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The development of deep learning (DL) models to predict the consensus molecular subtypes (CMS)
from histopathology images (imCMS) is a promising and cost-effective strategy to support patient
stratification. Here, we investigate whether imCMS calls generated from whole slide histopathology
images (WSIs) of rectal cancer (RC) pre-treatment biopsies are associatedwith pathological complete
response (pCR) to neoadjuvant long course chemoradiotherapy (LCRT) with single agent
fluoropyrimidine. DL models were trained to classify WSIs of colorectal cancers stained with
hematoxylin and eosin into one of the four CMS classes using amulti-centric dataset of resection and
biopsy specimens (n = 1057 WSIs) with paired transcriptional data. Classifiers were tested on a held
out RC biopsy cohort (ARISTOTLE) and correlated with pCR to LCRT in an independent dataset
merging twoRC cohorts (ARISTOTLE, n = 114 and SALZBURG, n = 55 patients). DLmodels predicted
CMS with high classification performance in multiple comparative analyses. In the independent
cohorts (ARISTOTLE, SALZBURG), cases with WSIs classified as imCMS1 had a significantly higher
likelihood of achieving pCR (OR = 2.69, 95% CI 1.01–7.17, p = 0.048). Conversely, imCMS4 was
associated with lack of pCR (OR = 0.25, 95% CI 0.07–0.88, p = 0.031). Classification maps
demonstrated pathologist-interpretable associations with high stromal content in imCMS4 cases,
associated with poor outcome. No significant association was found in imCMS2 or imCMS3. imCMS
classificationof pre-treatmentbiopsies is a fast and inexpensive solution to identify patient groups that
could benefit from neoadjuvant LCRT. The significant associations between imCMS1/imCMS4 with
pCR suggest the existence of predictive morphological features that could enhance standard
pathological assessment.

Important progress has been made in the treatment of high-risk rectal
cancer (RC) patients in the past decades1. Prospective clinical trials of
neoadjuvant chemoradiotherapy have shown that approximately 15% of
patients can reach pathological complete response (pCR) by neoadjuvant
chemoradiotherapy (CRT)2 and that response rates can be further increased

to about 30% pCR by total neoadjuvant treatment (TNT)3–6. Organ sparing
approaches may be realistic for patients with pCR, and can have major
impact on long-term quality after definite treatment However, intensified
neoadjuvant treatment is associated with increased frequency and severity
of adverse events that can present during or after CRT7. At the same time,
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responses areheterogeneouswith30–40%ofpatients presentingwith tumor
regression of different grades while 7–30% of patients classify as non-
responders8,9. Interpretable predictive biomarkers to guide personalized
treatment are therefore of utmost importance to further improve patient
selection for intensified treatment regimens and treatment outcomes10. The
setting for the identification of predictive markers in the clinical pathway of
RC patients remains highly challenging: Turnaround time needs to be short
and only scarce material from diagnostic biopsies is available for study,
limiting the utility of molecular and functional analysis methods.

The Consensus Molecular Subtypes (CMS) define four distinct sub-
types of colorectal cancer (CRC) by common patterns of gene expression11.
The prognostic value of CMS classes has been reported in several studies12,13,
yet their association with treatment outcome is an open research topic11.
Recently, Domingo et al.14 have described an association between pCR to
neoadjuvant chemoradiotherapy and transcriptional CMS signatures in
diagnostic RC biopsies, suggesting that molecular classificationmay also be
used as a predictive biomarker for treatment stratification. Overall, early
profiling of CMS classification in the clinical pathway promises to be highly
relevant for personalized treatment decisions15. Limitations of transcrip-
tional CMS classification include a high cost and time requirement for RNA
sequencing, a high failure rate due to the small amount of tumor material
available and difficulty to standardize single samples13,16. In addition, even
successful transcriptome generation shows higher frequencies of unclassi-
fied cases in biopsies than resections13,17.

