
This is a repository copy of McMatcher: A symbolic representation for matching random
BLE MAC addresses.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/213511/

Version: Accepted Version

Proceedings Paper:
Boussad, Y. orcid.org/0000-0001-9690-8221, Yang, Y. orcid.org/0000-0002-7970-2544,
Tomlinson, A. et al. (1 more author) (2024) McMatcher: A symbolic representation for
matching random BLE MAC addresses. In: 2024 IEEE International Conference on
Consumer Electronics (ICCE). 2024 IEEE International Conference on Consumer
Electronics (ICCE), 06-08 Jan 2024, Las Vegas, NV, USA. IEEE . ISBN 979-8-3503-2414-
3

https://doi.org/10.1109/icce59016.2024.10444395

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

McMatcher: A symbolic representation for

matching random BLE MAC addresses

Yanis Boussad

Institute for Transport Studies

University of Leeds

Leeds, UK

y.boussad@leeds.ac.uk

Yuanxuan Yang

Institute for Transport Studies

University of Leeds

Leeds, UK

y.yang6@leeds.ac.uk

Andrew Tomlinson

Institute for Transport Studies

University of Leeds

Leeds, UK

a.tomlinson@leeds.ac.uk

Susan Grant-Muller

Institute for Transport Studies

University of Leeds

Leeds, UK

s.m.grant-muller@its.leeds.ac.uk

Abstract—Bluetooth Low Energy (BLE) is a widely used
wireless technology which offers a wide range of applications.
However, the introduction of MAC address randomization to
preserve the users’ privacy makes it more challenging to lever-
age all its potential. In this paper, we present McMatcher,
a privacy-preserving, novel methodology for matching random
MAC addresses from BLE devices. McMatcher uses a symbolic
representation of the RSSI time series to build characterizing
vectors, embedding both the temporal as well as the signal
strength (RSSI) properties of the BLE signal. Our methodology
achieves 100% accuracy in matching 92 MAC addresses from 16
smartphones, in a dataset containing 332 MAC addresses in total.
As opposed to previous works, our methodology does not require
any model training, and relies only on the RSSI measurements.
The computational simplicity of McMatcher allows matching
MAC addresses in realtime, taking only 230ms for a set of 18
MAC addresses.

Index Terms—Bluetooth Low Energy, MAC address random-
ization, RSSI, IoT, security and privacy, signal processing,

I. INTRODUCTION

Bluetooth technology, especially Bluetooth Low En-

ergy (BLE), is one of the most used wireless technology,

found in a wide variety of equipment such as smartphones and

smartwatches [1]. This makes it a promising communication

standard for the Internet of Things (IoT) and smart cities.

In 2022, there were 4.9 billion Bluetooth-enabled devices

shipped worldwide, and it’s expected to reach 7.6 billion

by 2027 [2]. Bluetooth-enabled devices contain a hardware

interface that implements the Bluetooth protocol for receiving

and transmitting Bluetooth signals. This interface has a unique

hardware identifier called the Medium Access Control (MAC)

address. This identifier is shared between devices when com-

municating, but also when broadcasting and advertising their

presence for other devices to discover it [1]. However, such

identifiers can be used to track individuals, which represents

a risk to their privacy [3, 4]. To avoid tracking users using the

MAC address and preserve their privacy, modern BLE devices

change their MAC address by generating new random one

periodically. This is called MAC address randomization [4],

This work was supported by the Lifeband project TS/V015788/1, funded
by Innovate UK, and TRACK project EPv032658/1 funded by Research
Council UK, in collaboration with IMPLI and DiscovrAnalytics, members
of the Lifeband consortium.

introduced in BLE standard version 4.0[5]. However, this de-

sire for privacy achieved through MAC address randomisation

causes challenges for technological solutions based on BLE

technology [6], and most recently, for contact tracing during

the Covid-19 pandemic [7, 8].

