
This is a repository copy of Linear-Time Graph Programs for Unbounded-Degree Graphs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/213529/

Version: Accepted Version

Proceedings Paper:
Ismaili Alaoui, Ziad and Plump, Detlef orcid.org/0000-0002-1148-822X (2024) Linear-Time
Graph Programs for Unbounded-Degree Graphs. In: Proceedings, 17th International
Conference on Graph Transformation (ICGT 2024). International Conference on Graph
Transformation, 10-11 Jul 2024 Lecture Notes in Computer Science . Springer , NLD , pp.
3-20.

https://doi.org/10.1007/978-3-031-64285-2_1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Linear-Time Graph Programs for

Unbounded-Degree Graphs

Ziad Ismaili Alaoui and Detlef Plump

Department of Computer Science, University of York
York, United Kingdom

{z.ismaili-alaoui, detlef.plump}@york.ac.uk

Abstract. Achieving the complexity of graph algorithms in conven-
tional languages with programs based on graph transformation rules
is challenging because of the cost of graph matching. Previous work
demonstrated that with so-called rooted rules, certain algorithms can
be executed in linear time using the graph programming language GP2.
However, for non-destructive algorithms which retain the structure of
input graphs, achieving a linear runtime required that input graphs have
a bounded node degree. In this paper, we show how to overcome this
restriction by enhancing the graph data structure generated by the GP2
compiler and exploiting the new structure in programs. As a case study,
we present a 2-colouring program that runs in linear time on connected
input graphs with arbitrary node degrees. We prove the linear time com-
plexity and also provide empirical evidence in the form of timings for
various classes of input graphs.

Keywords: Rooted graph programs · Efficient graph matching · GP 2
· Linear-time algorithms · Depth-first search · 2-colouring

1 Introduction

Designing and implementing languages for rule-based graph transformation, such
as GReAT [1], GROOVE [9], GrGen.Net [10], Henshin [12] or PORGY [8], is
challenging in terms of performance. Typically, there is a gap between the run-
time that can be achieved with programs in conventional imperative languages
and rule-based graph programs. The bottleneck for graph transformation is the
cost of graph matching. In general, matching the left-hand graph L of a rule
within a host graph G requires time |G||L|, where |X| is the size of a graph X.
(This is a polynomial since L is fixed.) As a consequence, linear-time impera-
tive graph algorithms may have a polynomial runtime when they are recast as
rule-based graph programs.

To mitigate this problem, the graph programming language GP2 supports
rooted graph transformation rules which were first proposed by Dörr [7]. The
idea is to distinguish certain nodes as roots and to match roots in rules with
roots in host graphs. Then only the neighbourhood of host graph roots needs
to be searched for matches, allowing, under certain conditions, to match rules

2 Ziad Ismaili Alaoui and Detlef Plump

in constant time. The GP2 compiler [2] maintains a list of pointers to roots in
the host graph, hence allowing to access roots in constant time if the number
of roots throughout a program’s execution is bounded. In [3], fast rules were
identified as a class of rooted rules that can be applied in constant time if host
graphs contain a bounded number of roots and have a bounded node degree.

The first linear-time graph problem implemented by a GP2 program with fast
rules was 2-colouring. In [3, 4], it is shown that this program colours connected
graphs of bounded degree in linear time. Since then, the GP2 compiler has
received some major improvements, in particular relating to the runtime graph
data structure used by the compiled programs [6]. These improvements made
a linear time worst-case performance possible for a wider class of programs, in
some cases even on input graph classes of unbounded degree. See [5] for an
overview.

Despite this progress, programs that retain the structure of input graphs,
such as the said 2-colouring program, up to now required non-linear runtimes on
graphs of unbounded degree. The problem is that during a depth-first search,
the number of failed attempts to match an edge incident to a node may increase
over repeated visits to this node. As a consequence, in graph classes of un-
bounded degree, this number may grow quadratically in the graph size, leading
to a quadratic program runtime. In graph classes of bounded degree, this unde-
sirable behaviour is ruled out because the maximal number of failed matching
attempts per node is constant.

In this paper, we present an update to the GP2 compiler which mitigates
this performance bottleneck. In short, the solution is to improve the graph data
structure generated by the compiler in that the edges incident with a node are
stored in separate linked lists if they have different marks (red, green, blue,
dashed or unmarked). This allows the matching algorithm to find an incident
edge in constant time. For example, if an unmarked edge is required, a single
access to the list of unmarked incident edges will either find such an edge or
determine that none exists.

In addition to the new graph data structure, a technique is needed to exploit
the improved storage in programs. We demonstrate in a case study of the 2-
colouring problem how the new graph representation allows to achieve a linear
runtime on graphs with arbitrary node degrees. Our program expects connected
input graphs and either detects that a graph is not 2-colourable or colours the
nodes blue and red such that all non-loop edges link nodes of different colour.

We provide a detailed proof that this program runs in linear time on arbitrary
connected input graphs1. To the best of our knowledge, such a demonstration
of a rule-based linear-time 2-colouring algorithm does not exist in the literature.
We also present the results of timing experiments with the colouring program on
six different graph classes containing graphs with up to one million nodes and
edges.

