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SSL-CPCD: Self-supervised learning with
composite pretext-class discrimination for

improved generalisability in endoscopic image
analysis

Ziang Xu, Jens Rittscher, and Sharib Ali

Abstract— Data-driven methods have shown tremen-
dous progress in medical image analysis. In this con-
text, deep learning-based supervised methods are widely
popular. However, they require a large amount of training
data and face issues in generalisability to unseen datasets
that hinder clinical translation. Endoscopic imaging data
is characterised by large inter- and intra-patient variability
that makes these models more challenging to learn repre-
sentative features for downstream tasks. Thus, despite the
publicly available datasets and datasets that can be gen-
erated within hospitals, most supervised models still un-
derperform. While self-supervised learning has addressed
this problem to some extent in natural scene data, there
is a considerable performance gap in the medical image
domain. In this paper, we propose to explore patch-level
instance-group discrimination and penalisation of inter-
class variation using additive angular margin within the co-
sine similarity metrics. Our novel approach enables models
to learn to cluster similar representations, thereby improv-
ing their ability to provide better separation between differ-
ent classes. Our results demonstrate significant improve-
ment on all metrics over the state-of-the-art (SOTA) meth-
ods on the test set from the same and diverse datasets. We
evaluated our approach for classification, detection, and
segmentation. SSL-CPCD attains notable Top 1 accuracy of
79.77% in ulcerative colitis classification, an 88.62% mean
average precision (mAP) for detection, and an 82.32% dice
similarity coefficient for segmentation tasks. These repre-
sent improvements of over 4%, 2%, and 3%, respectively,
compared to the baseline architectures. We demonstrate
that our method generalises better than all SOTA methods
to unseen datasets, reporting over 7% improvement.

Index Terms— Deep learning, contrastive loss, en-
doscopy data, generalisation, self-supervised learning
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I. INTRODUCTION

IMAGE classification, detection, and segmentation tasks

have been extensively studied by the biomedical image

analysis community [1]. Recent advances in data-driven ap-

proaches are mostly based on convolutional neural networks

(CNNs) and have gained interest due to their ability to surpass

traditional machine-learning approaches. CNNs have been

widely used for multiple tasks and different imaging modal-

ities, including computed tomography (CT) [2], X-ray [3],

magnetic resonance imaging (MRI) [4] and endoscopy [5].

Supervised learning-based approaches in machine learn-

ing (ML) are data-voracious. Performance of fully super-

vised methods usually suffers on smaller datasets and out-of-

distribution datasets, which can be because supervised learning

only incentivises learning those features that are relevant to

predicting frequent classes of known samples. [6]. Obtaining

labelled data is a significant hurdle for medical image analysis

as it requires clinical expertise. Additionally, it accounts for

the risk of human bias proportional to the sample size [7].

Data curation challenges are thus harder to tackle, leading only

to sub-optimal results in supervised learning frameworks [8].

Several studies have also found that most supervised methods

lead to a huge performance drop when applied to different

centre datasets [8]. Changes in patient population, the appear-

ance of lesions, imaging modalities used, and differences in

hardware all affect data variability, pose a bottleneck during

training, and adversely affect model performance. We ask if

we can leverage already available high-quality public datasets

with and without labels to fine-tune these models without

compromising algorithmic performance but instead boosting

them.

Self-supervised learning (SSL) methods learn semantically

meaningful features by training a ML method using unlabelled

data first. The pre-trained model is then fine-tuned on a

training sample with the available labelled samples for each

specific downstream task, thus eliminating the requirement of

a large amount of labelled data during training, improving

generalisation capability for the next downstream task and

expansion to other out-of-distribution datasets [9]. In the

medical imaging field, SSL has been used extensively for

different tasks, including disease classification [3], [10], lesion
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region detection [4], [11] and segmentation [12], [13]. Since

medical imaging data are not abundantly available, pretext

learning tasks in SSL can be used to leverage the learnt

representation of the training data to benefit the downstream

tasks. For example, [4] used the whole training sets for brain

MRI, abdominal CT, and fetal ultrasound images for the

pretext learning before fine-tuning on successive downstream

tasks.

Endoscopy remains the clinical standard for diagnosing and

surveying disease in hollow organs. In contrast to data obtained

from other imaging modalities, the analysis of endoscopy

video is extremely challenging [5] due to various factors

such as internal organ deformation, light interaction with

tissue at different depths, imaging artefacts such as bubbles,

fluid and other floating objects, and a considerable operator

dependency. Subtle and fine-grained changes often indicate the

onset of disease. Developing robust computer-aided techniques

to detect such changes poses a significant challenge. In this

work, we focus on two different lesions found in the colon and

rectum, and we aim to devise a robust SSL-based approach to

build automated techniques with CNN-based networks. To this

end, we propose to develop an SSL approach for ulcerative

colitis (UC), a chronic intestinal inflammatory disease, and

polyps that are precursor lesions for colorectal cancer. UC is

a severe medical condition and requires patient monitoring

and risk stratification. Patients with UC have an increased

risk of developing colorectal cancer and are therefore put

under regular colonoscopy surveillance. Gastroenterologists

use the Mayo Endoscopic Score [14] (MES, see Fig. 1 (on

the left)), a widely accepted predictive indicator for malignant

transformation in UC, as a classification task based on visual

appearances. Similarly, polyps that are addressed in this work

as detection and segmentation downstream tasks are precursor

lesions [15]. Large and cancerous polyps are resected during

clinical surveillance itself. However, optimally localising and

segmenting the polyps can help these clinical procedures.