Related works

Many works have already been undertaken to try to over-

come BLE MAC randomisation [5, 9, 10, 11, 12, 13]. Some

approaches relied on vulnerabilities in the BLE protocol and

exploited them to identify the device generating the random

addresses, while others relied on signal characteristics such as

signal strength and advertisement intervals for fingerprinting

devices. Jouans et al. [11] proposed a strategy for associating

randomized MAC addresses of the same device. The authors

use the delay after a MAC address has disappeared to select

the new MAC address to associate it with. This delay is

defined to be the time a device takes to swap its MAC address,

and is calibrated as a multiple of the advertising interval of

the device Tint. The authors then solve a linear assignment

problem and using Tint as a characterizing identifier of each

device. The difference between the swap delays of the MAC

addresses is used as a distance metric. However, Tint, ranging

between 20 milliseconds and 10.24 seconds, requires a robust

and fast scanning sniffer in order to measure Tint correctly,

which limits this technique to only a set of specialized sniffers.

Another work that used signal strength information as well as

the temporal characteristics of the BLE signals is presented

in [12]. Akiyama et al. use the time difference between

the disappearing MAC address and the appearance of the

new ones and computes the average RSSI for each MAC

address. A new MAC address is considered as a candidate

for the same device if the time difference is below a certain

threshold and the difference between their average RSSI is

also below a predefined threshold R. A normalized distance

is then computed for each candidate based on time and

average RSSI difference, and the candidate with the smallest

distance is selected. However, relying on the average RSSI

may be not enough given the fluctuation of BLE signals in

realistic scenarios. Gagnon et al. [13] presented an RSSI-

based fingerprinting of BLE devices by training a machine

learning model to match signals from the same device. First,

a feature vector (profile) is built for each transmitter from the

normalized histogram of its RSSI values. A machine learning

model is then trained to match profiles from the same device.

However, this method is not suitable for realtime matching as

it requires model training.

In this work, we present a novel methodology McMatcher,

that relies solely on the BLE RSSI signal properties to match

random MAC addresses generated by the same device. The

main contributions of this paper are the following.

• RSSI-based: Our methodology embeds both the temporal

and the signal strength properties of an RSSI time-series

which can be easily and passively collected by a sniffer

for matching randomized MAC addresses.

• Matching quality: When matching different MAC ad-

dresses data, McMatcher also computes the matching

quality using cosine similarity.

• No model training required: McMatcher uses Cosine

similarity as a metric for matching, and does not require

training a machine learning model, making it computa-

tionally simple, and suitable for realtime matching.

This paper is organized as follows. In section II we describe

the details of McMatcher. We present the evaluation setup in

section III, then we present the results and discuss them in

section IV. We conclude this paper in section V.

II. METHODOLOGY

In this section, we present our methodology for linking

random MAC addresses of the same BLE device. Suppose

that we have a set of BLE devices. Each device broadcasts

BLE beacons that can be collected using a measurement tool.

Measured beacons typically include the MAC address of the

transmitting device and the signal strength (RSSI), expressed

in dBm. A sequence of timestamped values received from the

same MAC address M forms a time-series T M (Equation 1).

T M := {(tMi , RM
i) : i = 1, 2, 3...} (1)

The collection of many time-series from the set of Bluetooth

devices forms a dataset D := {T M1, T M2, T M3 . . . }. Devices

may use MAC address randomization to change their MAC

address during data collection. The goal is to match and join

the set of time-series in D that are broadcast by the same

physical device.