Machine learning has been shown to be a promising alternative solu-
tion for predicting molecular signatures across multiple cancer types from
diagnostic histopathology sections18. In particular, Sirinukunwattana et al.13

showed that deep learning models can predict image-based CMS (imCMS)
classes that match transcriptional CMS calls directly from hematoxylin-
and-eosin (H&E) stained histopathologywhole slide images (WSIs) of CRC
tumor specimens, using three independent cohorts. This prior work also
highlighted the potential of imCMS to stratify patients for whom tran-
scriptional CMS failed. Yet, evidence of the generalization of imCMS on
biopsy cohorts was limited by the need for domain-adversarial training and
fine-tuning, requiring labeled data from the target cohort, which is a
shortcoming for the implementation of imCMS in the clinic.

Here, we set out to show whether imCMS classifiers can be trained
without domain adaptation and perform reproducibly in independent pre-
treatment biopsy datasets. By investigation of real-world cohorts sourced
from the Medical Research Council (MRC) and Cancer Research UK
(CRUK) Stratification in Colorectal cancer (S:CORT), we estimated via
simulation experiments how many cancer biopsies are sufficient to achieve
near-optimal imCMSclassificationperformance.We then assessedwhether
imCMS classification is associated with pCR to neoadjuvant long course
chemoradiotherapy (LCRT) with single agent fluoropyrimidine treatment
in two independent held out diagnostic biopsy cohorts, comprising a total of
169 advanced RC patients with outcome data.

Results
Effect of multi-cohort training on imCMS performance
With the goal of developing a generic imCMS classifier that can perform
well on both resection andbiopsy specimens (without the need for a domain
adaptation procedure as required in imCMSv113), we first assessed the effect
of combining resection and biopsy cohorts for training the models, while
keeping independent resection and biopsy cohorts held out for evaluation
purposes. We designed five experiments with different combinations of
cohorts (Fig. 1b). For each experiment, the development datasets were split
into five bins (with stratified cohorts and classes at the patient level) to build
five folds of training/validation splits by using each bin once as an internal
validation set (for model selection purposes), while the remaining four bins
are used for training. Classification performances were separatelymeasured
for each trained model using the corresponding held out test sets, as well as
for the ensemblemodel that combines the output of thefivemodels (Fig. 1c).

The macro-average area under the receiver operating characteristic
curves (AUROC) of the trainedmodels are reported in (Fig. 2), the detailed

ROC curves, and confusionmatrices of the best performing trainedmodels
are reported in (SupplementaryFig. 2). For each test set,we achieved thebest
performance when both resection and biopsy images were used jointly for
training. The ensemblemodel resulting from the experiment [E3a] (TCGA:
macro-average AUROC .813; ARISTOTLE: macro-average AUROC .798)
was used for subsequent analysis of outcome association. To ensure a valid
assessment of performance, all the datasets in this study were curated by
excluding WSIs with poor overall quality (e.g., tissue folding, out-of-focus
images), and image processing was restricted to regions of tumor and
microenvironment that were delineated by a board-certified pathologist
specialized in gastrointestinal pathology. The exclusion criteria used in this
study are listed in (Supplementary Fig. S1). Robustness to heterogeneity of
image appearance and to staining variability was addressed by the appli-
cationof standarddata augmentationpolicies during training.Details on the
training procedure are provided in Supplementary Notes.

Association between imCMS and pCR to neoadjuvant LCRT
To investigate the association between imCMS calls and pCR to neoadju-
vant LCRT with single agent fluoropyrimidine, we identified two RC
cohorts treated with the same treatment regimen (pelvic irradiation
45–50.4Gy in 25 fractions over 5 weeks, combined with single agent
Capecitabine on treatment days) (see Supplementary Notes). We applied
the imCMS ensemblemodel resulting from experiment [E3a] toWSIs of all
pre-treatment biopsies of the ARISTOTLE and SALZBURG cohorts with
available pCR and pre-treatment T/N stage data. imCMS calls at the case
level were definedas themajority vote of the calls of thefive different trained
models that constitute the ensemble model. Cases with undecided majority
were classified as “mixed” (n = 2). The analysis of imCMS calls with clin-
icopathological data and treatment outcomes was conducted with 114
patients of the ARISTOTLE cohort including 24 patients with pCR to
neoadjuvant LCRT, and 55 patients of the SALZBURG cohort with 6
patients with pCR to neoadjuvant LCRT. Patients were split into groups
based on their predicted imCMS class. Odds ratios for pCR were calculated
separately for each group and adjusted by T-stage, N-stage and cohort.
Significant associations (p-value < 0.05) were found for both imCMS4 with
lack of pCR (OR 0.25, 95% CI 0.07–0.88, p = 0.03) and imCMS1 with pCR
(OR2.69, 95%CI 1.01–7.17, p = 0.048) (Fig. 3), suggesting that imCMS calls
generated from pre-operative biopsymaterial associate with response of the
primary tumor to combined chemoradiotherapy.