Automated classification, detection, and segmentation methods

can help reduce missed operator variability in these procedures

and be helpful in transforming patient care and management.

Supervised learning methods struggle to learn a feature rep-

resentation that discriminates between the different categories

even if trained on large, labelled datasets. The data presented

in Fig. 1 illustrates this problem in the context of ulcerative

colitis scoring. After supervised learning, we can still observe

significant confusion between the different classes. In this

work, we propose a novel self-supervised learning strategy for

endoscopic image analysis, referred to as “SSL-CPCD”. Our

approach is based on novel ideas on combining loss functions

both at the single instance-level and group-level instance (i.e.,

clustered samples with similar representations are classified

using the k-means clustering approach into a specific class

or instance) using image frames and patch-level represen-

tations. The proposed losses are used in a pretext-invariant

representation learning (PIRL) [16] context but here we utilise

patch-level and image-level representations that are learnt at

single and grouped instances (i.e., clustered using k-means),

amplifying the power of learning discriminative features. For

loss functions, unlike classical Noise Contrastive Estimation

(NCE) [17], we exploit the additive angular margin loss [18]

technique that has proven to pull apart negative samples from

positives. In this work, we introduce the additive angular

margin loss within the NCE loss at both patch- and image-level

instances. Finally, we perform instance-group discrimination

from k-means clustered instances similar to [19], but these

are performed at both patch-level and image-level. Jointly, we

refer to this loss as a composite pretext-class discrimination

loss (CPCD). It is to be noted that SSL techniques only

require image transformations during pretext training but do

not require complex transformations during the fine-tuning

stage for downstream tasks. Thus, this two-stage training

process enables models to learn robust representations that are

further disentangled and refined towards the downstream task

with limited data, making it very suitable for endoscopic image

analysis.

Compared to pretext-invariant representations (PIRL) ap-

proach [16] we introduce a new contrastive estimation

block (CEM-block) and an unsupervised k−means clustering

block [19] for discrimination between both patches and image-

level instances which is also different to our previous work

where we used PIRL with patch-level discrimination only

(referred to as PIRL-PLD) [20]. CEM block introduces com-

putation of contrastive loss with an added angular margin [18]

to increase the separation between target embedding and

negative samples, providing stronger discriminative power to

the NCE loss. Unlike our previous work [21] which used arc-

cosine loss with additive angular margin [18] in the down-

stream task, we have integrated the additive angular margin

loss in the pretext task learning stage itself to exploit better

representations. In addition, our current setup does not require

network and loss changes in the fine-tuning stage. Similarly,

for our clustering block unlike Wang et al. [19], our approach

consists of grouping-across-view approach with both instance-

level and group-level discrimination in not only single images

but also with patches. Salient features in endoscopic images

that identify a specific disease or lesion is primarily localised

and usually not distinctive from surrounding areas. Learning

global and local features and their association can be crucial

in distinguishing them from the surrounding mucosa, i.e.,

understanding global and local changes in patterns associated

with a disease or lesion. For instance, in colonoscopy, the

phenotypic appearances of ulcerative colitis (as illustrated in

Fig. 1) highlight the need for both image-level (i.e., global) and

patch-level (i.e., local) discrimination. In addition, due to the

mucosal property observed in endoscopy, more comprehensive

loss functions that incorporate both local and global feature

separations are required, which makes our approach unique,

more accurate, and robust to different lesion types.

In this work, we propose a novel approach with a compre-

hensive loss function that improves learning on the pretext task

by using both image-level and patch-level discrimination. To

this extent, we also use memory banks [22] to store positive

and negative samples with moving weights that help to learn

features that are semantically meaningful for downstream

tasks. In our previous work [20], we only explored classifica-

tion task for downstream task with single disease type and used

NCE loss similar to PIRL together with added patch level dis-
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Fig. 1. Endoscopic image analysis for ulcerative colitis scoring. (on left)
Representative images for Mayo endoscopic scoring (MES) from 0 to 3,
and (on right) t-SNE plots [27] with perplexity of 15 and maximum iter-
ations of 1000 for all test samples before learning and after supervised
learning using ResNet50 [28].

crimination only. In this work, we have included classification,

detection, and semantic segmentation as downstream tasks and

used two different lesion types observed under endoscopic

imaging. Further, we introduce a penalisation technique to

better exploit inter-class variations in positive and negative

samples using additive angular margin in our contrastive loss.

By transforming images into jigsaw puzzles and computing

contrastive losses between different feature embeddings, we

learn a representation capable of differentiating between the

subtle characteristics of the different classes. In addition, we

also explore the introduction of an attention mechanism [23]

in our network for further improvement. All data descrip-

tions and code are available at https://github.com/

EricXuziang/SSL-CPCD. Key contributions of our pre-

sented work can be summarised below:

• Novel SSL-CPCD method can learn semantically mean-

ingful features from unlabeled data, improving perfor-

mance on subsequent tasks, including classification, de-

tection, and segmentation of two different lesion types in

endoscopic images.