A. From RSSI time-series to SAX vectors

We transform each time-series TM using Symbolic Ag-

gregate approXimation (SAX) representation [14]. First, we

aggregate RSSI values by taking the average of each ag-

gregationWindow. Then, we split the range of RSSI values

into equiprobable bins. The number of bins is what we

call alphabetSize as each bin will be assigned a symbol or

an alphabet character. At this stage, we adapt the SAX to

capture and embed an important characteristic of the RSSI

signal which is the sampling pattern (Figure 1). For that,

we append an extra bin (with an extra alphabet symbol) to

represent any aggregationWindow for which we don’t have

11
:1
0:
00

11
:1
1:
30

11
:1
3:
00

11
:1
4:
30

11
:1
6:
00

11
:1
7:
30

11
:1
9:
00

11
:2
0:
30

11
:2
2:
00

11
:2
3:
30

11
:2
5:
00

11
:2
6:
30

11
:2
8:
00

11
:2
9:
30

11
:3
1:
00

11
:3
2:
30

11
:3
4:
00

11
:3
5:
40

11
:3
7:
10

11
:3
8:
40

11
:4
0:
10

11
:4
1:
40

11
:4
3:
10

11
:4
4:
40

11
:4
6:
10

11
:4
7:
40

11
:4
9:
10

11
:5
0:
40

11
:5
2:
10

11
:5
3:
40

11
:5
5:
10

11
:5
6:
40

11
:5
8:
10

11
:5
9:
40

timestamp

4641_iPhone
470f_iPhone
47c7_Xiaomi
6047_iPhone
63f1_iPhone
6c5e_Xiaomi
712c_Xiaomi
7c46_Xiaomi

m
ac

100

80

60

RS
SI

Fig. 1: Bluetooth signals from the same device can have

a unique sampling pattern that differentiates it from other

devices. Xiaomi RSSI time-series are denser compared to the

ones of the iPhone. This property can be used as a feature to

link RSSI time-series to the same device.

14
:39

:30

14
:39

:40

14
:39

:50

14
:40

:00

14
:40

:10

14
:40

:20

14
:40

:30

14
:40

:40

14
:40

:50

14
:41

:00

14
:41

:10

14
:41

:20

14
:41

:30

14
:41

:40

14
:41

:50

14
:42

:00

14
:42

:10

14
:42

:20

14
:42

:30

14
:42

:40

14
:42

:50

14
:43

:00

14
:43

:10

14
:43

:20

Time

160

140

120

100

80

60

RS
SI

 (d
Bm

)

D

C

B
A

C D A D D D B D D D C C D C C D D D C C D D D

aggregated RSSI

(a)

A B C D

0.08 0.04 0.29 0.58level=1

AA AB BA BB AC AD BC BD CA CB DA DB CC CD DC DD

0 0 0 0 0 0.05 0 0.05 0 0 0.1 0 0.15 0.15 0.1 0.4level=2

(b)

Fig. 2: (a) Transforming an RSSI time-series into a sequence of

symbols ”CDADD...CDDDA” using SAX (alphabetSize = 3). (b)

SAX vectors with different levels level = 1 and level = 2.

RSSI values. The empty aggregationWindows are attributed

a valid, yet a very small, RSSI value (e.g. -150 dBm) to

differentiate it from the measurable values, which are typically

much higher than -150 dBm. By concatenating the symbols of

successive aggregationWindows, we end up with a sequence

of symbols as a SAX-representation of the time-series TM .

The sequence is then split into words of size wordSize. The

process of transforming the time-series into a SAX sequence

is illustrated in Figure (2a).

Similar to forming IntelligentIcons [15] from the words of a

SAX sequence, we form a 1-D vector that embeds the features

of the time-series signal. We can control the level of resolution

of the vectors by defining the level parameter. Figure (2b)

shows 2 SAX vectors for the same time-series shown in Figure

2a at 2 different levels of resolution.

We can now identify time series with similar attributes

by performing a pairwise comparison of their correspond-

ing SAX-vectors. This can easily be done using cosine-

similarity (Equation 2).

cos(VM1,VM2) =

∑n

i=1
VM1
i VM2

i
√

∑n

i=1
(VM1

i)2
√

∑n

i=1
(VM2

i)2
(2)

B. Matching time-series from the same device

1) Selecting the candidates: When a device uses MAC

address randomization, it generates a new random address

LB10

Xiaomi
Poco

iPhone

OnePlus

50cm 100cm150cm 200cm

Fig. 3: Experimental design.

Mnew to replace the previous one Mold. We are interested

in any new MAC address that appears closely following the

disappearance of Mold.

We define a delay δdelay to be the tolerance delay between

the last timestamp of T Mold and the first timestamp of any

new time-series. Instead of assigning a fixed value for δdelay ,

we adapt it to the characteristics of T M [11], as each device

may have different delays for generating new MAC address.

Let ∆M
t be a set of time differences between successive

timestamps in T M .

∆M
t := {tMi+1 − tMi : i = 1, 2, 3, ...} (3)

Then, δdelay is defined as follows.

δdelay := 2 ·max(∆Mold

t) (4)

We define the set of candidates Scand as follows.