1 Full proofs available at: https://uoycs-plasma.github.io/GP2/documents/ICGT_
2024_GP_2_Extended.pdf.

Linear-Time Graph Programs for Unbounded-Degree Graphs 3

2 The Problem with Unbounded-Degree Graphs

We refer to [5] for a description of the GP2 programming language. Previous
versions of non-destructive GP2 programs based on depth-first-search showed
a linear time complexity on graph classes of bounded degree but a non-linear
runtime on graph classes of unbounded degree [5].

For example, the program is-connected in Figure 1 checks whether a graph
is connected. Input graphs have arbitrary node and edge labels of type list,
unmarked edges and grey-marked nodes. The program fails on a graph if and
only if the graph is disconnected.

Rule init picks an arbitrary grey node as a root (if the input graph is non-
empty) and then the loop DFS! performs a depth-first search of the connected
component of the node chosen by init. The rule forward marks each newly
visited node blue, and back unmarks it once it is processed. Procedure DFS

ends when back fails to match, indicating that the search is complete. Rule
match checks whether a grey-marked node still exists in the graph following
the execution of DFS!. This is the case if and only if the input graph contains
more than one connected component. In this situation the program invokes the
command fail, otherwise it terminates by returning the graph resulting from
the depth-first search.

Main = try init then (DFS!; Check)

DFS = forward!; try back else break

Check = if match then fail

init(x:list)

x

1

⇒ x

1

match(x:list)

x

1

⇒ x

1

forward(x,y,z:list)

x

1

y

2

⇒ x

1

y

2

z z

back(x,y,z:list)

x

1

y

2

⇒ x

1

y

2

z z

Fig. 1. The old program is-connected.

It can be shown that the program is-connected runs in linear time on classes
of graphs with bounded node degree [5]. However, as the following example
shows, the program may require non-linear time on unbounded-degree graph
classes. Figure 2 shows an execution of is-connected on a star graph with 8
edges (see also Figure 11). The numbers below the graphs show the ranges of
attempts that the matching algorithm may perform. For instance, in the second
graph of the top row, either a match is found immediately among the edges that
connect the central node with the grey nodes, or the dashed edge is unsuccessfully

4 Ziad Ismaili Alaoui and Detlef Plump

tried first. In order to find a match for the rule forward, the matching algorithm

⇒
fd

⇒
fd

⇒
bk

1 1-2 1 1-3

⇓fd

⇐
bk

⇐
fd

⇐
bk

1-5 1 1-4 1

⇓6

{fd,bk}

⇒
fd

⇒
bk

⇒
bk

1-8 1 8 1

Fig. 2. Matching attempts with the forward rule. fd and bk denote forward and back,
respectively.

considers, in the worst case, every edge incident with the root. When the node
central to the graph is rooted and the rule forward is called, the matching
algorithm may first attempt a match with the dashed back edge and all edges
incident with an unmarked node. Therefore, the maximum number of matching
attempts for forward grows as the root moves back to the central node. As
can be seen from this example, the worst-case complexity of matching forward

throughout the program’s execution is 2|E|+
∑|E|

i=1
i = O(|E|2) where E is the

set of edges.

3 The Updated GP2 Compiler

To address the problem described in Section 2, we changed the GP2 compiler
described in [6], which we refer to as the 2020 compiler. We call the version
introduced in this paper the new compiler2.

3.1 New Graph Data Structure

The 2020 compiler stored the host graph’s structure as one linked list containing
every node in the graph, with each node storing two additional linked lists:

2 Available at: https://github.com/UoYCS-plasma/GP2.

Linear-Time Graph Programs for Unbounded-Degree Graphs 5

one for incoming edges and one for outgoing edges. When iterating through
edge lists to find a particular match for a rule edge, the 2020 compiler had
to traverse through edges with marks incompatible with that of the rule edge.
This resulted in performance issues, especially if nodes could be incident to
an unbounded number of edges with marks incompatible with the edge to be
matched. For example, consider the rule blue red from Figure 6. Initially, the
matching algorithm matches node 1 from the interface with a root node in the
host graph. Subsequently, it iterates through the node’s edge lists to locate a
match for the red edge. In the 2020 compiler, all edges incident to this node
were stored within two lists, one for each orientation, irrespective of their marks.
However, if the node were incident to a growing number of unmatchable edges
(because of mark changes), the matching algorithm would face, in the worst case,
a growing number of iterations through the edge lists to find a single red edge.

When considering a match for a rule edge, host edges with incorrect orienta-
tion and incompatible marks do not match; thus, the matching algorithm need
not iterate through them. By organising edges into homogeneous linked lists
as array entries based on their marks and orientations, the matching algorithm
can selectively consider linked lists of edges of correct orientation and mark.
More precisely, in the new compiler, we update the graph structure of the 2020
compiler by replacing the two linked lists with a two-dimensional array. Each
element of the array stores a linked list containing edges of a particular mark and
orientation. We also consider loops to be a distinct type of orientation, separate
from non-loop outgoing and incoming edges. The 2D array, therefore, consists
of 5 rows (unmarked, dashed, red, blue, green) and 3 columns (incoming, out-
going, loop), totalling 15 cells, each one storing a single linked list. Consider

in out loop

unmarked

dashed

red

green

blue

Fig. 3. Two-dimensional array of linked lists of edges.