Simulation: effect of biopsy sampling on imCMS classification
To assess how reliable biopsy-based imCMS predictions are in comparison
to resection-based imCMS predictions in a control scenario, we estimated
the change in classification performance of imCMS as a function of the
number of biopsy fragments in a sample. It is theoretically possible to
conduct an experiment in which we would generate a dataset with many
tissue fragments biopsied from each patient’s tumor site along with paired
resection specimens and associated CMS calls, then comparing imCMS
classificationperformancewhencombiningdifferentnumbers of fragments.
However, since repeated sampling cannotbe ethically justified,weargue that
such an experimental protocol can be approximated via the generation of
virtual biopsy fragments randomly sampled from existing resection images.

We generated 26 simulations of biopsy datasets, each with a specified
numberm of biopsy fragments and sourced from either of the two datasets
of resection specimens, FOCUS or SPINAL. For every WSI in a given
resection dataset, we collected 10,000 subsets ofm non-overlapping biopsy-
fragment-shaped images randomly cropped from the annotated tumor
regions in the resection. Croppingwas performed by sourcing real shapes of
tumorbiopsy fragments (Fig. 4a, b) that hadbeenmanually annotated in the
GRAMPIAN and ARISTOTLE cohorts (total of 1580 possible shapes).
Examples of simulated biopsy samples froma source resection specimen are
illustrated in (Fig. 4c, d). Thus, each random subset of m fragments simu-
lates a single random biopsy sampling event that an endoscopist could
potentially perform, including possibly both superficial and deep samples.
Then, all the random subsets generated across all the WSIs of a resection
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dataset were concatenated to represent a set of random biopsy sampling
events (Fig. 4c, d). By restricting the cropping procedure to annotated
regions of tumor and microenvironment we aimed at having simulated
biopsies that are a good representation of real-world biopsies. We designed
these simulated datasets to approximate the characteristics of actual biopsy
datasets under the assumption that, (a) sampling locations are uniformly
distributed in a tumor region, (b) the shape of the biopsies is random and
independent of the sampling location, (c) sampling locations of consecutive
biopsy fragments are random and non-overlapping. Consequently, we

argue that thedistributionof imagesof such a simulatedbiopsy froma single
resection image closely approximates the distribution of images of actual
random biopsy samples excised from the same tumor specimen.

To assess the performance of imCMS in the simulated biopsy datasets,
wemade sure to evaluatemodelsondatanot seenduring trainingbyusing the
training and test partitions described in Fig. 1e. Each trained imCMSmodel
resulting from the training procedures [E4a] and [E4b] was applied to all its
respective simulated test sets. As a result, we observed a rapid increase of
classificationperformanceswhen thenumberof fragments inabiopsy sample
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Fig. 1 | Study Flow Figure. a Description of the image dataset used in this study.
b Table of the cohort-level partitions of the dataset for training and validation of the
models compared in this study. c Illustration of the 5-fold experimental setup and
ensembling approach investigated in this study. d Flowchart of the 3-stage imCMS
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increases until convergence to theperformance level that themodels achieved
when using the resection data without sampling (Fig. 4e). For both test
conditions, we report a AUROC difference lower than 3% of the AUROC
achieved with the original resection data when the number of simulated
tumor biopsy fragments in a sample is above five, suggesting that reliable
imCMSclassificationcanbeachievedatdiagnosis in a large fractionof cases19.