Scand := {mcand|min(tmcand)−max(tMold) ≤ δdelay} (5)

From that, we compute the SAX vectors for every element

in Scand as well as for Mold.

2) Assigning the best candidate: After forming the set of

candidates Scand, we compute a pairwise cosine similarity

between the SAX vector of Mold and every candidate in Scand

SIM(Mold) = {cos(VMold ,Vmcand); ∀mcand ∈ Scand} (6)

We can repeat the same process described in Equations (3)

to (6) for every disappearing MAC address in D. Then, assign

the best candidate to each Mold by solving a linear assignment

problem [11] that maximizes the sum of similarities.

III. EXPERIMENTAL EVALUATION

A. Experimental setup

To evaluate the performances of McMatcher for matching

and linking time-series with different random MAC addresses

transmitted by the same device, we propose the experimental

setup shown in Figure 3.

The experiment consists of putting 4 different smartphones

with MAC address randomization on a table at different

distances with respect to the measuring device LB10 (sniffer).

We used 3 Android smartphones (Poco X4, OnePlus 6, Xiaomi

Mi MIX2) and an iPhone 13 pro. The smartphones were put

at equidistance from LB10, and the same experiment was

repeated 4 times to cover the 4 distances (50cm, 100cm,

150cm, and 200cm). Each experiment lasted about 1 hour. The

experiments were performed in an indoor office environment.

B. Labelling smartphone data

In order to be able to evaluate the performance of our

methodology, we need to label the BLE signals from each

smartphone to collect the ground truth. To do so, we install

a beacon simulator mobile application [16, 17] on the smart-

phones. Once installed, we manually modify the advertising

payload to include a unique pattern for each smartphone.

Once the setup is ready, we start the beacon simulator to start

generating the BLE signals.

C. The sniffer

We use an ESP32-based device, labeled LB10 in Figure 3,

to collect the data. We instrumented LB10’s firmware to

continuously perform active BLE scans (realtime sampling

rate). The received BLE beacon broadcast by the smartphones

includes the randomized MAC address of the transmitting

smartphone, the signal strength (RSSI), and the advertisement

payload. The results of the scans are timestamped and stored

locally as CSV files inside an SD card storage on LB10.

D. Combining multiple experiments to create a rich dataset

We combine the 4 experiments in order to emulate the

presence of the 4 smartphones at different distances simul-

taneously. We do that by realigning the data to start all at the

same time. We obtain 16 smartphones around the sniffer (4

smartphones x 4 distances), as shown in Figure 3. In addition

to the 4 smartphone devices, there were other Bluetooth

devices incidentally present in the background that can also

use MAC randomization, and generate more MAC addresses

that can be detected by the sniffer. We keep the data from

those extra devices when evaluating McMatcher.

E. Evaluation metrics

To evaluate the performance of McMatcher in matching

randomized MAC addresses that are generated by the same

smartphone, we define the following metrics.

• True Positive (TP): when the assigned MAC address by

McMatcher is the actual MAC address generated by the

same smartphone after the MAC address Mold.

• True Negative (TN): when there is no new MAC address

that comes after the MAC address Mold and McMatcher

does not assign a new MAC address.

• False Positive (FP): when there is no new MAC address

that comes after the MAC address Mold but McMatcher

assigns a MAC address from another device.

• False Negative (FN): when there is a new MAC address

that comes after the MAC address Mold but McMatcher

does not assign any MAC address, or assigns a MAC

address from another device.

From which we can define the following.

accuracy =
TP + TN

TP + FN + TN + FP
(7)

Distance (cm) Duration OnePlus Poco Xiaomi iPhone

50 01:00:50 1344 1383 933 730
100 01:25:00 3057 2663 2533 797
150 01:00:00 1376 1872 1327 599
200 01:00:00 1381 1239 1762 769

TABLE I: Duration of each experiment and the number of

RSSI samples collected by each device.