again the rule blue red of 2-colouring from Figure 6. In the new compiler,
the matching algorithm can access the linked list of non-loop incoming red edges
and that of non-loop outgoing red edges in constant time and only consider these
edges. Other edges, such as blue edges incident to the matched node, are stored
in separate linked lists and thus are not considered. In this specific instance, it
can be shown that there is at most one red edge in the host graph throughout
the execution of 2-colouring (Proposition 3). Therefore, there can be at most
one edge in either list, and a matching attempt will either find such an edge
or determine that none exists, both in constant time. However, under the 2020
compiler, the presence of non-red edges in the list could result in longer, non-

6 Ziad Ismaili Alaoui and Detlef Plump

Procedure Description Complexity

alreadyMatched Test if the given item has been matched in the host graph. O(1)
clearMatched Clear the is matched flag for a given item. O(1)
setMatched Set the is matched flag for a given item. O(1)
firstHostNode Fetch the first node in the host graph. O(1)
nextHostNode Given a node, fetch the next node in the host graph. O(1)
firstHostRootNode Fetch the first root node in the host graph. O(1)
nextHostRootNode Given a root node, fetch the next root node in the host graph. O(1)
firstInEdge(m) Given a node, fetch the first incoming edge of mark m. O(1)
nextInEdge(m) Given a node and an edge of mark m, fetch the next incoming edge of mark m. O(1)
firstOutEdge(m) Given a node, fetch the first outgoing edge of mark m. O(1)
nextOutEdge(m) Given a node and an edge of mark m, fetch the next outgoing edge of mark m. O(1)
firstLoop(m) Given a node, fetch the first loop edge of mark m. O(1)
nextLoop(m) Given a node and an edge of mark m, fetch the next loop edge of mark m. O(1)
getInDegree Given a node, fetch its incoming degree. O(1)
getOutDegree Given a node, fetch its outgoing degree. O(1)
getMark Given a node or edge, fetch its mark. O(1)
isRooted Given a node, determine if it is rooted. O(1)
getSource Given an edge, fetch the source node. O(1)
getTarget Given an edge, fetch the target node. O(1)
parseInputGraph Parse and load the input graph into memory: the host graph. O(n)
printHostGraph Write the current host graph state as output. O(n)

Fig. 4. Updated runtime complexity assumptions. Modified procedures are highlighted
in grey, and added ones, in blue. n is the size of the input.

constant search times, as, in the worst-case scenario, all edges except the red
one would need to be iterated over.

3.2 New Programs

The is-connected program of Figure 1 does not yet run in linear time under
the new compiler. Figure 5 shows the runtimes of the program on star graphs
and, for comparison, linked lists (see Figures 10 and 14). As a consequence, we
need a new technique to exploit the improved graph data structure in programs.
Indeed, a rule that matches a rooted node adjacent to an unvisited node via an
unprocessed edge would require the matching algorithm to iterate through all
unprocessed edges incident to the root, which includes cross edges. To mitigate
this problem, we implement the forward operation by marking an unprocessed
edge incident to the root in a colour such that it is the only edge incident to the
root marked of that colour. Then, we check the mark of the node adjacent to
the root via the uniquely-coloured edge: if it is marked such that it is visited,
we ignore it by marking the uniquely-coloured edge in the mark denoting that
it is processed, otherwise, we move the root to the unvisited node and mark the
edge as being processed.

In order to reason about programs, it is primordial to lay down assumptions
on the complexity of certain elementary operations. We define the search plan of
a rule as the procedure generated to compute a match satisfying the application
condition, should one exist. Figure 4 showcases the complexity assumptions of
the basic procedures of the search plan, adapted from [5]. The grey rows indicate
existing procedures updated by the changes introduced in this paper and the blue
rows, new procedures. The proof of Theorem 2 of the new 2-colouring program

Linear-Time Graph Programs for Unbounded-Degree Graphs 7

0 1 2 3 4 5

·104

0

2,000

4,000

6,000

Size of input graph

E
x
ec
u
ti
o
n
ti
m
e
(m

s)
Linked list

Star graph

Fig. 5. The program is-connected running on the new compiler.

relies on these complexity assumptions, and the empirical evidence showcased in
Figure 15 corroborates them.

4 Case Study: Two-Colouring

Vertex colouring is a well-known graph problem which has applications in do-
mains such as scheduling, compiler optimisation and register allocation [11]. In
2012, Bak and Plump came up with a GP2 program for the 2-colouring prob-
lem [3]. The program achieved linear time complexity on bounded-degree graph
classes but exhibited quadratic time complexity on graph classes of unbounded
degree [4].

In this section, we discuss the 2-colouring program of Figure 6, which
achieves linear runtime on both bounded- and unbounded-degree graph classes
using the same input and output conditions as Bak and Plump’s program. This
became possible by the improvements to the compiler described in Section 3,
namely, the separation of edge lists with respect to marks and orientation.

The program 2-colouring3 expects a host graph satisfying the input conditions
of Definition 1. It attempts to 2-colour the graph by performing a depth-first
search (DFS) from an initial node, colouring each newly visited node in the
colour contrasting that of the node it is visited from (either red or blue). The
program fails if an edge is found to be incident with two non-grey nodes of the
same colour. Figure 7 provides a sample execution of 2-colouring.

In contrast to previous implementations of the 2-colouring, the linearity of
this program’s runtime is primarily attributed to an invariant ensuring that a

3 The concrete syntax of the program available at: https://gist.github.com/

ismaili-ziad/51cc29fa3ea49a49d1922acd560ce3ee.

