week cardiac rehabilitation 
programme over a 12 month follow­up period; however, 
the proportion of patients who met guideline 
recommendations of physical activity targets did not 
change significantly and sedentary time remained high 
throughout.51 Patients with the lowest level of sedentary 
time made the most improvement in physical activity, with 
the reverse also being true. A study of 330 patients who 
provided wristwatch­based accelerometer data following 
discharge after an ACS revealed that only 16% conformed 
to exercise guidelines.52 Simply wearing an activity monitor 
might encourage physical activity. Small randomised 
controlled studies of patients attending cardiac rehab­
ilitation demonstrate that wearable pedometers improved 
adherence with physical activity advice, with improvements 
in psychosocial health and self­reported function;53,54 
however, these studies also included support from 
specialist staff which might have contributed to the results. 
The UP­STEP ACS study utilising the Fitbit Charge 2 
(Fitbit, San Francisco, CA, USA) will be the first to assess 
the effect of wearable physical activity monitoring in 
improving exercise capacity and modifying cardiovascular 
risk factors in a randomised setting in recovering patients 
with ACS.55

Pulmonary hypertension
Pulmonary hypertension is a debilitating condition with 
significant morbidity and mortality, and high levels of 
fatigue and reduced physical activity. Accelerometer­based 
sensors detected reduced daily step counts, distance 
walked, and time spent in moderate to vigorous physical 
activity, with good correlations with established clinical 
parameters of physical activity (eg, 6 min walk test and 

quality­of­life questionnaires).56–58 This does not always 
correlate with right heart catheter measurements and 
echocardiographic changes, suggesting that fatigue and 
reduced physical activity might be the result of a complex 
multi­system response.59 The FIT­PH study aims to 
evaluate the correlation of Fitbit wristband activity data 
with implanted pulmonary artery pressure monitoring 
devices and their relationship to the patient’s clinical 
condition and quality of life (NCT04078243). When used 
to monitor response to a physical training intervention, a 
study using wrist­based accelerometers showed an 
increase in physical activity in the intervention group, 
along with an improvement in 6 min walk distance 
(6MWD).60 Using armband accelerometers, inspiratory 
muscle training failed to show an increase in daily physical 
activity levels, 6MWD, or questionnaire responses against 
controls.61 Drug and device trials in pulmonary hyper­
tension have incorporated activity monitoring as 
outcomes. Inhaled nitric oxide therapy was assessed in a 
randomised, double­blind, placebo­controlled trial.62 
Using armband accelero meters, 23% of the people in the 
treatment group showed a significant improvement in 
physical activity following an 8 week treatment period, 
whereas no improvement was observed in the placebo 
group; 71% of people in the placebo group had a significant 
decrease in physical activity versus 39% in the treatment 
group.62 The TROPHY1 feasibility study, investigating the 
use of pulmonary artery denervation, showed an 
improvement in physical activity monitored through 
wearable accelero metery alongside conventional metrics.63 
Other recent trials in pulmonary hypertension such as 
VENTASTEP,64 which investigated inhaled iloprost, and 
TRACE,65 which investigated selective prostacyclin 
receptor therapy, used wearable technology to measure 
parameters of daily physical activity as primary outcome 
measures.64,65

Aortic valve disease
Data from wearable devices are surprisingly sparse in 
aortic valve disease, considering their potential to track 
progression and optimally time intervention. In a study 
of 52 patients with severe aortic stenosis, there was little 
correlation between wrist­based accelerometer measure­
ments of daytime physical activity and conventional 
performance assessments and self­reported activity 
questionnaires.66 Wrist­mounted accelerometer­based 
daily activity monitoring in 25 patients undergoing 
transcatheter aortic valve implantation showed a recovery 
to pre­transcatheter aortic valve implantation levels of 
physical activity by 5 weeks.67 Further studies are required 
to explore the relationship between activity level and 
other physiological biomarkers with prognosis and 
intervention.

Computational and predictive modelling
By combining the various sources of information from 
wearable technology into personal representations, 

Figure 4: Intrathoracic impedance measurement technique

Electrodes on both sides of the chest (green and blue) pass a constant current 

across the chest, I(t), with an impedance detection circuit (yellow) measuring 

the voltage drop caused by intrathoracic blood volume U(t).