Device OnePlus Poco Xiaomi iPhone total/distance)
Distance

50 6 6 5 5 22
100 8 8 6 6 28
150 6 5 5 5 21
200 6 6 5 4 21

total/device 26 25 21 20 92

TABLE II: MAC addresses generated by each smartphone.

precision =
TP

TP + FP
recall =

TP

TP + FN
(8)

F1 -score =
2 ∗ precision ∗ recall

precision+ recall
(9)

IV. RESULTS AND DISCUSSION

A. The dataset characteristics

Table I shows the number of RSSI samples and the total

duration of the experiments. Each experiment lasted at least

1 hour, and each smartphone generated more than 1000 RSSI

samples in almost every experiment, except for the iPhone,

which generated the least number of samples.

By combining the 4 experiments into a single dataset, we

obtain a dataset containing 332 unique MAC addresses, out of

which, 92 MAC addresses belong to the 4 smartphones that we

used in our setup, which represents 30% of MAC addresses in

the dataset, the other MAC addresses are from the background

devices incidentally present during the data collection. Table II

shows the number of unique random MAC addresses generated

by each smartphone at different distances from the sniffer

LB10. Each smartphone generated between 4 to 8 random

MAC addresses, resulting in more than 20 unique random

MAC addresses at each distance. We also show in Figure 4a,

the lifespan of the MAC addresses. The smartphone MAC

addresses have a similar lifespan to other MAC addresses in

the dataset, with durations ranging between 3 to 20 minutes.

Figure 4c shows the amount of time (delay) it takes for

the new random MAC address, generated by the smartphones,

to appear in the measurements after the old MAC address

has disappeared. The OnePlus and the Poco smartphones have

relatively shorter delays (less than 10s for 60% of the cases)

compared to the Xiaomi (mostly between 10s-20s delay)

and the iPhone, which shows even longer delays (40s-50s).

In terms of the time difference between consecutive RSSI

samples from each smartphone (sample rate), the 3 Android

smartphones have more frequent samples compared to the

iPhone samples, as shown in Figure 4b. Overall, the larger the

time difference between RSSI values from a device, the longer

0 10 20 30 40 50
Duration (minutes)

0
20
40
60
80

100

CD
F(

%
)

Dataset
Smartphones

(a)

OnePlus Poco Xiaomi iPhone
Smartphone

0

20

40

60

80

100

%

[0-10]
[10s-20s]
[20s-30s]
[30s-40s]
[40s-50s]
[60s-70s]

(b)

OnePlus Poco Xiaomi iPhone
Smartphone

0

20

40

60

80

100

% [0s-10s]
[10s-20s]
[20s-30s]
[30s-40s]
[40s-50s]

(c)

Fig. 4: (a) MAC addresses lifespan. (b) Mac address random-

ization delay (in seconds). (c) Time difference (in seconds)

between RSSI samples from each smartphone.

OnePlus Poco Xiaomi iPhone
100
90
80
70
60
50

RS
SI

 (d
Bm

)

50cm
OnePlus Poco Xiaomi iPhone

100
90
80
70
60
50

100cm

OnePlus Poco Xiaomi iPhone
100
90
80
70
60
50

RS
SI

 (d
Bm

)

150cm
OnePlus Poco Xiaomi iPhone

100
90
80
70
60
50

200cm

Fig. 5: RSSI distribution.

the delay for the new random MAC address to be discovered

by the sniffer, as previously suggested in [11].

We also show in Figure 5, the distribution of the RSSI mea-

surements from each smartphone for the 4 experiments. Across

different distances tested, or within each experiment, we see

that some smartphones can have similar RSSI distributions.

This suggests that relying solely on aggregated RSSI statistics

(e.g. average RSSI) to compare signals for matching random

MAC addresses might not be enough.

B. McMatcher matching

We apply the McMatcher methodology described in Sec-

tion II to our dataset with the following (SAX [14]) pa-

rameters: {aggregationWindow = 10s, alphabetSize = 5,

wordSize = 6, level = 2}. We obtain a 93% accuracy with a

high precision (99%), a low recall (93%), and an F1-score of

96%. The matching errors (6), shown in Table III, are mostly

FN errors (5), and most of these errors are for the 150cm dis-

tance. We can also see that the errors are among smartphones

with similar RSSI distributions, as shown in Figure 5. This

suggests the model is not capable of distinguishing between

those smartphones with the current values for the parameters.