8 Ziad Ismaili Alaoui and Detlef Plump

Main = try init then (DFS!; Check)

DFS = FORWARD!; try back else break

FORWARD = next_edge;

try {colour_red, colour_blue, blue_red, red_blue}

else (unroot; break)

Check = try unroot else fail

init(x:list)

x

1

⇒ x

1

unroot(x:list)

x

1

⇒ x

1

next edge(x,y,z:list)

x

1

y

2

⇒ x

1

y

2

z z

blue red(x,y,z:list)

x

1

y

2

⇒ x

1

y

2

z z

red blue(x,y,z:list)

x

1

y

2

⇒ x

1

y

2

z z

colour red(x,y,z:list)

x

1

y

2

⇒ x

1

y

2

z z

colour blue(x,y,z:list)

x

1

y

2

⇒ x

1

y

2

z z

back(x,y,z:list)

x

1

y

2

⇒ x

1

y

2

z z

Fig. 6. The program 2-colouring (magenta represents the mark any).

single edge incident to the root is marked red, allowing rules implementing a
depth-first search to process both forward and cross edges, instead of forward
edges only. Invariant 3 shows that there can be, at most, one red edge at a
time in the host graph throughout the execution of the program, allowing for
instantaneous access with the compiler’s recent optimisations. Furthermore, a
blue mark on an edge indicates that its processing has ended, eliminating the
need for it to be matched again as a forward or cross edge in the DFS traversal.
We first demonstrate that 2-colouring is totally correct. Then, we show that
the program is linear with respect to the size of the input graph on any class of
input graphs. Finally, we provide empirical evidence on various graph classes of
bounded and unbounded degrees to corroborate our claim.

For the purposes of this section, the set of nodes of a graph G is denoted
as VG. The cardinality of a set X is represented by |X|. We use the notation
A ⇒r B to indicate that B results from applying r on A. For convenience, we
define COLOUR to be the set {colour red, colour blue} and IGNORE, the set
{blue red, red blue}. When we refer to the application of COLOUR, we mean
that either colour red or colour blue is applied. Similarly, applying IGNORE

means applying either blue red or red blue. By a rule call or a rule invocation,

Linear-Time Graph Programs for Unbounded-Degree Graphs 9

⇒
init

⇒
FD!

⇒
DFS!

⇒
Check

⇒
init

⇒
FD

3

⇒
nxt dg

⇒
unrt

̸⇒

unrt

Fig. 7. Sample executions of 2-colouring on a 2-colourable (top) input graph and
a non-2-colourable (bottom) input graph. FD, nxt dg and unrt denote FORWARD,
next edge and unroot, respectively.

we mean a completed or failed rule or procedure application, the break operation
or the fail operation.

We first lay down the definition of an input graph.

Definition 1 (Input graph). An input graph, within the context of the two-
colourability problem, is an arbitrarily-labelled connected GP2 host graph such
that:

1. every node is marked grey,
2. every node is non-rooted, and
3. every edge is unmarked.

Let us first examine the correctness of 2-colouring.

Invariant 1. Throughout the execution of 2-colouring on a given input graph,
the following invariant holds: edges marked as blue and nodes marked as either
blue or red retain their respective marks unchanged.

Invariant 2. Throughout the execution of 2-colouring, the following invariant
holds: there is at most one root in the host graph and is incident to at most one
dashed edge.

Proposition 1. Upon the execution of 2-colouring on an input graph G, the
rule unroot in DFS! is applied if and only if G is not 2-colourable.

Proof. The lemma is trivially true if G is empty. Assume G contains at least one
node. Let us split the proof into two distinct cases.

Case 1. G is 2-colourable. Let X and Y be disjoint subsets of VG with respect to
the bipartition of G such that X ∪Y = VG and every edge in G shares endpoints
in both X and Y . Thus, no pair of distinct nodes within the same subset are
adjacent in G. Clearly, given that the program is structure-preserving, X and
Y remain the same throughout the execution of 2-colouring. Let G′ be the
initialised graph such that G ⇒init G′. Suppose that init roots and marks a

10 Ziad Ismaili Alaoui and Detlef Plump

node blue in X. Consider the graph H such that G′ ⇒n
FORWARD H for some n ≥ 0.

By induction on n, we show that two non-grey nodes sharing the same mark are
never adjacent.

When n = 0 (base case), the body DFS! has not been invoked once. Hence,
H consists of (possibly zero) grey nodes and a single blue root node in X created
by init, which does not violate the property.

Now, assume the property holds in H for some n; we show it still holds for
n+ 1. At the invocation of FORWARD, the rule next edge is called. If there is no
unmarked edge incident to the root node, the rule fails to match, and the loop
exits, satisfying the condition. Otherwise, next edge matches node 1 to the root
node and node 2 to some arbitrarily marked node adjacent to the root via an
unmarked edge. Since the host graph is 2-colourable, next edge preserves marks
and it is assumed, by the induction hypothesis, that no pair of adjacent nodes
are both marked blue or red, node 2 must be part of the subset opposite to the
root’s and marked differently. That is, if node 1 is in X, node 2 is in Y , and
vice versa. Otherwise, it would imply two nodes within the same subset share
an edge, violating the assumption on G. At the invocation of try {colour red,

colour blue, blue red, red blue}, following next edge, node 2 must either
have a mark opposite to the root’s (i.e. blue if the root is red and vice versa) or
be grey. Hence, one rule within that body must apply and move the root to the
opposite subset while alternating its mark, preserving the property.