• Single and group-level instances are used to minimise

noise contrastive estimation loss, increase inter-class sep-

aration, and minimise intra-class distance. For this, we

establish a loss between the target image-level and patch-

level embedding.

• We propose to include an additive angular margin [18]

within the cosine similarity in the contrastive loss to

penalise the decision boundary between the positive and

the negative samples further, increasing the inter-class

separation.

• Evaluation of our method on four different datasets

including Kvasir-SEG [24], CVC-ClinicDB [25],

LIMUC [26], and our in-house dataset.

• We show that our SSL-CPCD-based method outperforms

several SOTA SSL strategies by a large margin.

II. RELATED WORK

A. Deep learning in gastrointestinal endoscopy

1) Classification task: Ulcerative colitis (UC) scoring is

based on Mayo Endoscopic Scoring (MES) in clinical

decision-making. Several CNN-based architectures have been

proposed to automate MES. For example, Stidham et al. [29]

used an Inception V3 model to train and evaluate MES scores

in still endoscopic frames where they used 16k UC images

and obtained an accuracy of 67.6%, 64.3% and 67.9% for

the three MES classes. Recently, Mokter et al. [30] proposed

a method to classify UC severity in colonoscopy videos by

detecting vascular (vein) patterns using three CNN networks

and a training dataset comprising over 67k frames. Similarly,

Ozawa et al. [31] used a CNN for binary classification only

to elevate the problem of poor accuracies across classes and

used still frames comprising 26k training images, which first

between normal (comprising of MES 0 and MES 1) while

next class as combined moderate (MES 2) and severe (MES

3). Gutierrez et al. [32] also used the CNN model to predict

only a binary version of the MES scoring.

2) Detection task: Polyp detection task has been more

widely researched compared to UC classification. Lee et

al. [33] used YOLOv2 and validated the algorithm on public

datasets and colonoscopy videos, demonstrating real-time ca-

pability as one of the milestones. Zhang et al. [34] proposed a

Single Shot MultiBox Detector (SSD) for gastric polyps. They

linked the feature maps from the lower layers, and the feature

maps deconvolved from the upper layers and improved the

mean precision (mAP) from 88.5% to 90.4%. Qadir et al. [35],

and Shin et al. [36] used Mask R-CNN and Faster RCNN with

different backbones to detect polyps, respectively. While these

methods achieve high precision, they fall short in delivering

real-time performance.

3) Segmentation task: Polyp segmentation task is the most

widely researched topic in endoscopic image analysis. Zhou

et al. [37] proposed a technique called U-Net++ based on U-

Net, which fully utilises multi-scale features to obtain superior

results. Fan et al. [38] proposed a parallel inverse attention-

based network (PraNet). PraNet employs a partial decoder

to aggregate features in high-level layers and mine boundary

cues using an inverse attention module. A Shallow Attention

Network (SANet) was proposed by [39]. SANet used a colour

swap operation to decouple image content and colour and force

the model to pay more attention to the shape and structure of

the object. Recently, Srivastava et al. [40] proposed a Multi-

Scale Residual Fusion Network (MSRF-Net). MSRF-Net can

exchange multi-scale features of different receptive fields using

dual-scale dense fusion (DSDF) blocks.

B. Attention mechanism

Attention can make the model more focused, extract the

most relevant features, and ignore irrelevant information. It

also overcomes the size limitation of the receptive field and

can focus on the contribution of global features to the current

region [41]. Attention-based models have achieved state-of-

the-art performance in medical images such as skin cancer, en-

doscopy, CT, and X-ray (Sinha and Dolz [42], Zhao et al. [43],

Kaul et al. [2], Gu et al. [44]). Zhao et al. [43] proposed an

adaptive cosine similarity network with a self-attention module

to automatically classify gastrointestinal endoscope images.

The self-attention block replaces the conv+BN/Relu operation

in traditional CNN and uses a cosine-based self-adapting

loss function to adjust the scale parameters automatically,

achieving 95.7% on average accuracy in the wireless capsule

endoscopy dataset.
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Fig. 2. Block diagram of our proposed self-supervised learning framework with composite pretext-class discrimination losses (SSL-
CPCD). ResNet50 encoder network [28] is fine-tuned with original images with transformations and randomly shuffled patches as patch
transformation mimicking shuffled jigsaw puzzle as in [16] in a self-supervised setting to enable semantically meaningful representation learning
for improved generalisability and accuracy in downstream tasks. Contrastive estimator with margin (CEM-block) is separately computed for image-
level and patch-level instances. Further, a group-wise contrastive loss is computed by comparing the centroids at patch-level (PCk) group and at
image-level (Ck). Memory bank M [22] is used for storing all representations.

C. Self-supervised learning

Self-supervised learning (SSL) uses pretext tasks to mine

self-supervised information from large-scale unsupervised

data, thereby learning valuable image representations for

downstream tasks. Learning based on pretext tasks helps to

overcome the limitations of supervised learning by making

more efficient use of the available data and reducing the

reliance on labelled datasets. In SSL, the pretext task typically

applies a transformation to the input image and predicts the

properties of the transformation from the transformed image.

During pretext learning, a single model [16], [45], [46] is used

for both image and its transformations to learn consistent,

invariant, and semantically meaningful representations. The

same model is then used for fine-tuning on downstream tasks.

