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Abstract

One solution to automatic speech recognition (ASR) of overlap-

ping speakers is to separate speech and then perform ASR on

the separated signals. Commonly, the separator produces arte-

facts which often degrade ASR performance. Addressing this

issue typically requires reference transcriptions to jointly train

the separation and ASR networks. This is often not viable for

training on real-world in-domain audio where reference tran-

script information is not always available. This paper proposes

a transcription-free method for joint training using only audio

signals. The proposed method uses embedding differences of

pre-trained ASR encoders as a loss with a proposed modifica-

tion to permutation invariant training (PIT) called guided PIT

(GPIT). The method achieves a 6.4% improvement in word

error rate (WER) measures over a signal-level loss and also

shows enhancement improvements in perceptual measures such

as short-time objective intelligibility (STOI).

Index Terms: speech recognition, speech separation, multi-

speaker, adaptation, fine-tuning

1. Introduction

While significant progress has been made in recent years in

multi-speaker ASR research, it remains a challenging problem

[1, 2]. Many different approaches have been proposed to solv-

ing this problem [3, 4, 5]. These methods include entirely end-

to-end single models [4] and modular approaches [6, 2, 5].

Modular approaches often include a variety of sub-

components such as speech separation [7], speaker diariza-

tion [8] and ASR [6, 5]. Sometimes these sub-components, or

modules, can be combined in an end-to-end fashion that allows

for joint training of the modules [9, 3]. More recently, serialized

output training (SOT) was proposed, a technique that enables

the design of explicitly multispeaker ASR models with a single

output sequence containing subsequences separated by a unique

token for each speaker [4]. There is a benefit to having a sim-

plified model that requires no fine-tuning on sub-components

but this results in lower interpretability. A commonality of both

approaches to multi-speaker ASR is that they are reliant on the

existence of ground truth transcriptions of the speech of each

speaker in the mixture. Whilst this is easily obtainable for sim-

ulated mixtures, it is often impossible to obtain for ‘real-world’

in-domain speech mixtures.
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funded by UK Research and Innovation [grant number EP/S023062/1].
This work was also supported in part by Solventum and Toshiba Cam-
bridge Research Laboratory.
* Work done while an intern at Solventum, formerly part of 3M.

In [10, 11], computing embedding differences between self-

supervised speech representations (SSSRs) was used as a loss

for training speech enhancement networks to improve percep-

tual speech quality. Furthermore, in [12] it was shown that com-

puting the difference between senone representations of ASR

models can be used to adapt speech enhancement networks for

robust ASR. Recent work [13, 14] has shown that features de-

rived from ASR models can capture quality and intelligibility-

related information.

In this work, a novel method for transcription-free fine-

tuning of a separate-and-recognize modular approach is pro-

posed. Embedding differences from a pre-trained ASR encoder

are used to compute a loss from the reference speech and sep-

arated speech signals. Furthermore, a variant of the the stan-

dard PIT [15] algorithm, guided permutation invariant train-

ing (GPIT) is proposed to properly address speaker permuta-

tion solving of the ASR encoder embeddings within the pro-

posed loss function. This recognition-based loss term is then

used to fine-tune a speech separator. The proposed method

notably improves multi-speaker WER performance over tradi-

tional signal-level losses across multiple ASR models, and also

shows improved performance in intrusive perceptual measures.

Another benefit of the proposed approach is that it allows for

fine-tuning separators using truncated audio signals [16] as the

full transcription is not required, potentially resulting in acceler-

ated training, lower memory requirements and reduced compu-

tational expenditure. The proposed method also makes training

on real-world data, with pseudo-reference audio used as input

to the proposed loss function, possible [17] .

The remainder of this paper proceeds as follows: in Sec-

tion 2, the proposed transcription-free fine-tuning method is de-

scribed in detail. In Section 3, the experimental setup and data

are described. Results and conclusions are given in Section 4

and Section 5, respectively.