Stability of distribution of cell types between resection and
biopsy samples
As endoscopists excise biopsies in specific targeted regions of tumors, this
procedure is subject to variance between operators aswell as patient-specific
factors. This can potentially induce a variation of morphological informa-
tion in images of biopsies in comparison to resection specimens. This may
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Fig. 2 | Classification performances of imCMS
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of the same development set. Each model of an
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ensemble model resulting of the experiment [E3a]
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particularly affect heterogeneously distributed factors in the tumor micro-
environment such as cancer, immune and stromal cell populations. We
therefore investigated whether there are systematic differences in micro-
environment composition between biopsies and resection specimens of
CRC specimens. Specifically, we confirmed the absence of confounding

factors with real-world biopsies and investigated whether systematic dif-
ferences of cell distribution exist between biopsy samples and resection
specimens by deconvolution of stromal, immune and tumor-related sig-
natures from transcriptomic data in 529 biopsies and 565 resections from
four S:CORT cohorts (FOCUS, SPINAL, GRAMPIAN and ARISTOTLE).
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Fig. 4 | Biopsy Simulation Experiments. a Example of a WSI with heterogeneous
tile-level imCMS classification. b The shapes of simulated biopsy fragments are
randomly sampled from annotations of biopsies in the GRAMPIAN and ARIS-
TOTLE cohorts. c Illustration of a biopsy simulation procedure based on a source
imaged resection specimen. Biopsy samples are randomly generated by sampling
m = 1 biopsy fragments at random in the annotated tumor region of the resection
specimen. This random process is repeated 10,000 times for eachWSI of a resection
dataset to form a simulated biopsy dataset. For each generated biopsy sample,
imCMS is applied. The resulting distributions of class probability over a simulated

biopsy dataset are shown on the right. d same as c but with m = 3 biopsy fragments.
The spatial heterogeneity of tile-level predictions (shown in a) explains the different
distributions obtained for each imCMS class across a simulated biopsy dataset.
eClassification performance of trained imCMSmodels on simulated biopsy datasets
as a function of the number of tumor biopsy fragments per sample. Dots with lines
indicate themean and standard deviation of themacro-averageAUROCobtained by
fivemodels for each simulated dataset: [E4a] (left); [E4b] (right). The red dotted line
indicates a 3% difference score with the macro-average AUROC obtained on cor-
responding fully imaged resection specimens. Scale bars represent 2 mm.
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First, we generated absolute abundance estimates for key immune and
stromal cell types with two different tools (MCPcounter20 and xCell21) using
bulk transcriptomic data.With bothmethods, levels of key immune lineages
(T-cells includingCD8+ anddifferentiatedcytotoxicT-cell subpopulations,
B-cells, NK-cells, monocytes, myeloid dendritic cells and neutrophils) as
well as endothelial and stromal cell populations in biopsies and resections
were statistically similar acrossCMS subtypes (all p-values > 0.25,ANOVA)
(Fig. 5). This result suggests that biopsiesmay be representative of the broad
abundance of cell types in the tumor microenvironment compared to
resection specimens, according to their transcriptomic CMS classes.

Tissue microenvironment patterns related to CMS classes
CMS classification is driven by microenvironment and tumor-related fac-
tors. To investigate consistency of imCMS classification in RC biopsy
material with underlying biological patterns, we visualized image tiles with
the highest predicted probability score for each imCMS class in biopsy
material (Fig. 6, see Supplementary Fig. 3 for examples of slide-level clas-
sificationmaps). This approach provides an overall idea of the morphology
associated with each CMS class in absence of an established definition of
transcriptional CMS at the scale of image patches. In agreement with prior
studies, we found a consistent pattern of high stromal content and dis-
sociative tumor growth (tumor budding) in tumor tiles classified as
imCMS4 from all three cohorts. imCMS1 tiles more frequently contain
lymphocytic infiltration and focal mucinous differentiation, although this
feature was less frequent than previously observed in CRC resection spe-
cimens (compare TCGA, bottom (Fig. 6)), which is consistent with a lower
representation of mucinous differentiation in RC. imCMS2 and imCMS3
features were consistent with previously described patterns, with imCMS2

showing epithelial-rich glandular and cribriform tumor growth with focal
comedo-like necrosis while imCMS3 was characterized by glandular dif-
ferentiation with tubular growth, focal mucin and a minor villiform com-
ponent. Bioinformatic deconvolution of cell composition supported the
observed tile-level associations. In biopsy specimens classified as imCMS4, a
significantly higher frequency of fibroblast signatures were observed, while
imCMS1samples showeda tendency towards increased immune signatures,
supporting biological interpretability of imCMSpredictions at the case level.