Chen et al. [45] proposed the SimCLR model, which performs

data enhancement on the input image to simulate the input

from different perspectives of the image. A contrastive loss

is then used to maximise the similarity of the same object

under different data augmentations and minimise the similarity

between similar objects. Later, the MoCo model proposed

by He et al. [46] also used contrastive loss to compare the

similarity between a query and the keys of a queue to learn

feature representation. The authors used a dynamic memory,

rather than a static memory bank, to store feature vectors

used in training. In contrast to these methods that encour-

age the construction of covariant image representations to

the transformations, pretext-invariant representation learning

(PIRL) [16] pushes the representations to be invariant under

image transformations. PIRL computes high similarity to the

image representations similar to the representation of the

transformed versions and low resemblance to representations

for the different images. The notion of a Jigsaw puzzle [47]

was used as a image patch representation for PIRL repre-

sentation learning. Wang et al. [19] incorporated between-

instance similarity into contrastive learning through cross-

level discrimination (CLD) without relying on direct instance

grouping. The CLD approach involved discerning similarities

between instances and local instance groups. The proposed

CLD can significantly improve the positive or negative sample

ratio of contrastive learning, achieve better invariant mapping,

and be embedded as an add-on component in other self-

supervised methods.

In recent years, self-supervised learning has also been

applied in the field of medical image analysis but not much

on the endoscopic image analysis. Azizi et al. [3] used multi-

instance contrastive learning based on self-supervision on

medical images, followed by a fully supervised fine-tuning

method for the final classification of available task-specific

losses. They improved top-1 accuracy by 6.7% and 1.1% on

dermatology and chest X-ray classification, respectively. Zeng

et al. [12] proposed SeSe-Net for medical image segmentation.

SeSe-Net is divided into two neural networks, ”worker” and

”supervisor”. In the first stage, the standard data set is learned

and segmented, and a training set is generated, and then the

supervisor further supervises the learning process in the second

stage so that the worker further improves the performance on

the non-labelled dataset. Chen et al. [4] proposed a novel self-

supervised learning strategy based on context restoration to
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change the spatial information of an image by selecting and

exchanging two patches in the same image to learn enough

pronounced semantic representations. It was validated on 2D

fetal ultrasound images, abdominal computed tomography

images, and brain magnetic resonance images. Recently, Ciga

et al. [13] used a residual network pre-trained with self-

supervised learning to learn generalisable features and then

used the pre-trained network in downstream tasks to perform

multiple tasks on multiple multi-organ digital histopathology

datasets. Similarly, SSL methods (including SimCLR and

MoCo) was recently used for the phase recognition and tool

presence detection tasks in the surgical domain [48].

III. METHODOLOGY

We propose a novel self-supervised approach that exploits

the invariant representation learning beneficial for downstream

tasks by using both image-level instance-group discrimination

and patch-level instance-group discrimination losses. To this

extent, we propose two novel approaches (see Fig. 2) - firstly,

exploiting positive and negative samples for noise contrastive

loss estimation (LNCE). Unlike classically used LNCE [17],

we integrate an added angular margin [18] computed be-

tween the negative samples embedding and learned normalised

weights into the NCE loss. This enables the dissociation

of different samples further. Secondly, we employ k-means

clustering and adopt a cross-view approach [19] for both

image-level and patch-level instances. This enables group-

wise association, indicating that similar embedding belong to

distinct groups. A similarity matrix score is then computed

for each sample i between image-level cluster centroid Cki and

normalised patch-level feature embedding ḡi, i.e., < ḡi, C
k
i >,

and between patch-level cluster centroid PCki and normalised

image-level feature embedding f̄i, i.e., (< f̄i, PC
k
i >). This

determines how close the embedding of the same class k

(k-means clustered) are is in either image instances Cki or

patch instances PCki . Thus, we apply a cross-view approach

for such a similarity association by computing a similarity

matrix between the centroid of patch cluster labels with each

corresponding cluster label at the image level and vice-versa

(detailed below (Section B-E)).

Our novel group-wise loss enables us to learn fine-grained

features at both patch-level LkPC and image level LkC that

can enhance more local representations. For grouping of the

embeddings, here we utilise a k-means clustering technique

with class numbers similar to downstream tasks to provide

representative clusters. Our approach uses memory banks [22]

to store all representations useful for various loss function

estimations. Below we have described each element of our

approach presented in the block diagram in Fig. 2.

A. Feature extraction (FE) block

Let the endoscopy dataset D consist of N image sam-

ples, denoted as D = {I1, I2, ..., IN}. We use a set of

image transformations T to create and reshuffle m number

of image patches for each image in the dataset (D, P =
{I11t, ..., I

m
1t, ..., I

1
Nt, ..., I

m
Nt} with t ∈ T , where t represents

a transformation matrix applied to image I such that a trans-

formed image It is obtained). We train a convolutional neural

network (in our case, ResNet50 [28]) with free parameters θ

that embody representation φθ(I) for a given sample I and

φθ(It) for patches P .

Image-level embedding: Candidate images are fed in batches

which are transformed using simple geometric (horizontal and

vertical flips) and photometric (colour jitter with 0.4 for hue,

saturation, contrast and brightness) transformations and fed

into an encoder giving a feature representation φθ(I). We then

apply a projection head f(.) to re-scale the representations to

a 128-dimensional feature vector.