2. Transcription-Free Fine-Tuning Method

In this section, the main components of the proposed

transcription-free fine-tuning method are described. A modu-

larized approach to multi-speaker ASR is used; this approach

is referred to here as the separate-and-recognize approach. A

noisy reverberant mixture x[i] of C speech signals sc[i], c ∈
{1, . . . , C} for time index i is defined as

x[i] =

C
∑

c=1

hc[i] ∗ sc[i] + ν[i], (1)

where ∗ denotes the convolution operator, hc[i] is the room im-

pulse response corresponding to speaker c and ν[i] denotes ad-

ditive noise. In the separate-and-recognize approach, a sepa-

Interspeech 2024

1-5 September 2024, Kos, Greece

4998 10.21437/Interspeech.2024-1264



Figure 1: (a) Baseline approach to training speech separators

without ASR-based fine-tuning. (b) Proposed fine-tuning ap-

proach without using reference transcriptions. Solid lines in-

dicate information flow; dashed lines the direction of gradient

backpropagation. Figure exemplary for C = 2 speakers.

ration model firstly separates the mixture signal x[i] in C es-

timated speech signals ŝc[i] and each separated signal is fed

into an ASR module to attain predicted transcription of discrete

character tokens t̂c [2].

The proposed fine-tuning method assumes the existence of

pre-trained speech separation and ASR networks, where the

speech separation model has been trained using a conventional

signal-level objective function such as scale-invariant signal-to-

distortion ratio (SISDR) [18]. In the proposed method, these

two modules go through an additional number of addtional

training epochs (ATEs), whereby the parameters of the ASR

model are frozen and the embedding differences of the ASR en-

coder are backpropagated through the separation network where

the parameters are updated at each step. The proposed approach

is shown in Figure 1 compared to the baseline model trained

with a purely signal-level SISDR loss.

2.1. ASR Encoder Loss

This section describes the proposed ASR encoder (AE) loss

used for fine-tuning the speech separation model. In this work

the ASR encoder used is a connectionist temporal classifica-

tion (CTC)-based model [19] with a discrete number of pos-

sible output symbols N . The encoder network is defined as a

function

V : RLx 7→ R
L×N

(2)

where Lx is the length of an input speech signal sc[i], L is the

output sequence length and N is the number of possible sym-

bols, i.e. the number of characters that can be interpreted by

a decoder or decoding function (minimum of 26 plus a word

boundary token and a blank symbol for the Latin alphabet).

The proposed AE loss computes the difference between the

encoder output of the predicted speech signals ŝc and reference

speech signal sc, ∀c ∈ {1, . . . , C}. The loss is the mean square

error (MSE) of the two output sequences defined as

LAE (sc, ŝc) =
1

LN

L
∑

ℓ=1

N
∑

n=1

(V(ŝc)ℓ,n − V(sc)ℓ,n)
2

(3)

where sc is the target audio and ŝc is the predicted output au-

dio of the seperator for speaker c. The LAE loss is analo-

gous to a conventional time-frequency based loss, but instead

of comparing references and outputs in terms of continuous

time/frequency bins, the proposed loss instead compares in

terms of discrete time/character label logits.

2.2. Guided Permutation Invariant Training (GPIT)

Empirically it was found that the standard PIT algorithm [20]

was not robust enough against distortions in the ASR encoder

features when applying the proposed AE loss function in (3), re-

sulting in inaccuracies in resolving speaker permutations. This

resulted in models trained using the AE loss diverging and giv-

ing 100% WER in evaluations. Thus, a modified scheme re-

ferred to as guided permutation invariant training (GPIT) (not to

be confused with Graph-PIT [21]) is proposed that uses an alter-

nate signal-level loss to guide the permutation solving, and then

the AE loss is applied to the minimum permutation estimates

and references. The permutation-solving formula is defined the

same as for PIT. The predicted permutation φ̂ is determined by

φ̂ = argmin
ϕ∈Φ

C
∑

c=1

Lguide

(

ŝ
(ϕ)
c , sc

)