Discussion
There are currently no clinically established predictivemarkers for response
to neoadjuvant chemoradiotherapy in RC.Decisionmaking for RCpatients
and strategies for assignment to neoadjuvant treatment protocols are still
taken at the cohort level and it is challenging to predict which patients will
respond to neoadjuvant chemoradiotherapy. Current pathology assessment
of pre-operative biopsies is limited to the confirmation of cancer diagnosis
and a limited panel ofmolecular studies such as testing formismatch-repair
deficiency (MMRd) and the testing for common driver mutations if clini-
cally desired. Recent studies have demonstrated a strong benefit of neoad-
juvant treatment of patientswithMMRdRCwithPD-1Blockade, butwith a
frequencyof approximately 2-3%, this genotype is infrequent inRC22.Other
studies have suggested that the absence of tumor budding23,24, low stromal
content24 or the quantification of cytotoxic T-cells25 may aid in identifying
patientswith favorable prognosis, but thesemethods are based on subjective
visual features and incompletely capture the complex biology related to
neoadjuvant chemoradiotherapy response. Better methods to supply a
biologically informed and clinically relevant classification of RC biology
from pre-operative biopsy material are therefore needed.

Fig. 5 | Distributions of cell types across resection and biopsy samples. Com-
parison of measures of abundance scores for ten representative cell types between
529 biopsy and 565 resection primary CRC samples of the cohorts used in this study
(FOCUS, SPINAL, GRAMPIAN and ARISTOTLE) using the transcriptome-based
MCP-counter (a, b) and xCell tools (c, d). Cell enrichment scores were measured

both by CMS subgroup (b, d) and sample type (a, c). Cell type distributions by CMS-
class do not differ between biopsy and resection samples, indicating that tran-
scriptional CMS calls derived from biopsy samples robustly capture the underlying
biology of CRC shown on the actual tissue. Distributions in panels a and c are similar
(p > 0.25, ANOVA), whereas all p-values in panels b and d are significant (p < 0.05).
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Consensus molecular subtyping may aid transcriptome-based staging
in both colon and rectal cancer. Based on their distinct biology and clinical
behavior, CMS1 and CMS4 subgroups play a key role for prognostication
andmay support thedevelopment andassignmentof patients tobiologically
informed precision treatments11,12. Specifically, the CMS1 subgroup
(immune subtype) is highly enriched for MSI cases and the CpG Island
Methylathion (CIMP-high) subgroup of colorectal cancers. Gene enrich-
ment analysis has shown high expression of immune response genes, in
particular interferon signaling as well as the wound healing signature11.
Analysis of the tumor microenvironment has demonstrated dense infil-
tration by anti-tumoral immune populations, in particular CD8+ cytotoxic
T-lymphocytes, which play a key role in mediating the anti-tumoral treat-
ment effect of radiotherapy. These biological features support an improved
prognosis, increased propensity for response to radiotherapy and may
indicate an increased likelihood of response to immune checkpoint inhi-
bitors. In contrast, CMS4 (mesenchymal subtype) comprises stroma-rich
tumors with an activation of TGF-β signaling pathways, evidence of
epithelial-mesenchymal transition and invasive growth pattern11,12. These
cases are characterized by a poor prognosis and increased resistance to
radiotherapy treatment as well as conventional chemotherapy protocols26.
Studies have demonstrated an improved response andprolonged survival of
CMS4 patients to irinotecan as compared with oxaliplatin-based che-
motherapy, but overall improvements were limited26. Novel treatments will
be needed (in particular TGF-β-targeting anticancer agents) for subtype-
specific interventions in CMS4 and to further improve outcomes.

In an earlier study13, we developed an image-based approach to predict
the consensusmolecular subtypes fromWSIsof clinicalCRCspecimens and
provided the proof of principle for generating image-based molecular calls
even with minimum input material. In a clinical setting, such image-based
morpho-molecular classifiers have the benefit to offer a level of interpret-
ability linked to known molecular profiles, as opposed to black-box classi-
fiers whose interpretation is limited. The predictive ability of image-based
molecular calls for response to chemoradiotherapy remained an open
question. For the current study, we re-implemented the imCMS analysis
pipeline and trained classifiers using a combination of CRC resection and
biopsy cohorts, across different stages. We found that combining these
datasets was a viable option to enable generalization to external biopsy
cohortswithout having to rely ondomainadversarial trainingorfine-tuning