Patch-level embedding: Each image is divided into nine

patches and randomly shuffled to create transformation of

patches that mimic shuffled “Jigsaw puzzle” pieces [16]. But

unlike solving a jigsaw pretext task [47], here we use these

patches as transformed image patches. In this case, we perform

random cropping and shuffle of the cropped areas into patch

size of 64 × 64 along with the colour transforms used for

the original images. The transformation included random

horizontal and vertical flips, and photo-metric changes such

as brightness, contrast, hue and saturation with a factor of

0.4 (changes between 60% and 140% of the original image).

Representations of each patch constituting the image I are

concatenated to form φθ(It). A projection head g(.) [45] is

applied to re-scale the representations to a 128-dimensional

feature vector.

Memory banks: The memory bank [22] M stores all the

feature representations of the dataset D at the image level

computed from the original images I. These embedding

weights are moving average of feature representation f(φθ(I))
represented as mI with assigned indexes that helps to build

negative samples mI
′ for each image during contrastive loss

estimation. M is updated at every epoch with the step-size

of 0.5 × initial weight and normalised to between 0 and 1

similar to [16].

B. Contrastive loss estimation with margin (CEM) block

Noise contrastive estimator (NCE) [16], [17], [49] is used

to measure the similarity scores. In our noise contrastive

estimator, let the positive sample pair be fi and f+i where fi
be the normalised positive sample representation of an instance

and f+i be the target normalised feature embedding from the

moving average mI, and Dp ⊆ D where Dp denote number

of positive samples. Similarly, let f−i be the negative sample

representations from the moving average representations mI
′

and Dn ⊆ D with Dn denoting number of negative samples.

Then, following prior works [16], [17], the NCE loss models

the posterior probability h(fi, f
+
i ) of sample i given a data

distribution D and temperature parameter τ as:

h(fi, f
+
i ) =

(

exp
<fi,f

+

i
>

τ

exp
<fi,f

+

i
>

τ
+
∑

f
−

i
∈Dn

exp
<fi,f

−

i
>

τ

)

(1)

However, unlike [16], [17], we propose to add an angular

margin [18] to increase the separation between the target em-

bedding fi and the “negative samples” mI
′ in our contrastive
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loss estimation with margin block (CEM-block). We do this

by first computing angular separation between the positive

target embedding and negative embedding (ψ) ψ = arccos <
fi,mI

′ > and then add an angular margin m to the computed

angle, i.e. ψnew = ψ +m. Finally, cosine of the ψnew gives

our new similarity between the positive and negative samples.

The same CE block is applied for both image-level and patch-

level NCE loss computations. One main motivation behind

adding the angular margin m is to increase the gap between the

positive and negative samples for both image-level and patch-

level feature embedding used in discriminative contrastive loss

functions. Adding a constant m pushes the decision boundary

between the negative samples and the target sample further

enabling the network to learn improved inter class separation.

Thus, Eq. 2 represents the posterior probability with added

angular margin [18]. Here, the angular additive margin aims to

further increase the separation between feature representations

of target embedding and negative samples.

hnew(fi, f
+
i )=

(

exp
<fi,f

+

i
>

τ

exp
<fi,f

+

i
>

τ
+
∑

f
−

i
∈Dn

exp cos(ψnew)
τ

)

(2)

with ψnew = arccos(< fi, f
−
i >) +m

The total NCE loss entails minimising the joint-loss (loga-

rithmic) function of Eq. 2 both at the image-level and patch-

level configurations (also see Fig. 2) which are our another

contribution. Thus, if f̄(= f
||f || ) and ḡ(= g

||g|| ) are the

normalised feature embeddings for the target image and target

patch then the total NCE loss can be written as:

LtotalNCE(I, It) = λLNCEI
(mI, f̄(φθ(I)))+ (3)

(1− λ)LNCEIt
(mI, ḡ(φθ(It))).

Each NCE loss component can be established as a nega-

tive log-posterior distribution of data samples and negative

samples [16], [17], [22]. We compute the NCE losses at the

image-level LNCEI
and at the patch-level LNCEIt

(also

see Fig. 2) using posterior probability in Eq. 2 given as

below [22]:

LNCEI
(mI, f̄(φθ(I))) = − log[hnew(f̄(φθ(I)),mI)]

−
∑

I′∈Dn

log[1− hnew(mI
′ , f̄(φθ(I)))],

(4)

& LNCEIt
(mI, ḡ(φθ(It))) = − log[hnew(ḡ(φθ(It)),mI)]

−
∑

I′∈Dn

log[1− hnew(mI
′ , ḡ(φθ(It)))].

(5)

Since, we take the logarithmic of function in Eq. 2, the

denominator term comparing the positive and negative em-

beddings with added angular margin acts as a regularisation

function. The configured joint-loss LtotalNCE(I, It) enables to

learn representations of image I closer to its transformed

counterpart It of the same instance and also to the memory

representation mI that will damp the parameter updates in the

weights φθ. It also further penalises the representations at both

image and patch-level from other set of negative images I
′

.