(4)

where φ is a permutation in the set Φ of Φ = C! possible

permutations and ŝ
(ϕ)
c denotes the φth possible permutation of

ŝc. Lguide denotes the permutation guiding loss. In this pa-

per Lguide = LSISDR is chosen. Using the predicted permuta-

tion the desired loss, in this case LAE(·) from (3), is calculated

s.t. the final loss value is

LGPIT

(

sc, ŝc, φ̂
)

=

C
∑

c=1

LAE

(

sc, ŝ
(ϕ̂)
c

)

. (5)

3. Experimental Setup

3.1. Data

The WHAMR [22] corpus is used for all experiments in this

work. This corpus is an extension of the WSJ0-2Mix corpus

[23] which in turn is an extension of the WSJ0 corpus [24].

WHAMR is a corpus of noisy, reverberant, two-speaker mix-

tures created from overlapping two artificially reverbed speaker

utterances from WSJ0 at mixing signal-to-noise ratios (SNRs)

of 0-5 dB and then adding an ambient noise source at an SNR

of −6-3 dB relative to the loudest speaker. The 16kHz max

(non-truncated) configuration of the corpus is used. Dynamic

mixing [25] is also used, whereby the training set is uniquely

simulated at each epoch to improve data diversity and model

generalization. Signal lengths are also limited to 4s in length

to speed up training as well as reduce computational expendi-

ture and memory consumption [16]. Further analysis of training

signal length (TSL) limits is given in Section 4.4.

3.2. Speech Separator

The TD-Conformer-XL model is chosen for speech separation

as it gives close to state-of-the-art performance on the WHAMR

benchmark and is open source1 [26]. The configuration is based

on the best-performing model on WHAMR in [26] with S = 1
subsampling layers, a kernel size of P = 64 and feature dimen-

sion B = 1024. To compensate for the larger sampling rate

used in this paper (8kHz vs 16kHz here), the number of sub-

sampling layers is set to S = 2. This model is pre-trained on

1TD-Conformer training recipe available at https://github.
com/jwr1995/PubSep
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Table 1: ASR and speech enhancement performance comparison of the AE loss in (3) to baseline SISDR loss models as well as oracle

signal sc[i] and mixture signal x[i] after a set number of ATEs. ∆ indicates improvement over the mixture signal. Bold font indicates

the best result for each metric. Arrows indicate performance increase.

ASR Input Loss ATEs CP-WER ↓ ∆ ↑ ORC-WER ↓ ∆ ↑ SISDR ↑ PESQ ↑ STOI ↑ SRMR ↑

Oracles sc - - 7.7 - 7.7 - - - - -
Mixture x - - 85.7 - 81.8 - -7.2 dB 1.05 27.1 2.99

Estimates ŝc LSISDR - 44.2 41.5 44.2 37.6 5.5 dB 1.41 69.3 7.14

Estimates ŝc LSISDR 30 43.5 42.3 43.4 38.4 5.6 dB 1.44 71.9 7.21

Estimates ŝc LAE (proposed) 30 37.1 48.7 37.1 44.8 5.1 dB 1.54 75.0 7.27

4s audio clips with a learning rate of ηPT = 5× 10−5 over 150

epochs. The learning rate is halved after 90 epochs if there is

no improvement in 3 epochs.

3.3. Speech Recognizers

The large SSSR-based Wav2Vec2 model [27] fine-tuned on 960

hours of LibriSpeech data with a CTC loss is chosen2 as the

primary model used to obtain the embeddings V(·) in the AE

loss in (3), as well as for evaluating ASR performance. The

Wav2Vec2 model is a large transformer SSSR model that is

initially trained to predict speech representations from time-

domain signals via self-supervision where the model is trained

to predict contextualized representations across masked por-

tions of the input signal from the unmasked signal context

[27]. The fine-tuning of Wav2Vec2 involves training an addi-

tional linear layer to map these representations to a CTC spe-

cific representations, in this case, grapheme-based representa-

tions where each logit represents a possible grapheme. Note that

the fine-tuning in this model is unrelated to the proposed fine-

tuning method described in Section 2. In the large Wav2Vec2

model used in the following experiments, the number of la-

bels is N = 30 (28 characters interpreted verbatim plus word

boundary token “|” and blank symbol “-”). In the CTC de-

coder of the Wav2Vec2 ASR model, an open-source 4-gram

Librispeech language model is used3.