as previously required13. This incremental improvement showed that such
computational pipelines can directly and accurately classify images in new
cohorts without the need for additional data or re-training. Despite dis-
tributional shifts between training cohorts (e.g., biopsy sampling artefacts,
relative proportions of different tissue morphology) can make models
subject to learning cohort-specific features that can limit classification
performance, we observed a consistent improvement of performance when
combining resection and biopsy modalities for training. This result is the
most striking when comparing the performances of themodels tested using
TCGA: models trained solely with biopsy data (GRAMPIAN or ARIS-
TOTLE) were not able to generalize unless resection data (FOCUS and
SPINAL) was used. Furthermore, we conjecture that combining these
datasets enables learning of modality-agnostic features that are invariant to
inter-cohort variations. This hypothesis is supported by our visual assess-
ment of the image patches with highest probability scores from different
patients across the TCGA, ARISTOTLE and SALZBURG cohorts, which
illustrates the stability of morphology of top-contributing tiles across
independent cohorts. Yet, this visual assessment and the suggested asso-
ciations observed between local morphology and CMS classes should be
further studied in bottom-up approaches and further confirmed in con-
junction with the establishment of the CMS classes in small fields of view.

The significant associations between imCMS1andpCR toneoadjuvant
LCRT and between imCMS4 and lack of pCR to neoadjuvant LCRT suggest
the existence of predictivemorphological features that ourmodels were able
to capture. This result paves the way for future work for the validation of
such a tool as a support for clinical decision in the neoadjuvant treatment
setting. Specifically, imCMS1 calls could identify patients for total neoad-
juvant treatment with favorable prognosis. Due to an enrichment for
immune-activated cases andMMRd cases, imCMS1 cases could also have a
greater likelihood to achieve complete remission with immune-checkpoint
blockade27,28, but this association requires further study. In contrast, patients
classified as imCMS4 could be selected for clinical trials adding additional
chemotherapy or biological agents to CRT, as the likelihood for response to
standard LCRT protocols with single agent fluoropyrimidine is low. This
result is aligned with current understanding of CMS4-associated biology:
based on the high stromal content and TGF-β signatures in this subset,
resistance to cytotoxic treatment is common29. For imCMS4 patients,
tumor-stroma-based therapeutic targeting may therefore offer a potentially

Fig. 6 | Gallery of image patches classified with
high confidence for each CMS class. For each
cohort (ARISTOTLE, SALZBURG, TCGA), we
selected the 16 image patches (side 630 μm) from
different patients, with highest probability score for
each imCMS class (based on the ensemble model of
experiment [E3a]). Visual interpretation confirms
the existence of distinct morphological patterns
within each predicted imCMS class. a imCMS1:
increased lymphocytic infiltrates, poor tumor dif-
ferentiation, focal mucin; b imCMS2: glandular
differentiation with cribriform growth patterns and
comedo-like necrosis associated with imCMS2;
c imCMS3: glandular differentiation with ectatic
mucin-filled glandular structures in combination
with a minor component showing papillary and
cribriform morphology; d imCMS4: prominent
desmoplastic stromal reaction and dissociative
tumor growth (tumor budding).

(a) imCMS1 (b) imCMS2 (c) imCMS3 (d) imCMS4

A
R

IS
TO

TL
E

TC
G

A
SA

LZ
B

U
R

G

https://doi.org/10.1038/s41698-024-00580-3 Article

npj Precision Oncology |            (2024) 8:89 7



efficacious and biologically informed treatment alternative27,28. Ten Hoorn
et al. suggest that prospective studies are required to further establish the
CMS taxonomy and confirm treatment efficacy by CMS subtype in clinical
practice12. However, CRC subtyping via current RNA sequencing technol-
ogies is deficient, in scenarios with low tumor material: other modalities
such as biopsy imaging thus constitute a promising, fast and cost-effective
alternative. Using an image-based approach, we demonstrate successful
imCMS classification for all samples in the present study, compared to
technical failure rates of up to 35% using state-of-the-art panel sequencing
approaches13.

