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Abstract—If we want to integrate autonomous aerial drones
into safety-critical contexts, particularly in dynamic and haz-
ardous environments like mining operations, we need to rig-
orously assure their safety. Despite significant technological
advancements in drone technology over the past decade, this
remains a challenge. The current safety engineering methods
employed in drones cannot demonstrate convincingly that AI
techniques can effectively mitigate unsafe situations with a
specified level of confidence and reliability. In this paper, we
present a brief study of various approaches, with particular focus
on the situation coverage-based approach. A key challenge lies in
identifying a finite set of representative situations for testing from
the infinite possibilities that could occur in real-world scenarios.
This research contributes to advancing our understanding of
situation coverage based safety assessment methodologies and
coverage criteria.

Index Terms—drone, safety, testing, situation, coverage, mine

I. INTRODUCTION

Autonomous Aerial Drones (AAD) have become popular

across various domains, including military operations, envi-

ronmental monitoring, and agricultural activities. Establishing

a detailed safety assessment process for AAD, especially in

settings with humans like mines, is crucial during the design

phase [1]. Such a process aims to identify potential failure

scenarios during AAD operation, assess their consequences,

and define mitigation measures to minimize risks. To do this,

it imperative that the process considers sufficient situations.

A novel approach for this is situation coverage based safety

testing [2], [3]. In the subsequent discussion, we will delve

into the taxonomy of situation coverage based safety testing,

exploring its foundational principles and applications derived

from existing literature.

Recent literature focuses on finding representative situation

for approving Autonomous Vehicles (AVs) using a situation-

based approach [4], [5], [6] . The diverse literature uncovers

various strategies contributing to different aspects of this

approach.To address this, we developed a taxonomy (figure

1) to organize and understand the different stages to situation

coverage based safety testing .

There are various situation sources like expert knowledge,

standards, and driving data, which can be gathered from

field tests or accident records. Recently, more organizations

are making their driving data publicly accessible [7], [8],

expanding the available resources. [9] propose a new method

using drones to capture traffic data, which offers advantages

like lower costs and less disruption, although it is limited to

shorter sections of roads. However, there are still challenges,

such as capturing highway scenarios effectively [9].

When generating scenarios, we can use either knowledge-

based methods, relying on expert knowledge stored in on-

tologies, or data-driven approaches, often employing machine

learning techniques like clustering. [10] proposed a fundamen-

tal ontology for AV guidance, which serves as a foundation

for many subsequent studies. [11] utilized ontologies to create

scenarios specifically for German highways, incorporating all

layers of their model. For data-driven scenario generation, var-

ious methods exist, such as unsupervised clustering techniques

by [12] [13], mixed similarity measures by [14], and Bayesian

learning methods by [15]. These approaches aim to extract

concrete scenarios from real driving data, which can be clas-

sified into logical scenario categories. Additionally, techniques

like Kernel Density Estimation [16] and particle filters [17] are

used to estimate and simulate scenario parameters from field

data, ensuring the safety of autonomous vehicles.

Situation coverage(SC) measures can be approached from

a Macro- or Micro- perspective [2]. Macro-SC means looking

at the situation overall and saying whether certain things are

covered.Micro-SC means that we watch the system run and

see what small-scale situations are encountered.

The goal of falsification approaches is to identify counterex-

amples that violate safety requirements during micro assess-

ment. These approaches can either select existing concrete

scenarios from a database or define logical scenarios with

parameter ranges. Selection methods include using accident

databases, modifying existing scenarios to increase criticality,

or identifying critical scenarios within predefined parameter

ranges. Several studies, such as those by [18], [19] and [20],

utilize accident data to understand system requirements and

simulate accident scenarios for system evaluation. However,

solely relying on accident data may not adequately assess

the safety of autonomous vehicles (AVs) beyond Level 3 of

autonomy [21], as it only addresses past accidents rather than

predicting future risks. Methods like the one presented in

[22] efficiently determine the risk of real traffic situations

to select critical scenarios for AV testing, focusing on the



behavior of other road users. Other studies, like those by [23]

and [24], develop frameworks to consider scenario complexity

when selecting challenging scenarios for AV testing, which

has shown to reveal more system errors. These approaches

play a crucial role in enhancing the safety assessment of AVs

by identifying and addressing potential risks in complex real-

world scenarios.