In addition, the large Whisper model4 [28] is used as an

unseen ASR evaluation model for evaluating ASR performance

on a model that was not used in the fine-tuning of the separa-

tor. Whisper is a weakly supervised speech foundation model

that uses multi-task training. The weakly supervised and multi-

task approaches are designed to make the ASR model general-

isation well across many acoustic conditions and speaker types

[28]. Thus this well-generalising ASR model is thought to make

it more challenging for the proposed approach to achieve im-

provements over the baseline SISDR models.

3.4. Fine-Tuning

For fine-tuning with the AE loss and GPIT, a learning rate of

ηFT = 2× 10−7 is used. Fine-tuning is performed over 30 ad-

dtional training epochs (ATEs) with the learning rate fixed for

all epochs. Exploring different learning rate strategies and op-

timizing this hyperparameter is beyond the scope of this paper

and left to future work.

2Torchaudio Wav2Vec2 Large model available at https:

//pytorch.org/audio/0.10.0/pipelines.html#

torchaudio.pipelines.WAV2VEC2_ASR_LARGE_960H
3Librispeech language model and other resources available at:

https://www.openslr.org/11/.
4In this work, Whisper ’large-v2’ is used, which can be downloaded

from: https://github.com/openai/whisper.

3.5. Evaluation Metrics

Several options are available for multi-speaker WER eval-

uation [29]. In this paper, two such definitions are cho-

sen: concatenated minimum-power word error rate (CP-WER)

[6] and optimal reference combination word error rate

(ORC-WER) [3]. The key difference between the two measures

is that CP-WER penalizes output speaker channel switches and

ORC-WER is unconcerned with whether a given speaker is out-

put on a single channel or multiple channels, so long as the ASR

model is still able to estimate the word accurately. CP-WER is

thus the more important measure as, ideally, in the proposed

system, the goal is to have one speaker for each output chan-

nel. However, the addition of ORC-WER provides additional

insight into the overall intelligibility of the speech regardless

of which channel(s) a given speaker gets output to. Intrusive

speech enhancement measures are also used to observe any ben-

efit gained in these using the proposed approach. STOI [30] is

used to measure speech intelligibility, perceptual evaluation of

speech quality (PESQ) [31] is used to measure speech quality

and speech-to-reverberation modulation energy ratio (SRMR)

[32] is used to assess reverberant effects.

4. Results

4.1. Results on clean targets

The performance of the AE loss function (3) using the large

Wav2Vec2 model is shown in Table 1. The TD-Conformer sep-

aration network trained with the proposed AE loss for 30 ATEs

is compared to the TD-Conformer separator before fine-tuning

and the TD-Conformer trained with an additional 30 epochs, but

using the standard signal-level SISDR loss [26, 18]. The model

trained with the proposed AE loss significantly outperforms

both models in ASR performance (CP-WER and ORC-WER).

The AE loss-based model also outperforms the others in terms

of the speech enhancement metrics PESQ, STOI and SRMR.

This is a powerful finding, as often improved perceptual per-

formance leads to degraded ASR performance and vice-versa.

It is consistent however with prior work [10] which similarly

compares SSSR output representations in a speech enhance-

ment system loss function.

4.2. Generalization to an Unseen ASR System

The generalization of the improvements found using the pro-

posed AE loss in Table 1 is analysed in this subsection by

reevaluating models on the large Whisper ASR model [28]

that was not used in the fine-tuning stages. The results in Ta-

ble 2 show a consistent improvement in both CP-WER and

ORC-WER for the AE loss over the SISDR loss trained with

additional epochs demonstrating that at least some of the im-

provements can generalise from one ASR model to another.
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Table 2: ASR performance for the re-evaluation of models in

Table 1 using the large Whisper model [28]. Bold indicates the

best-performing trained model. ∆ indicates improvement over

the mixture signal.