Current ESGE guidelines19 recommend sampling a minimum of six
biopsies for the diagnosis of colorectal carcinomas, to ensure sampling of
tumor fragments, and to reliably represent the overall tumor phenotype. Yet
whether this number of biopsies is optimal to determine the classification of
CRC according to biological subtypes remains an open question. We thus
undertook comprehensive simulation experiments on existing fully digi-
tized clinical cohorts to capture the morphology related to transcriptional
CMS calls and to address whether clinically established sampling protocols
are sufficient to describe tumor heterogeneity at the gene-expression level.
As expected and due to the spatially heterogeneous nature of CRC
tumors30,31, our results suggest that sampling less than five tumor biopsies is
not sufficient to properly predict the CMS call that would be obtained from
an equivalent resection specimen of the same tumor. Our results corrobo-
rate the 2021 ESGE recommendation as our experiments show on two
independent external test datasets of 147 and 266 patients, that five ormore
standard tumorous biopsy fragments are sufficient to reliably capture the
global tumor phenotype needed to achieve CMS classification performance
with fidelity close to full resection specimens. Thus, the current sampling
protocol established in clinical practice is likely sufficient to capture tumor
biology from several cancerous fragments, and to enable informed patient
stratification by computational analysis.

A limitation of the current imCMS pipeline is the reliance on manual
annotations of tumor regions as a pre-processing step, making the whole
pipeline semi-automated. We suggest that future work should investigate
strategies to either fully automate this step or to accurately classify WSIs
independently of localized tumor regions. The pipeline of imCMSv1.5 was
designed as an incremental extension of the work of Sirinukunwattana
et al.13, yet with the goal of increasing classification and generalization
performance. Although model performance was reported in held out test
sets in full transparency, the variation of performance observed across the
different test sets suggest the existence of hidden dataset-related factors
impacting model classification. The identification of these factors and the
improvement ofmodel robustness remain a priority for the development of
future versions of imCMS. Other deep learning architectures and training
procedures such as recent proposed solutions to biopsy image classification
problems32,33 and consideration of model uncertainty beyond ensemble
majority voting should be done in future work. A weakness of our simu-
lation experiments is the strong assumption for randomness of the sampling
distributionof biopsy fragments andwe concede that thedistributionof true
biopsy fragments may be different from our simulation, e.g., tumor frag-
ments from the lumen are more likely to be sampled in a real-world sce-
nario. The effect of these degrees of approximation should be investigated in
future work and across cancer types. We also recognize that the guidelines
requiring six biopsies per case is designed to ensure there is a high chance of
identifying invasive cancer, rather than slough or non-invasive malignancy.
Here, our approach shows five or more biopsy fragments containing
invasive tumor are required to achieve optimal imCMS classification.
Although we did not observe any significant difference in terms of dis-
tributionof cell types between the studied resectionandbiopsy cohorts, such
sampling information should be accounted for in future work. Beyond
prediction of CMS classes, other molecular signatures of CRC proposed in
the literature34,35 are relevant candidates to identify associations with treat-
ment outcome.

To conclude, we found that deep learning models can automatically
capture the morphology associated with transcriptional CMS in imaged

biopsies fromunseen cohorts.We found that patients stratified according to
biopsy-based imCMS respond differently toneoadjuvant LCRT. The results
of this study therefore support the development of an inexpensive clinical
tool to assign patients to subtype targeted biological interventions in future
clinical trials. Beyond CMS in CRC, the on-going development morpho-
molecular classification models across cancer types and molecular sig-
natures offer a new type of cost-effective computational tools to support
clinical decision making18,36. This surrogate for transcriptional analysis can
also be of use for research studies with restricted funding, or to revisit
existing trial cohorts by studying associations between image-based CMS
classification and clinical variables of interest without the need for extra
tissue material.

Methods
Study design
The study design, cohorts and aims are outlined in Fig. 1 and detailed
methods for all experiments and statistical analysis are provided in the
Supplementary Notes.

All samples in the S:CORT cohorts were obtained following individual
informed consent and ethical approval by the National Research Ethics
Service in the United Kingdom (ref 15/EE/0241; IRAS reference 169363)
consistent with the principles set out in the Declaration of Helsinki. The
SALZBURG cohort was reviewed by the ethical board of the provincial
government of Salzburg, Austria (415-E/2343/5-2018), although under
Austrian law informed consent is not needed for research use and is
therefore not available for all cases.