C. k-means feature grouping

One important limitation of single instance discrimination

as done in NCE loss is that they focus on within-instance

similarity by data augmentation assuming a single distinctive

instance, but in downstream tasks, these can appear as various

similar observations of the same instance. Thus, a grouping

strategy can help mitigate such limitations, as presented in

this Section. Normalised projection head: We utilise the

linear projection heads to normalise the feature embedding

with l2-norm [45] that enables to reduce variance from data

augmentation and maps the features onto a unit hypersphere,

f̄(φθ(I)) =
f(φθ(I))

||f(φθ(I))|| , and ḡ(φθ(It)) =
g(φθ(It))

||g(φθ(It))||
.

Feature grouping: To overcome the limitation of the single

instance approach, we have used grouping instances based on

the local clusters within a batch of samples similar to [19].

We create k clusters where k is the number of classes (say

n) in the downstream tasks and use this to define clusters at

image and patch levels. Using spherical k-means clustering,

we group the unit-length feature vectors. We compute the

cluster centroids for each image embedding Ck and patch

embedding PCk in batch input with k = {1, ..., n}, where n

is the number of cluster classes depending on the downstream

task. We assign each instance in the image and patches to

each of their corresponding nearest centroids, say C(i) = j,

meaning instance i is assigned to centroid j and so on.

D. Cross-level discrimination at image and patch-levels

Cross-level grouping: Clusters could be noisy, so we ap-

plied a cross-view local group for each instance by an element-

wise multiplication of the feature embedding at image-level

f̄(φθ(I)) with the cluster centroid of image patches PCki , and

at patch-level ḡ(φθ(I)) with the cluster centroid Cki of the

images in the batch where i is the feature embedding assigned

to the cluster.

Cross-level contrastive loss: The noise contrastive estima-

tion (NCE) loss [17] across the views can be defined using the

expression in Eq. (1). However, here, we will use the group

cluster embeddings and centroids, and we want to assume that

the group in the patch-level cluster is identical to the group

in image level for that specific class. Thus, the cross-level

grouping of image-level representation compared to patch-

level centroid can be defined with the contrastive loss as [19]:

hfg (f̄i, PCi)=− log
exp <f̄i,PCi>

τ

exp <f̄i,PCi>
τ

+
∑

j ̸=i exp
<f̄i,PCj>

τ

(6)

Similarly, our cross-level grouping of the patch-level represen-

tations can be also written as:

hgg(ḡi, Ci)=− log
exp <ḡi,Ci>

τ

exp <ḡi,Ci>
τ

+
∑

j ̸=i exp
<ḡi,Cj>

τ

(7)
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The final group-wise cross-level discrimination loss LGCLD
incorporating both image-level and patch-level representations

in combined form with weight λ can be written as:

LGCLD=

k
∑

k=1

N
∑

i=1

{λhfg (f̄i, PC
k
i ) + (1− λ)hgg(ḡi, C

k
i )} (8)

Each patch-level and image-level instance are already com-

pared independently within our CEM-block (see Fig. 2 and

Eq. 3) so using group-level association between image and

patch clusters can learn to discriminate features that were

not established in the CEM-block. Associating images with

patch clusters and vice-versa at a group level in Eq. 8 can

enhance the model’s understanding of context and relation-

ships between different parts of an image. The loss function

encourages similarity and consistency between associated im-

ages and patch clusters. By clustering patch-level embedding

and associating them with the image itself, the model is

encouraged to learn consistent representations within a local

context. This helps create a metric space where the same

image-level and patch-level instances get closer, facilitating

better generalisation.

E. Proposed CPCD loss

Our final novel loss function that defines single instance-

level, group-level, and cross-level representations as a joint

loss optimisation problem is referred to as composite pretext-

class discrimination loss (CPCD). In this work, noise con-

trastive estimation loss refers to the single instance-level

representations and the group-wise cross-level discrimination

loss. Empirically, λ in Eq. 3 and Eq. 8 are set to 0.5 to balance

the impact of patch-level and image-level embedding. Thus,

the final CPCD loss LCPCD combines Eq. 3 and Eq. 8 with

λ
′

as weighting factor and is given as:

LCPCD =

k
∑

k=1

λ
′

N∑

i=1

0.5 · {hf
g (f̄i, PCk

i ) + hg
g(ḡi, C

k
i )}

︸ ︷︷ ︸

LGCLD

+

(1− λ
′

)
N∑

i=1

0.5 · {LNCEI
(mI, f̄i(φθ(I))) + LNCE

It
(mI, ḡi(φθ(I

t))}

︸ ︷︷ ︸

LNCE

(9)