The aim of testing-based approaches for scenario selection

is to efficiently sample a subset of concrete scenarios for

micro safety assessment, which can then be aggregated for

macro assessment [25]. These approaches typically involve

one of two sampling methods: sampling within parameter

ranges or sampling from parameter distributions to incorpo-

rate scenario probability. N-wise sampling is often applied

to simpler systems like Lane-Keeping Assistants [26], while

other studies utilize techniques such as Design of Experiments

(DoE) for scenario generation [26]. Additionally, some re-

search focuses on generating road networks or modifying AV

behavior using methods like Signal Temporal Logic (STL)

monitoring or randomization of traffic vehicle parameters

[27]. Accelerated sampling methods, including Extreme Value

Theory and Importance Sampling Theory, are also used to

predict system safety levels based on real data and criticality

metrics, significantly reducing the need for extensive real-

world testing [28]. These diverse approaches contribute to

the development of comprehensive testing methodologies for

assessing AV safety.

In the following sections, we will discuss our problem and

motivation, our proposed solution, and my current research

status.

II. PROBLEM AND MOTIVATION

Our proposed research aims to develop a system-level

validation approach for autonomous aerial drone (AAD) to

ensure their safety and quality of service in mine environ-

ments. Existing safety assurance methods focus either on

component-level approaches, which lack adaptability to the

system level approaches. Therefore, the research will focus

on deriving a comprehensive system-level validation method

for autonomous vehicles [27]. The inspiration for our work

comes from [27] vision paper on system-level safety testing.

Their proposal serves as a foundational framework, which we

intend to adapt initially and refine later if necessary to suit our

test case. Our focus lies on applying their preliminary solution

for autonomous aerial drones operating within mine settings.

Our research will address the following three key research

questions:

RQ1: How can we define situation coverage of system-level

test suites for AAD?

To achieve measurable guarantees through testing, it is

essential to define coverage criteria tailored to the application

domain. While various coverage criteria exist for software

testing, there is a lack of well-defined situation coverage

criteria specific to autonomous systems testing [2]. Addressing

this gap, my research will formally define situation coverage

and explore how to define situation coverage of system-level

test suites for AAD.

RQ2: How can we evaluate situation coverage of existing

system-level test suites for AAD?

One primary application of the newly defined situation cov-

erage criteria will be the evaluation of existing test suites. By

applying situation coverage measurements to these test suites,

we can compare different test suite generation approaches

based on their achieved safety assurance level.

RQ3: How can we generate relevant test situations and

systematically drive simulation towards critical scenarios to

justifiably increase situation coverage?

The defined situation coverage concept can guide test sce-

nario generation towards scenarios that provide high coverage.

Developing a novel test suite generation approach, we aim to

define, derive, and simulate complex test scenarios efficiently

to increase situation coverage.

III. PROPOSED SOLUTION

A. Test Environment

In our research, we established a test environment in our

lab (depicted in Figure 2a) where a drone was utilized to

gather point cloud data suitable for simulations (Figures 2b

and 2c) from a ’mine’ reconstructed in the Lab. This process

was iterated twice, resulting in the creation of two mock mines

one for training navigation algorithms and one for testing.

Thus, the physical mine in the Lab and depicted in Figure

2a served as the basis for the simulated mine shown in Figure

2b, designated as the ALOFT: Self-Adaptive Drone Controller

testbed [29]. Our objective is to employ ALOFT for situation

coverage-based safety testing of AAD.