We need to tune the parameters of the model by making it

more sensitive to the differences in the RSSI signals from the

different smartphones in order to achieve better results. For

mac next mac predicted Error

57f9 iPhone1.5 5013 iPhone1.5 NaN FN
5013 iPhone1.5 NaN 528c UNKN1.0 FP
7240 iPhone2.0 5316 iPhone2.0 6202 OnePlus0.5 FN
66c9 OnePlus0.5 6202 OnePlus0.5 5316 iPhone2.0 FN
7b0a OnePlus1.5 52ab OnePlus1.5 6f95 Poco1.5 FN
5007 Poco1.5 6f95 Poco1.5 52ab OnePlus1.5 FN

TABLE III: Mismatched results. The errors are mainly FN.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

alphabetSize

7
6

5
4

3
2

1wo
rd

Si
ze

level=1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

alphabetSize

7
6

5
4

3
2wo

rd
Si

ze

level=2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

alphabetSize

7
6

5
4

3wo
rd

Si
ze

level=3

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

alphabetSize

7
6

5
4wo

rd
Si

ze

level=4

737679828588919497100
 Accuracy

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
alphabetSize

7
6

5
4

3
2

1wo
rd

Si
ze

level=1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
alphabetSize

7
6

5
4

3
2wo

rd
Si

ze

level=2

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
alphabetSize

7
6

5
4

3wo
rd

Si
ze

level=3

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
alphabetSize

7
6

5
4wo

rd
Si

ze

level=4

7
32
57
82
107+

 Time(s)

Fig. 6: Accuracy and computation time for different combinations of McMatcher parameters.

that evaluate the same set of metrics defined in Equations (7)

to (9), in addition to the computation time, against different

combinations of values for the parameters alphabetSize,

wordSize, and level. The results are shown in Figure 6. The

evaluation was done on a Dell laptop with an 11th Gen Intel®

Core™ i7-1185G7 @ 3.00GHz × 8.

Impact of the level parameter. By increasing level, we

increase the level of details of the SAX-vectors, as we already

discussed in Section II and as shown in Figure 2b. This means

more intrinsic patterns characterizing the signal are embedded

in the vectors. So, a higher level value will make the vectors

more unique, which will result in lowering the similarity,

which in turn, will have a negative impact on the accuracy

of the matching. As we can see in Figure 6, the accuracy of

the model degrades as we increase the level value. In terms of

computation speed, higher level values, especially higher than

3, increase the computation time when combined with larger

alphabetSize values (more than 8). This is because when a

high level value is combined with a high alphabetSize will

result in longer vectors, which makes the cosine similarity in

Equation 2 more time-consuming.

Impact of the alphabetSize parameter. From Figure 6,

the accuracy increases by increasing the alphabetSize. Over-

all, the accuracy is highest with alphabetSize 6 and 7. The ac-

curacy then decreases gradually by increasing alphabetSize.

This effect is more noticeable with higher values of level.

From our discussion in Section II, alphabetSize controls the

number of bins of the RSSI range. Smaller values produce

fewer bins with larger bin ranges, which results in vectors

with low resolution. The model will not be able to capture

the variability of the RSSI values which makes it less tolerant

to the changes in the RSSI signal. In contrast, a very high

alphabetSize value will make the bins smaller, and higher

resolution vectors. This means capturing more variability of

the RSSI values and making the vectors more unique, which

will result in a similar impact as the level parameter that

we discussed earlier. For computation speed, we get a longer

computation time at higher alphabetSize values due to the

same reasons we discussed for the impact of level parameter.

Impact of the wordSize parameter. This parameter has

the least impact compared to level and alphabetSize pa-

rameters. However, it’s tightly related to the level parameter

when forming the vectors. For smaller level (less than 3),

the wordSize has almost no impact. For level values more

accuracy precision recall F1 -score

1.0 1.0 1.0 1.0

TABLE IV: Improved McMatcher results with parameters

alphabetSize = 7, wordSize = 6, level = 2.