IV. EXPERIMENTS

A. Dataset and setup

1) Dataset: We have explored various colonoscopic imag-

ing datasets that are available publicly and in-house for

three different downstream tasks. For the classification task,

LIMUC [26] and one in-house dataset (collected under uni-

versal patient consenting at the Translational Gastroenterology

Unit, John Radcliffe Hospital, Oxford) are applied. Kvasir-

SEG [24] and CVC-ClinicDB [25] are used for the seg-

mentation task. Similarly, Kvasir-SEG [24] for experiments

on polyp detection as a downstream task. In the pretext

task for the detection and segmentation tasks, we have used

polyp samples from Kvasir-SEG [24] and 1000 non-polyp

samples from the SUN dataset [50] for training our SSL

TABLE I

COLONOSCOPIC DATASETS USED IN OUR EXPERIMENTS

Dataset Images Input size Train Valid Test

Ulcerative colitis classification

LIMUC [26] 11276 224×224 8631 959 1686

In-house 251 224×224 0 0 251

Polyp segmentation

Kvasir-SEG [24] 1000 Variable 800 100 100

SUN(non-polyp) [50] 1000 Variable 1000 0 0

CVC-ClinicDB [25] 612 384×288 0 0 612

Polyp detection

Kvasir-SEG [24] 1000 Variable 800 100 100

SUN [50] 1000 Variable 1000 0 0

model. This approach ensures the presence of representative

images for both polyp and non-polyp samples during pretext

task learning, maintaining a balanced representation. Non-

polyp frames were randomly sampled from 10 video IDs

(starting from ID 1), with a selection of 100 frames per video,

incorporating variability in non-polyp categories across the

available 109,554 frames. We used a random seed of 42,

which guarantees the reproducibility of this selection process.

It is well-established that clinical decision-making is based on

visually good quality images during colonoscopy surveillance

and that despite the patient variability certain traits for each

specific disease, such as ulcerative colitis and/or polyps remain

very closely similar. Hence, the quality of data used in this

work corresponds to the data acquired in clinical procedures

that make up the majority of cases. The details about the

datasets and the number of training, validation, and testing

samples used are presented in Table I. All datasets are publicly

available including the in-house dataset used for generalisabil-

ity assessment. The in-house dataset can be downloaded at

https://doi.org/10.7303/syn52674005.

2) Evaluation metrics: We have used standard top-k ac-

curacy (percentage of samples predicted correctly, top1 and

top2 are used), F1-score (= 2tp
2tp+fp+fn , tp: true positive,

fp: false positive), specificity (= tp
tp+fn ), sensitivity or recall

(= tn
tn+fp ), and Quadratic Weighted Kappa (QWK) for our

classification task. For the detection task, standard computer

vision metrics, including mean average precision (mAP at

an IoU interval [0.25:0.05:0.75]) and AP small, medium

and large, were used for our experiments. Dice similarity

coefficient (DSC), which is also known as F1-score, and type-

II error referred to as F2-score, recall and positive predictive

values (PPV, = tp
tp+fp ) have been used for evaluating our

segmentation task.

3) Implementation details: The proposed method is imple-

mented using PyTorch [52]. All experiments were conducted

on an NVIDIA Quadro RTX 6000 graphics card. For pretext

tasks in self-supervised learning, we have used the batch size

of 32 and all models in the experiments were trained until

convergence with the largest number of epochs set to 2000.

The SGD optimiser with a learning rate of 1e−3 was used for

training and was empirically set. All input images were resized

to 224×224 pixels. ImageNet pre-trained model weights were

used during pretext training.

For the downstream classification task, we fine-tuned the

model with a learning rate of 1e−4, the SGD optimiser with
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TABLE II

QUANTITATIVE COMPARISON FOR UC CLASSIFICATION TASK ON LIMUC DATASET

Method Backbone Top 1 Top 2 F1 Spec. Recall QWK P-values

Baseline [28] R50 0.7532 0.9346 0.6689 0.8630 0.7011 0.8237 7.022e-07

Baseline [23], [28] R50-Att. 0.7556 0.9414 0.6727 0.8692 0.7029 0.8290 4.342e-06

SimCLR [45] R50 0.7355 0.9387 0.6631 0.8510 0.6752 0.8083 6.527e-11

SimCLR [45] R50-Att. 0.7384 0.9219 0.6649 0.8431 0.6942 0.8102 4.843e-09

SimCLR+DCL [51] R50 0.7555 0.9450 0.6729 0.8635 0.6897 0.8269 1.506e-07

SimCLR+DCL [51] R50-Att. 0.7568 0.9367 0.6755 0.8669 0.6952 0.8287 8.760e-07

MoCoV2+CLD [19] R50 0.7574 0.9493 0.6788 0.8721 0.6959 0.8309 7.691e-12

MoCoV2+CLD [19] R50-Att. 0.7598 0.9536 0.6812 0.8709 0.7047 0.8333 6.787e-09

PIRL [16] R50 0.7651 0.9637 0.6859 0.8874 0.7098 0.8376 4.201e-04

PIRL [16] R50-Att. 0.7740 0.9610 0.6918 0.8893 0.7133 0.8460 1.621e-03

PIRL+PLD (ours) [20] R50 0.7752 0.9666 0.7040 0.8891 0.7129 0.8509 6.043e-03

PIRL+PLD (ours) [20] R50-Att. 0.7847 0.9707 0.7167 0.8933 0.7146 0.8563 2.967e-02

SSL-CPCD (ours) R50 0.7912 0.9633 0.7209 0.9043 0.7198 0.8693 -

SSL-CPCD (ours) R50-Att. 0.7977 0.9750 0.7279 0.9008 0.7259 0.8746 -

a batch size of 32, and a stopping criteria with the patience

of 20 epochs. For the detection task, we have used the Adam

optimiser with a learning rate of 1e−5 and a batch size of

32 with a learning rate decay of 0.1 with patience 3 and 400

epochs. For the segmentation task, 300 epochs with a batch

size of 16 and an SGD optimiser with initial learning rate of

1e−3 and a learning rate decay of 0.9 times per 20 epochs

were used to fine-tune the model. For all downstream tasks,

our proposed model converged below 200 epochs. The same

stopping criteria as in the fine-tuning approach was applied

for the baseline methods.