ASR Input Loss ATEs CP-WER ↓ ORC-WER ↓

Oracles sc - - 10.9 10.9
Mixture x - - 63.3 60.0

Estimates ŝc LSISDR - 29.5 29.4

Estimates ŝc LSISDR 30 29.3 29.2

Estimates ŝc LAE 30 26.8 26.7

4.3. Joint SISDR Loss Weighting

To further assess the impact of the proposed AE loss LAE

against the SISDR loss LSISDR [26, 18], a series of experiments

fine-tuning the separator with a joint weighted loss of the two

different loss types is carried out. The joint loss is defined as

LJoint = (1− α)LAE + αLSISDR (6)

where α controls the weighting of the two loss

terms. Five models are fine-tuned with values of

α ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} for 30 ATEs.

Figure 2: ASR performance (CP-WER) and objective percep-

tual quality of test audio for models trained with differing

weight α between loss terms in (6).

Figure 2 shows the performance of the models fine-tuned

using (6) in terms of CP-WER and PESQ on the WHAMR test

set. The ASR performance of the models trained with lower

values of α is significantly better than those trained with higher

values, as the influence of the proposed LAE function on the

models’ training is higher for lower values of α. The biggest

jump in improvement is between α = 1.0 (i.e no use of LAE)

and α = 0.8, suggesting that even a small weighting of the

proposed loss can significantly improve ASR performance.

Perceptual quality in terms of PESQ does not change as

uniformly or significantly for lower α values, but a trend is still

apparent; models with a greater weighting of the proposed loss

LAE produce higher quality audio.

4.4. Training Signal Length Analysis

A benefit of the transcription-free method is the ability to train

on arbitrary signal lengths. In transcription-dependant losses,

this is non-trivial due to the requirement of truncating the tran-

scription in alignment with the audio. The impact of applying

TSL limits [16, 33] is analysed in Table 3. The results show that

using longer signal lengths gives slightly better performance,

most likely due to the ASR Encoder having more context. This

is opposite to the SISDR-based evaluations in [16] where im-

proved SISDR performance could be obtained on WHAMR us-

ing shorter signal lengths.

Table 3: Comparison of the impact of the TSL limit on ASR

performance of models fine-tuned using the proposed AE loss

over 30 ATEs. Best results are shown in bold.

TSL limit (s) CP-WER ↓ ORC-WER ↓ SISDR ↑

2.0 38.3 38.4 5.0

4.0 37.1 37.1 5.1

8.0 36.3 36.2 5.2

4.5. ASR Encoder Visualization

A visual comparison of Wav2Vec2 ASR Encoder output repre-

sentations V(·) used in (3) of audio outputs from models trained

using SISDR loss (middle) and AE loss (bottom) can be seen in

Figure 3. The ASR encoder output representation V(·) of the

respective reference audio is visualized in the top panel. No-

Figure 3: Wav2Vec2 ASR Encoder output representations for

reference audio V(sc) (top), and V(ŝc) for models with baseline

LSISDR (middle) and proposed LAE fine-tuning (bottom) losses

tably, the AE loss reduces the uncertainty in the logits when

compared to the SISDR loss. In both representations of the es-

timated signals, there is some bleed-through of interfering noise

and speakers at L ⪆ 180, but this effect is reduced in the AE

loss suggesting that the additional context provided by the en-

coder network may improve separation performance and reduce

more general distortions.

5. Conclusions

This paper presented a novel method for fine-tuning speech sep-

aration models for multi-speaker ASR without the need for ref-

erence transcriptions. It was shown that the proposed loss lever-

aging pre-trained ASR encoder representations for fine-tuning

separators results in improved ASR performance over a stan-

dard signal-level-based loss. It was also demonstrated that the

proposed method produces improved performance in speech en-

hancement metrics such as PESQ and STOI which is often not

the case for many other approaches. Finally, it was shown that

the performance gained by the proposed method generalises to

other ASR models that weren’t used in the fine-tuning stage.
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