Sampling rate (s) Realtime 10 20 30 40 50

Accuracy 1.0 0.98 0.91 0.92 0.89 0.88

TABLE V: Impact of sniffer sampling rate on the accuracy.

than 2, the accuracy increases as the wordSize increases. This

can related to how the SAX-vectors are formed depending

on wordSize. we need longer words in order to be able to

extract more sub-sequences of length of level. Similarly, for

computation time, wordSize has a negligible impact.

As shown in Figure 6, McMatcher can achieve 100%

accuracy for many combinations of the parameters. From our

previous discussion on the impact of each parameter, we can

choose alphabetSize = 7, wordSize = 6, level = 2. The

accuracy, precision, recall, and the F1-score of the matching

with these values are shown in Table IV. McMatcher achieves

this level of accuracy using the RSSI only, and without any

prior model training, as opposed to the work presented in [13],

which achieves 99.5% accuracy on the same dataset, but does

require training a machine learning model.

Impact of the sniffer’s sampling rate. After improving the

model’s results. We now evaluate the impact of the sniffer’s

sampling rate on the accuracy of matching the MAC addresses.

We keep the optimal parameters for McMatcher obtained

in the previous analysis, and we reduce the sampling rate

of the sniffer. The results are shown in Table V. Taking

1 sample every 10s achieves 98% accuracy, slightly lower

than the best accuracy (100%) obtained with the realtime,

continuous scanning. Lowering the sampling rate results in

lowering the accuracy. Realtime scanning is recommended for

optimal performance. However, in devices for which power

consumption and battery life are a concern, a good trade-off

between the sampling rate and accuracy is needed.

C. Realtime matching performances

As opposed to the methodology presented in [13], our

methodology does not require training a machine learning

model and only uses the cosine similarity for matching ran-

domized BLE MAC addresses. McMatcher can be applied

in realtime by building vectors and selecting the candidates

as newer MAC addresses start appearing in the data. The

McMatcher will then work on a subset of MAC addresses

which will take even less time to compute. By making a

sequential processing (realtime) on our dataset, the model

manages to achieve 100% accuracy by solving smaller, sub-

matching problems in just 230 milliseconds on average, with

around 18 MAC addresses in each sub-problem. This makes

McMatcher easier to deploy on power-restricted devices such

as IoT devices, embedded devices, and wearables.

V. CONCLUSION

In this paper, we presented McMatcher, a novel methodol-

ogy that uses a symbolic representation of RSSI time-series

(SAX) to build characterizing vectors for the random BLE

MAC addresses data. The vectors can then be compared using

cosine similarity. McMatcher achieves 100% accuracy on a

set of different brand smartphones that use MAC address

randomization by successfully matching 92 random MAC

addresses to 16 smartphones in a dataset containing 332 MAC

addresses in total. McMatcher achieves this accuracy using

only the RSSI data without any model training, and can work

on any transmitter data regardless of the BLE protocol version.

In addition to that, it offers a matching quality metric that

can be used to express the matching confidence level. This

makes our work a novel way for matching random BLE

MAC addresses. Future works will emphasize on evaluating

McMatcher in dynamic scenarios, in which the RSSI signal

can have high temporal heterogeneity. In such scenarios, we

apply McMatcher on the the head and the tail of the new

and old MAC address time-series, respectively, to have a

more robust matching to cope with the dynamic nature of the

environment. Preliminary results already show high accuracy

even in dynamic environments (100% accuracy in two bus

trips with two transmitters as target devices).

REFERENCES

[1] K. Townsend, C. Cufı́, R. Davidson et al., Getting started

with Bluetooth low energy: tools and techniques for low-

power networking. ” O’Reilly Media, Inc.”, 2014.

[2] “2023 Market Update | Bluetooth® Technology

Website,” Sep. 2023, [Online; accessed 10. Sep.

2023]. [Online]. Available: https://www.bluetooth.com/

2023-market-update

[3] K. Fawaz, K.-H. Kim, and K. G. Shin, “Protecting pri-

vacy of {BLE} device users,” in 25th USENIX Security

Symposium (USENIX Security 16), 2016, pp. 1205–1221.

[4] J. K. Becker, D. Li, and D. Starobinski, “Tracking

anonymized bluetooth devices.” Proc. Priv. Enhancing

Technol., vol. 2019, no. 3, pp. 50–65, 2019.