Therefore, upon the execution of FORWARD, either next edge fails to apply
and exits the loop, or it does apply and a rule in the try condition consequently
matches and applies. Given that the rule back does not affect marks, unroot in
DFS! is never invoked.

Case 2. G is not 2-colourable. By definition, there exists no assignment of marks
from the set {blue, red} to every node in G such that every edge has endpoints of
different marks. Thus, a program that colours nodes in G either blue or red has to
violate the two-colourability condition in that at least one pair of adjacent nodes
share the same colour. Indeed, the node-marking rules of DFS! are colour red

and colour blue, and each rule colours a node in the contrasting colour to that
of the adjacent root. As such, an eventual application of these rules will result in
two non-grey nodes sharing the same mark. Let w be node 2 following such an
application of either colour red or colour blue on the host graph. w is either
blue or red, rooted and adjacent to some node x that shares its mark. Any edge
that connects w and x at this instance must be unmarked since a mark would
imply that the edge was previously matched by next edge, and subsequently by
a rule in try {colour red, colour blue, blue red, red blue}. One of two
situations occurs at the next invocation of FORWARD: either next edge matches
w and x (1), or it matches w and a different neighbour distinct from x (2).

1. Each rule in COLOUR and IGNORE is invoked, but none matches. Consequently,
the unroot rule, applicable to w, is invoked and applied, leading to the call
of break and the termination of the DFS! loop.

Linear-Time Graph Programs for Unbounded-Degree Graphs 11

2. Let y be the neighbour of w distinct from x matched by the rule next edge.
Three subcases emerge: y admits of the same mark as w (a); y is marked in
the colour opposite to w (b); y is grey (c).
(a) The same reasoning as Situation (1) applies.
(b) As both w and y are of contrasting colours and connected by a red edge,

IGNORE applies. This ends the current instance of FORWARD, although not
necessarily terminating the loop, and brings us back to the beginnings
of Situations (1) and (2).

(c) After COLOUR is applied, w is unrooted, and y becomes the new root,
marked with the colour opposite to w. Additionally, the edge matched
by the rule is dashed. Invariant 2 establishes that the root node is incident
to at most one dashed edge. Consequently, any subsequent application
of back successfully backtracks the root to its ancestral node in the
depth-first search tree.
The loop DFS! terminates upon the failure of the back rule. There are
two possible scenarios: either the root eventually backtracks to node w

before DFS! terminates, returning us to Situations (1) and (2), or DFS!
breaks prior to w being rooted again. The latter can only happen if back
is no longer applicable.
However, since COLOUR creates a path of dashed edges with a single end-
point rooted, the inapplicability of back can only occur due to the re-
moval of the root, i.e. the application of unroot. In either case, unroot is
invoked, causing FORWARD! to break, back to fail, and DFS! to terminate.

Therefore, executing 2-colouring on a non-2-colourable input graph results in
the eventual application of unroot in DFS!.

The next lemma demonstrates that termination of 2-colouring is ensured
by showing that the body of each loop reduces a measure that assigns a non-
negative integer to each host graph, thereby showing that the loop body even-
tually fails.

Lemma 1 (Termination of 2-colouring). On any host graph, the program
2-colouring terminates.

Proof. The program 2-colouring contains two looping procedures: DFS! and
FORWARD!. To show termination, consider a measure #(X) consisting of the
number of unmarked edges in the host graph X. The rule next edge is invoked
at the beginning of FORWARD, and if it fails to match, the loop breaks. Clearly,
an application of next edge reduces the measure #. Since the number of edges
is finite and no rule in 2-colouring creates or unmarks an edge, FORWARD!
terminates. We now show that the upper body DFS! terminates. This time,
consider #(X) to consist of the number of non-blue edges in the host graph X.
The loop DFS! breaks if and only if back is called and fails to apply. Let H be
the resulting graph of an application of back on G, that is, G ⇒back H. Clearly,
#(H) < #(G) since the rule marks a dashed edge blue and preserves the size
(i.e. |H| = |G|). Similarly, given that blue edges retain their marks throughout

12 Ziad Ismaili Alaoui and Detlef Plump

the execution of 2-colouring (Invariant 1), the number of edges is finitely fixed
and FORWARD! is known to terminate, dashed edges are eventually exhausted,
the break command is called, and DFS! terminates.

Lemma 2 shows the program 2-colours the graph, should it be 2-colourable.
It demonstrates that the existence of an unvisited (grey) node following the
termination of DFS! on a 2-colourable graph leads to a contradiction.

Lemma 2. Consider a 2-colourable input graph G. Upon termination of DFS!
on G, the host graph contains no grey nodes.

Proof. The lemma is trivially true if G is empty since the rule init fails to
apply and the body (DFS!; Check) is not invoked. Suppose G consists of at
least one node, thereby making init applicable, and consider G′ and H such
that G ⇒init G′ ⇒DFS! H. For the sake of contradiction, assume that a grey
node exists in H. The rule init creates a blue node in G′. Note, upon inspection
of the rules, that the program is structure-preserving. Therefore, both G′ and
H are 2-colourable and connected. As per Invariant 1, once a node is turned
blue, its mark is no longer modified. This implies at least one grey node in H

(assumption) is adjacent to some non-grey node by the connectedness of H. Let
u and v be the non-grey (blue or red) and grey nodes, respectively. We show
that u and v are matched by a rule in COLOUR prior to the termination of DFS!,
thereby contradicting the assumption.