Rectal cancer LCRT treatment protocol
All patients from the GRAMPIAN, ARISTOTLE and SALZBURG cohorts
included in the study received a “standard” treatment protocol for advanced
RCby pelvic irradiation (45–50.4Gy in 25 fractions over 5weeks) combined
with Capecitabine (825mg ⋅m−2 BD on treatment days) Detailed infor-
mation on these cohorts is available in the Supplementary Notes. The pri-
mary endpoint for all cases was pCR after completion of LCRT as assessed
by histopathological analysis of the surgical RC resection specimen by an
expert gastrointestinal pathologist according to established guidelines.

Processing of tissue samples and slide scanning
For the four S:CORT cohorts, serial 5-μm sections were cut from one
pathologist-selected representative tumor block for H&E staining followed
by up to nine unstained sections for RNA extraction. H&E slides were
reviewed by an expert gastrointestinal pathologist and invasive cancer
regions were annotated to guide RNA and DNA extraction by macro-
dissection. Regions of extensive necrosis and non-tumor tissue were
excluded according to standard practice for molecular tumor profiling. All
H&E slides were scanned on an Aperio scanner at magnification
20 × (0.5 μm ⋅ px−1). All digital slideswere re-reviewed and a board-certified
pathologist annotated tumor regions while excluding areas containing folds
or debris. The datafilteringprocedure, cohort sizes and additional details for
each cohort are summarized in (Supplementary Fig. 1).

Transcriptional CMS classification
For the S:CORT cohorts, RNA expression was obtained by microarray
(Xcel, Affymetrix), and raw CEL files underwent the robust multiarray
average normalizationwith theAffymetrix package (v1.56.0)37 inR38. Batch-
corrected transcriptional CMS calls were derived for each sample with
CMSclassifier using the protocol described in the Supplementary Notes.
Any variation in the number of patients and slides in the same cohorts used
in the study by Sirinukunwattana et al.13 stems from the updated procedure
for transcriptional CMS. For TCGA39, the same transcriptional CMS calls
were used as previously reported by Sirinukunwattana et al.13.

Transcriptomic immune profiling
The batch-corrected version of the S:CORT transcriptome was used to
derive estimates of immune and stromal cell types with MCPcounter20 and
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Xcell21 by applying the original R packages. Although scores for both sig-
natures are not comparable between cell types, they were scaled from 0 to 1
to facilitate visualization.

Deep learning imCMS classification
To develop aWSI-based CMS classifier, we considered themodel proposed
by Sirinukunwattana et al.13 as a baseline (imCMSv1), and re-implementeda
new version (imCMS v1.5) that facilitates the training procedure, and
reproducibility of our experiments while keeping high performance (test
macro-average AUROC in held-out TCGA of .813) and same capabilities
for the interpretation of classification results.

The version 1.5 of imCMS is based on the three-stage process illu-
strated in (Fig. 1d). First,manually annotated tumor regions of an inputWSI
are tiled with patches of size 318 × 318px at magnification
5 × (~2 μm ⋅ px−1) with 50% overlap, and all tiles with less than 50%overlap
with the annotated tumor regions were excluded. Then, all the extracted
patches are fed as input to a trained deep learning model that outputs
probability scores for each target CMS class. Third, all tile-level probability
scores are averaged to produce slide-level probability scores, and the class
with the highest score is considered as the imCMS call prediction for the
input WSI.

We kept the first stage identical to imCMSv1 but opted for a fixed
magnification for tile extraction at magnification 5 × based on the results
of13, suggesting optimal performance in both resection and biopsy images.
With the last two stages, we moved from a count-based assumption to a
collective assumption for determination of imCMS calls40, thus enabling
more fine-grained contributions of each tile to the slide-level predictions.
Further, for imCMS1.5, we changed the pre-trained InceptionV3 backbone
architecture used in imCMSv1 by a randomly initialized customizedResNet
architecture, to ensure that our approach can be re-implemented without
having to rely on a pre-training procedure. See Supplementary Notes for
more details about the implemented model architecture and training
procedure.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current study are
available from the corresponding authors upon reasonable request in
accordance with the S:CORT data access policy. The TCGA datasets and
images analyzed in this study are openly and publicly available at https://
portal.gdc.cancer.gov/.

Code availability
The source code of the underlying (trained) models is not available due to
proprietary reasons.
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