[5] P. Locatelli, M. Perri, D. M. Jimenez Gutierrez, A. La-

cava, and F. Cuomo, “Device discovery and tracing in

the Bluetooth Low Energy domain,” Comput. Commun.,

vol. 202, pp. 42–56, Mar. 2023.

[6] G. Kalantar, A. Mohammadi, and S. N. Sadrieh, “An-

alyzing the effect of bluetooth low energy (ble) with

randomized mac addresses in iot applications,” in 2018

IEEE International Conference on Internet of Things

(iThings) and IEEE Green Computing and Communica-

tions (GreenCom) and IEEE Cyber, Physical and Social

Computing (CPSCom) and IEEE Smart Data (Smart-

Data), 2018, pp. 27–34.

[7] B. Sowmiya, V. S. Abhijith, S. Sudersan, R. Sakthi

Jaya Sundar, M. Thangavel, and P. Varalakshmi, “A

Survey on Security and Privacy Issues in Contact Tracing

Application of Covid-19,” SN Comput. Sci., vol. 2, no. 3,

pp. 1–11, May 2021.

[8] M. Cunche, A. Boutet, C. Castelluccia, C. Lauradoux,

and V. Roca, “On using bluetooth-low-energy for contact

tracing,” Ph.D. dissertation, Inria Grenoble Rhône-Alpes;

INSA de Lyon, 2020.

[9] J. K. Becker, D. Li, and D. Starobinski, “Tracking

Anonymized Bluetooth Devices,” Proceedings on Pri-

vacy Enhancing Technologies, vol. 2019, no. 3, pp. 50–

65, Jul. 2019.

[10] G. Celosia and M. Cunche, “Saving private addresses: an

analysis of privacy issues in the bluetooth-low-energy ad-

vertising mechanism,” in MobiQuitous ’19: Proceedings

of the 16th EAI International Conference on Mobile and

Ubiquitous Systems: Computing, Networking and Ser-

vices. New York, NY, USA: Association for Computing

Machinery, Nov. 2019, pp. 444–453.

[11] L. Jouans, A. C. Viana, N. Achir, and A. Fladenmuller,

“Associating the randomized bluetooth mac addresses of

a device,” in 2021 IEEE 18th Annual Consumer Commu-

nications & Networking Conference (CCNC), 2021, pp.

1–6.

[12] S. Akiyama, R. Morimoto, and Y. Taniguchi, “A study

on device identification from ble advertising packets with

randomized mac addresses,” in 2021 IEEE International

Conference on Consumer Electronics-Asia (ICCE-Asia),

2021, pp. 1–4.

[13] G. Gagnon, S. Gambs, and M. Cunche, “Rssi-based

fingerprinting of bluetooth low energy devices,” in In-

ternational Conference on Security and Cryptography

(SECRYPT 2023), 2023.

[14] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing

sax: a novel symbolic representation of time series,” Data

Mining and knowledge discovery, vol. 15, pp. 107–144,

2007.

[15] E. Keogh, L. Wei, X. Xi, S. Lonardi, J. Shieh, and

S. Sirowy, “Intelligent icons: Integrating lite-weight

data mining and visualization into gui operating sys-

tems,” in Sixth International Conference on Data Mining

(ICDM’06), 2006, pp. 912–916.

[16] “Beacon simulator - apps on google play,” Sep.

2023, [Online; accessed 4. Sep. 2023]. [Online].

Available: https://play.google.com/store/apps/details?id=

net.alea.beaconsimulator

[17] “Beacon Simulator,” Sep. 2023, [Online; accessed 18.

Sep. 2023]. [Online]. Available: https://apps.apple.com/

lb/app/beacon-simulator/id1380778696

	Introduction
	Methodology
	From RSSI time-series to SAX vectors
	Matching time-series from the same device
	Selecting the candidates
	Assigning the best candidate

	Experimental evaluation
	Experimental setup
	Labelling smartphone data
	The sniffer
	Combining multiple experiments to create a rich dataset
	Evaluation metrics

	Results and Discussion
	The dataset characteristics
	McMatcher matching
	Realtime matching performances

	Conclusion