Given that u is non-grey in G, and non-grey nodes preserve their mark, it
must have been matched by either init or a rule in COLOUR. Either way, u

must have been a non-grey root node. Recall that DFS! terminates if and only if
back fails to apply, which can only occur following the termination of the loop
FORWARD!. The latter breaks if either condition holds: next edge fails to apply;
no rule in COLOUR∪ IGNORE applies. The second condition implies that the body
(unroot; break) is then called. However, as shown in Proposition 1, unroot
is never invoked if G is 2-colourable. Therefore, the second condition can never
hold; that is, a rule in COLOUR∪IGNORE is always applicable upon its invocation.
Regarding the first condition, let us examine the implicit data structure DFS!

generates. The dashed edges form a path of non-grey nodes, wherein an endpoint
is rooted. This models a stack of nodes where the root represents the top element.
Specifically, init initialises the stack, COLOUR executes the push operation, and
back performs the pop operation. Given that a root node can be incident to,
at most, one dashed edge, it is guaranteed to backtrack to its ancestral node in
the depth-first search tree as back is applied. The inapplicability of back can be
seen as an exhaustion of the stack, which can only occur if there are no dashed
edges in the host graph (as previously stated, the application of unroot is not a
possibility). It is easy to observe that the remaining root at the end of DFS! is the
initial node of the stack (i.e. the first pushed node). If u is rooted, then it is the
initial node (i.e. the node init was applied to). The invocation of back follows
the termination of FORWARD!, which only occurs if next edge is not applicable,
provided the graph is 2-colourable. However, next edge is applicable on u and
v, hence a contradiction. If u is non-rooted, it must have been a root at some

Linear-Time Graph Programs for Unbounded-Degree Graphs 13

point during the execution of DFS! prior to it being popped from the so-called
stack. Again, an analogous argument shows that this leads to a contradiction.

Since u and v ought to have been matched by next edge, one of two out-
comes must have occurred: either COLOUR successfully applied, or the statement
(unroot; break) was invoked. However, since G is 2-colourable, the unroot

rule cannot be applied. Therefore, COLOUR must have been applicable, resulting
in v being marked non-grey. As established in Invariant 1, non-grey nodes retain
their colour assignment. Hence, v cannot be grey in H.

Given the following properties:

• nodes in the host graph can only be grey, blue or red;
• a node adjacent to a non-grey node cannot be grey;
• G is 2-colourable and connected;
• blue and red nodes retain their mark; and
• the rule init, prior to DFS!, creates one non-grey node in the host graph;

it follows that every node in H (i.e. the resulting graph following the execution
of DFS!) is non-grey.

Building upon the previous lemmata and propositions, we now show the
correctness of 2-colouring.

Theorem 1 (Correctness of 2-colouring). The program 2-colouring is to-
tally correct with respect to the following specifications:

Input: An input graph.
Output: The program fails if and only if the input is not 2-colourable. Oth-

erwise, it outputs a 2-colouring of the input such that every node
is either blue or red, and no pair of adjacent nodes share the same
mark.

Proof. Termination follows from Lemma 1. Loop edges do not affect the 2-
colouring and are omitted in the program. Let G be the input graph. If G is
empty, init fails to match, and the program terminates, outputting the empty
graph and satisfying the specifications. Suppose G consists of at least one node.
We then split the remainder of this proof into two cases.

Case 1. G is 2-colourable. Since it is nonempty, init applies and DFS! is in-
voked. Consider G′ and H such that G ⇒init G′ ⇒DFS! H. It follows from
Lemma 2 that H only contains red and blue nodes. Furthermore, as per Propo-
sition 1, the rule unroot in DFS is never invoked, indicating that no violation of
the 2-colouring has been encountered and the existence of a single root in H.
Upon termination of DFS!, the procedure Check is called, and the rule unroot

unroots the unique root node. The program then terminates and returns the
2-coloured host graph.

Case 2. G is not 2-colourable. Since it is nonempty, init applies and DFS! is
invoked. Analogously to the previous argument, consider G′ and H such that
G ⇒init G′ ⇒DFS! H. It follows from Proposition 1 that unroot is applied at

14 Ziad Ismaili Alaoui and Detlef Plump

the last execution of FORWARD!, breaking the DFS! loop. Therefore, there is no
root node in H. The procedure Check is called, and since H contains no root,
the rule unroot fails to match, and the fail command is invoked, failing the
entire program.

We now examine the complexity of 2-colouring. Prior to doing so, we es-
tablish another invariant of the program in Invariant 3 so as to argue for the
constant-time matching of rules in COLOUR ∪ IGNORE.

Invariant 3. Throughout the execution of 2-colouring, there is at most one
red edge in the host graph.

Theorem 2 (Complexity of 2-colouring). On any class of input graphs, the
program 2-colouring terminates in time O(|V |+ |E|), where |V | is the number
of nodes and |E|, the number of edges.

Proof. We first show that, for every rule, there is at most one matching attempt
with respect to the complexity assumptions of the updated compiler (Figure 4).