U(t)

l(t)
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computer modelling could substantially enhance the 
information that can be extracted from such data.68 
Modern medicine is guided by randomised controlled 
trials, which report relatively small overall effect sizes in 
large, heterogeneous patient groups. The results are 
then applied, often by extrapolation, as a generic 
remedy. Even if an individual patient in the clinic would 
have met the inclusion criteria of the key randomised 
control trial, would they have been one of the few 
positive responders? The individual’s personal circum­
stances, comorbidities, socioeconomic status, genetics, 
activity levels, ethnicity, age, frailty, and other factors 
might be relevant. Computational modelling can 
analyse complex datasets to determine relevant factors 
and associations, offering the goal of tailored, or 
personalised care, rather than a one­size­fits­all 
approach.69 Wearable technology has the potential to 
obtain patient­specific data to tune these models in an 
individualised manner. Continuous assimilation of 
physiological data over prolonged periods will allow 
computational models to develop and age with the 
patient; the so called digital twin.70 It is anticipated that 
such models will incorporate artificial intelligence 
technology to characterise and delineate patient­specific 
physiological relationships that will be used to predict 
the likelihood of a new diagnosis, disease decom­
pensation, or response to an intervention.71 In the 
All of Us research programme, which includes more 
than 400 000 participants, data from wearable devices 
are combined with surveys, electronic health records, 
and clinical and laboratory samples to advance precision 
diagnosis on a large scale.72

Handling data from wearable technology in the 
clinic
Incorporating data from wearable devices into clinical 
decision making appears intuitive, plausible, and 
attractive. Patients are already presenting to their doctors 
with data from their wearable device as a new, patient­
driven initiative. The collection of relevant health data 
before the first clinical consultation has the potential to 
revolutionise the traditional doctor–patient interaction 
(figure 5). Patients might be anxious about what they 
consider abnormal data, even without symptoms, and 
might (paradoxically) curtail their exercise as a result. At 
this early stage, doctors should ensure that data have 
been obtained within the manufacturer’s stated intended 
use and do not exceed its evidence base or breach its 
regulatory approval. Off­label use might transfer 
responsibility from the manufacturer to the end user.

Challenges and future perspectives
The ubiquity of wearable devices risks that they will be 
used in clinical decision making, irrespective of 
validation. Despite a wide range of studies, they have not 
yet been shown to improve defined medical outcomes, 
necessitating studies to identify risks and benefits to the 
patient and health­care systems. Medical training will 
need to address these risks and benefits as the evidence 
base grows, as well as navigate the difficulties posed by 
volumes of disparate device data. Cardiologists, who are 
familiar with assessing traditional cardiovascular 
symptoms such as chest pain, palpitations, and shortness 
of breath, based on a patient’s subjective description, will 
need to assimilate these new data sources and, in time, 

Figure 5: How wearable devices can disrupt the traditional doctor–patient interaction

(A) The traditional model of healthcare is initiated by symptoms, leading to a patient–clinician consultation. The clinician then requests investigations that document 

objective cardiovascular parameters under resting and stress conditions that leads to reassurance or diagnosis and treatment. (B) Patients present to their doctor with 

objective cardiovascular measurements under resting and physical exercise conditions, as measured and alerted by their wearable device. This process might lead to 

earlier initiation of treatment or reassurance and might facilitate monitoring the response to treatment.

A

B
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use them to monitor the response to treatment. Parallel 
developments in machine learning and artificial 
intelligence might also be applied to data from wearable 
devices to identify novel associations in terms of 
diagnosis, risk prediction, and treatment choices.71 It is 
also likely that sensor technology will advance beyond 
traditional methods such as photoplethysmography with 
the emergence of smart fabrics. These incorporate novel 
sensing methods, including soft magnetoelastic 
generators and hierarchical in situ filling porous 
piezoresistive sensors capable of transducing pressure 
displacement. Such fabrics provide new ways of 
integrating biomedical sensing technology into clothing 
and wearable devices.73,74 The regulatory landscape for 
digital health care will need to develop rapidly. Public 
trust and acceptance will also be required. One hope is 
that wearables might help to reduce inequalities in health 
care, provided they are inexpensive, and do not 
discriminate against individuals who may struggle to 
engage with the technology (eg, due to a lack of familiarity 
with electronic devices or health conditions which may 
make using small devices challenging). The combination 
of wearables with telemedicine might also lead to a 
revolution in community care, as well as a reduction in 
both acute hospital admission and health spending.

Conclusion
Wearable technology has the potential to elevate the 
routine clinical consultation from a subjective discussion 
based on patient recollection to a standardised series of 
objective parameters of both health and quality of life 
gathered over months or years. Wearable devices have 
shown some potential application in many cardiovascular 
diseases, either through disease screening or monitoring; 
however, the evidence base and the integration of 
wearable data into clinical cardiology is still in its infancy. 
Such data could soon help personalise and improve the 
management of cardiovascular diseases on multiple 
levels, ultimately resulting in better outcomes on both an 
individual and a population­wide scale.
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