In our test scenario, a human is present on the landing

area so the AAD cannot land safely. The safety property also

requires the ALOFT self-adaptive drone controller to stop

upon detecting a human within 3 seconds, ensuring a safe

landing. We check to make sure the drone only lands when

there are no people, making sure it follows safety rules.

B. Overall Approach

1) Step 1 : Simulation — We use simulators or real

test vehicles to observe how AAD behave in specific

situations defined by test contexts.

2) Step 2: Qualitative Abstraction— We simplify the

geospatial, causal, and temporal information from these

situations using graph queries, creating situation graphs

that represent relationships as labeled graphs. These

graphs are maintained during simulation.

3) Step 3: Runtime Monitoring — We continuously mon-

itor changes in these situation graphs using complex

event processing techniques, which provide precise for-

mal semantics [30].

4) Step 4: Situation Coverage— We measure how well our

existing test scenarios cover different situations on an

abstract level. This will be done by adapting metrics

that account for model diversity and graph shapes [31],



Fig. 1. Taxonomy of Situation Coverage Based Testing Approach.

Fig. 2. ALOFT Testbed(from [29]).

ensuring a comprehensive understanding of covered sce-

narios.

5) Step 5 : Situation Generation— We automatically create

new challenging situations as abstract test cases using di-

verse graph generation techniques. This helps us expand

the range of scenarios covered by our tests [32].

6) Step 6: Context Generation— Finally, we aim to turn

abstract situations into concrete test contexts. This step

increases the practical coverage and robustness of our

test suite, making it more effective in real-world scenar-

ios.

IV. PLANNING

In this part, we describe our research plan based on the

proposed solution of section III.

1) Data Acquisition from ROS and Gazebo Simulation

[33], [34]:

• Use ALOFT [29] to access kinematic data from the

simulation environment.

• Take relevant information including drone position,

speed, and any human presence on the simulated

landing area.

2) Metamodel Creation using Eclipse [35]:

• Use Eclipse to make a metamodel that captures the

essential elements and relationships of the landing

scenario.

• Define entities such as drone, landing area, human

presence, and their respective attributes.

3) Situation Modeling with VIATRA [36]:

• Derive the relations in the qualitative abstraction

chain, we utilize graph queries employing the VI-

ATRA syntax. This syntax allows us to express

the situation model derived from the metamodel

effectively.

• Define graph patterns and rules to specify the con-

ditions and behaviors within the landing scenario.

4) Continuous Scene Monitoring with Runtime Monitoring

Algorithm [30]:

• Implement a runtime monitoring algorithm using

VIATRA to continuously monitor the simulated

scene against safety constraints.

• Define safety constraints such as the drone’s re-

sponse time to human presence and its speed re-

duction.

V. CURRENT RESEARCH STATUS

As a first-year PhD student, my goal by the end of 2024 is

to integrate the landing scenario’s metamodel into VIATRA.

Then, I aim to create a basic set of tests for AAD, run

them, and collect simple safety data, like whether a simulated

scenario results in a collision. Once this initial integration is

done, I’ll focus on RQ1 and RQ2. By mid-2025, I’ll define

”situation coverage” formally and test it using existing test

suites for AAD. Next, I’ll tackle RQ3 by creating a method to

generate scenarios that maximize situation coverage. I’ll test

this method experimentally, like I did for RQ2. Based on my

current timeline, I anticipate finishing my PhD by the end of

2026.
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mated generation of consistent domain-specific models,” in Proceedings

of the 40th international conference on software engineering, pp. 969–
980, 2018.

[33] ROS, “Ros.org — powering the world’s robots.” https://www.ros.org/,
2020.

[34] OSRF, “Gazebo.” http://gazebosim.org/, 2019.
[35] R. Gronback, “Eclipse modeling project — the eclipse foundation.” http:

//www.eclipse.org/modeling/emf. Accessed:2024-04-22.
[36] “Viatra - scalable reactive model transformations.” http://www.eclipse.

org/viatra. Accessed:2024-04-22.