The rule init matches a single node. If the graph is nonempty, init imme-
diately applies on the first match as every node is grey. and is therefore constant.
Otherwise, no node is considered, and the matching fails immediately. Therefore,
there is at most one matching attempt for init. The rule unroot matches a sin-
gle node. Given that there is a bounded number of roots in the graph (Invariant
2), the number of matching attempts is also bounded.

Since there is at most one root in the host graph, node 1 of next edge,
blue red, red blue, colour red, colour blue and node 2 of back match in
constant time. The rule next edge matches any unmarked edge incident to the
root incident to an any-marked node. Since any node adjacent to the root is
marked, and non-loop edges are stored in distinct lists with respect to their
marks, there is at most one matching attempt for next edge. An analogous
argument can be made for all rules beside init and unroot, as it is known from
Invariant 3 that there is at most one red edge in the host graph, and Invariant
2 establishes that a root node is incident to at most one dashed edge, hence
limiting the number of possible matches to a single one. Therefore, there is at
most one matching attempt for every rule in 2-colouring. Now, let us look at
the number of calls during the execution of the program for each rule. We define
a call to be the invocation of a rule. For the purpose of this proof, let n and m

be the number of nodes and edges, respectively.
The rule init is only called once at the beginning. It succeeds if the input

graph is nonempty; otherwise, it fails. Let us show that back is called at most
m + 1 times. The number of calls is the sum of successful applications and
unsuccessful ones. Since the loop DFS! terminates at the inapplicability of back,
there can be, at most, one unsuccessful application. Observe that the rule back
marks an edge blue. It has been established in Invariant 1 that blue edges retain
their mark. Hence, since there are m edges, there can be at most m successful
applications.

Similarly, we demonstrate that the rules blue red, red blue, colour red

and colour blue are called at most n + m times each. Since the reasoning

Linear-Time Graph Programs for Unbounded-Degree Graphs 15

applies analogously to each of these rules, let r represent one of them. It can
be observed that an unsuccessful application of r does not necessarily trigger
the invocation of (unroot; break), as the latter is called if and only if every
single rule in COLOUR∪IGNORE fails. Let us then look at the number of successful
applications first. The rules red blue and blue red mark an edge blue. As
previously stated, blue edges retain their mark. Therefore, there can be at most
m successful applications of COLOUR. The rules colour red and colour blue

mark a grey node blue or red. Non-grey nodes retain their mark, thus implying
that there can be at most n − 1 successful applications of IGNORE (there are n

nodes and init has already turned one node non-grey, hence n− 1). Given that
the failure of every rule in COLOUR∪ IGNORE triggers the invocation of (unroot;
break) and terminates both FORWARD! and DFS!, each rule can fail to apply at
most as many times as some rule in COLOUR ∪ IGNORE succeeds and one more
time, marking the terminations of the loops FORWARD! and DFS!. Hence, each
rule application can be unsuccessful at most (n− 1) + (m) + 1 = n+m times.

The rule next edge marks an unmarked edge, implying that there can be
at most m successful applications. An unsuccessful application of next edge

terminates the loop FORWARD! and invokes the rule back, which either succeeds
or terminates the DFS! loop. Thus, there can be at most as many unsuccessful
applications of next edge as there are successful applications of back, that is,
m. The number of calls of next edge is bounded to m+m = 2m. Finally, it is
easy to see that unroot is called at most twice. Once in DFS! (its call terminates
the loop) and once in Check.

Figure 8 offers an overview of the maximum number of calls for each rule
of the program. Therefore, taking into account that all rules are constant, the
overall time complexity of the program 2-colouring is

2 · 1 + 2 · 1 + 2 ·m+ 4 · (n+m) + 2 · (n− 1) + 2 ·m+ (m+ 1)

= 6n+ 9m+ 3 = O(|V |+ |E|).

Rules Unsuccessful Successful

init 1 1

unroot 1 1

next edge m m

blue-red n+m m

red-blue n+m m

colour red n+m n− 1

colour blue n+m n− 1

back 1 m

Fig. 8. Bounds on the number of rule calls for each rule throughout an entire execution.
n is the number of nodes and m, edges.

16 Ziad Ismaili Alaoui and Detlef Plump

Fig. 9. Grid graph. Fig. 10. Binary tree. Fig. 11. Star graph. Fig. 12. Cycle graph.

Fig. 13. Complete graph. Fig. 14. Linked list.

Figure 15 showcases the empirical benchmarks of 2-colouring on the graph
classes of Figures 9, 10, 11, 12, 13 and 14. The measured runtimes do not account
for graph parsing, building and printing, as these operations have a linear time
complexity with respect to the input size (Figure 4). Compilation time is also
not included.

As evidenced, both unbounded-degree graph classes, complete graphs and
binary trees, exhibit linear runtime performance in these tests. It is interesting to
note that complete graphs exhibit almost constant runtime. Since any complete
graphKn with n ≥ 3 is not 2-colourable, the GP2 program can detect a violation
early during execution. This consistent behaviour is primarily attributed to the
deterministic nature of the compiler implementation. In theory, matches in GP2
are nondeterministic, and it is conceivable that a GP2 compiler strictly adhering
to this nondeterminism would visit every node in an arbitrary complete graph
before encountering such a violation.

5 Conclusion

We have presented an approach to implement a 2-colouring algorithm with a
rule-based graph program that has a linear runtime on input graphs with ar-
bitrary node degrees. Removing the condition of bounded-degree input graphs
has been an open problem since the publication of the first paper on rooted
graph transformation [3]. So far, only certain reduction programs that destroy
their input graphs could be designed to run in linear time on unbounded-degree
graphs [5].

Our solution consists in both improving the graph data structure generated
by the GP2 compiler and devising a technique to exploit the new representation
in programs. Previously, the graph data structure of the C program generated by
the compiler stored lists of incoming and outgoing edges with each node. These
lists were searched by the matching algorithm to quickly find an edge correspond-
ing to an incoming or outgoing edge in the left-hand graph of a processed rule.

Linear-Time Graph Programs for Unbounded-Degree Graphs 17

0 0.2 0.4 0.6 0.8 1

·106

0

100

200

300

size (number of nodes and edges)

ru
n
ti
m
e
(m

s)

List graphs

Cycle graphs

Grid graphs

Binary trees

Star graphs

Complete graphs

Fig. 15.Measured performance of the program 2-colouring. Unbounded-degree graph
classes are boldened in the legend.

However, in the presence of incident edges with different marks, these searches
became linear-time operations that prevented constant-time rule matching. With
the new data structure, finding an incident edge with a particular mark requires
only constant time.

We exploit the new graph representation by designing a rule assigning a
unique mark to an edge (next edge in 2-colouring resp. is-connected) and
constructing other rules that perform actions on the uniquely marked edge and
its linked nodes depending on the marks of the nodes.

In future work, we plan to overcome the remaining restriction that programs
such as 2-colouring require connected input graphs. By creating a separate
node list for each node mark, it should be possible to find an unprocessed con-
nected component of the host graph in constant time. For example, after 2-
colouring a connected component, an uncoloured connected component could be
found by searching for an arbitrary grey node.

We speculate that it will ultimately be possible to implement all DFS-based
linear-time graph algorithms by linear-time GP2 programs. Such algorithms in-
clude, for example, the non-destructive recognition of acyclic graphs, the topo-
logical sorting of acyclic graphs, the construction of Eulerian cycles, and the
generation of strongly connected components.

References

1. Agrawal, A., Karsai, G., Neema, S., Shi, F., Vizhanyo, A.: The design of a language
for model transformations. Software & Systems Modeling 5(3), 261–288 (2006).

18 Ziad Ismaili Alaoui and Detlef Plump

https://doi.org/10.1007/s10270-006-0027-7

2. Bak, C.: GP2: Efficient Implementation of a Graph Programming Language. Ph.D.
thesis, Department of Computer Science, University of York, UK (2015), https:
//etheses.whiterose.ac.uk/12586/

3. Bak, C., Plump, D.: Rooted graph programs. In: Proc. 7th International Workshop
on Graph Based Tools (GraBaTs 2012). Electronic Communications of the EASST,
vol. 54 (2012). https://doi.org/10.14279/tuj.eceasst.54.780

4. Bak, C., Plump, D.: Compiling graph programs to C. In: Proc. 9th Interna-
tional Conference on Graph Transformation (ICGT 2016). Lecture Notes in Com-
puter Science, vol. 9761, pp. 102–117. Springer (2016). https://doi.org/10.1007/
978-3-319-40530-8_7

5. Campbell, G., Courtehoute, B., Plump, D.: Fast rule-based graph programs. Sci-
ence of Computer Programming 214, 102727 (2022)

6. Campbell, G., Romö, J., Plump, D.: The improved GP2 compiler. Tech. rep.,
Department of Computer Science, University of York, UK (2020), https://arxiv.
org/abs/2010.03993

7. Dörr, H.: Efficient Graph Rewriting and its Implementation, Lecture Notes in Com-
puter Science, vol. 922. Springer (1995). https://doi.org/10.1007/BFb0031909

8. Fernández, M., Kirchner, H., Pinaud, B.: Strategic port graph rewriting: an inter-
active modelling framework. Mathematical Structures in Computer Science 29(5),
615–662 (2019). https://doi.org/10.1017/S0960129518000270

9. Ghamarian, A., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling and
analysis using GROOVE. International Journal on Software Tools for Technology
Transfer 14(1), 15–40 (2012). https://doi.org/10.1007/s10009-011-0186-x

10. Jakumeit, E., Buchwald, S., Kroll, M.: GrGen.NET – the expressive, conve-
nient and fast graph rewrite system. International Journal on Software Tools
for Technology Transfer 12(3–4), 263–271 (2010). https://doi.org/10.1007/

s10009-010-0148-8

11. Skiena, S.S.: The Algorithm Design Manual. Springer, third edn. (2020). https:
//doi.org/10.1007/978-3-030-54256-6

12. Strüber, D., Born, K., Gill, K.D., Groner, R., Kehrer, T., Ohrndorf, M., Tichy,
M.: Henshin: A usability-focused framework for EMF model transformation devel-
opment. In: Proc. 10th International Conference on Graph Transformation (ICGT
2017). Lecture Notes in Computer Science, vol. 10373, pp. 196–208. Springer
(2017). https://doi.org/10.1007/978-3-319-61470-0_12

	Linear-Time Graph Programs for Unbounded-Degree Graphs