The training of baseline networks included different data

augmentation techniques such as geometric augmentation in-

cluding random rotation (± 5◦), random horizontal flip (proba-

bility, p = 0.5), random crop of input size with padding adding

of 10 pixels, random affine transformation (10◦) and photomet-

ric augmentation including brightness, contrast, and saturation

changes between 50% and 150% of the original image. The

same code was used for both fine-tuning of SSL approaches

and baseline (please refer to the fine-tuning codes available at

https://github.com/EricXuziang/SSL-CPCD).

All experiments used 80% of the dataset for training, 10%

for validation, and the remaining held-out 10% for testing. We

additionally have used out-of-centre unseen centre datasets for

generalisability study. We also provide experiments on 10%,

20% and 50% training data for fine-tuning. To guarantee ex-

perimental reproducibility we have conducted all experiments

by setting random seed at 42.

Hyperparameters: For group-wise cross-level discrimina-

tion loss (LGCLD in Eq. (8)), we set k = 4 for a number of

clusters in classification pretext task, k = 2 in detection and

segmentation pretext task, s = 6 for the re-scaling and m =
0.5 for an angular margin. Memory bank settings proposed

in [16] has been used with the same hyperparameters. For

Eq. (3) we use λ = 0.5 and use τ = 0.4 for computing

the function h(., .) in Eq. (1, 2, 6, and 7). We used an

updated weight of 0.5 for the memory bank exponential

moving average representations. These values are justified in

our ablation study provided in Section IV-D.2. Hyperparameter

tuning for our SSL parameters (τ , and λ) is conducted on the

downstream tasks utilising the validation set which consists of

labeled samples. Further, we have performed hyperparameter

tuning (such as learning rate) with the same validation set for

each method to report the best performance of each on this

dataset.

B. Results

In this section, we present the comparison of our proposed

SSL-CPCD approach with other SOTA SSL methods.

1) Comparison for UC classification task: ResNet50 [28]

(R50) and ResNet50 with convolution-block attention

module [23] (R50-Att.) are established as the baseline model

for supervised learning first, and then the same is used for

other SOTA SSL-based method comparisons in Table II for ul-

cerative colitis classification task on LIMUC dataset. Baseline

networks R50 and R50-Att., respectively, obtained 75.39% and

75.62% on top-1 accuracy and 82.51% and 82.78% on QWK.

Our proposed SSL-CPCD method yielded the best results

with 79.77%, 72.79%, 90.08%, 72.59% and 87.46% on top 1

accuracy, F1 score, specificity, recall and QWK, respectively.

Compared to the supervised learning-based baseline models

(R50), the top 1 accuracy and QWK is improved by 4.38% and

4.95%, respectively, using our proposed SSL-CPCD with the

same backbones. We also compared our proposed SSL-CPCD

approach with other SOTA SSL methods, including popular

SimCLR [45], SimCLR+DCL [51], MoCoV2+CLD [46] and

PIRL [16] methods. Our proposed network (R50-Att.) outper-

formed all these methods with at least nearly 2.4% (PIRL)

up to 6% (SimCLR) on top-1 accuracy. Similar improvements

can be observed on other metrics as well.

2) Comparison for polyp detection task: The Kvasir-SEG

polyp dataset was used to evaluate the performances of SSL

on detection as the downstream task in endoscopy. Here, we

have chosen RetinaNet [53] as the baseline network for both

the supervised and the self-supervised learning approaches.

The quantitative results from Table III show that our proposed

SSL-CPCD approach outperforms all the other SOTA methods

on all metrics. It achieves 2.29%, 2.7% and 3.3% improvement

on mAP compared to SSL methods, including MoCoV2+CLD,

SimCLR+DCL and SimCLR, respectively. Our method also

improves 1.83% on AP50 and 1.4% on APmedium (medium

polyp sizes) compared to MoCoV2+CLD, respectively. Com-

pared to the widely used supervised technique RetinaNet,
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TABLE III

QUANTITATIVE COMPARISON FOR POLYP DETECTION TASK USING KVASIR-SEG DATASET

Method Backbone mAP AP25 AP50 AP75 APsmall APmedium APlarge P-values

RetinaNet [53] R50 0.8637±0.101 0.9377 0.8965 0.6973 0.4832 0.7507 0.8398 6.150e-03

RetinaNet [53] R50-Att. 0.8729±0.082 0.9436 0.9097 0.7045 0.4871 0.7603 0.8419 1.263e-03

SimCLR [45] R50 0.8501±0.090 0.9259 0.8837 0.6709 0.4641 0.7416 0.8237 1.337e-05

SimCLR [45] R50-Att. 0.8532±0.076 0.9278 0.8818 0.6846 0.4679 0.7403 0.8302 9.270e-03

SimCLR+DCL [51] R50 0.8537±0.087 0.9269 0.8853 0.6852 0.4709 0.7429 0.8321 5.057e-04

SimCLR+DCL [51] R50-Att. 0.8592±0.101 0.929 0.8893 0.6887 0.4739 0.7467 0.8403 2.156e-04

MoCoV2+CLD [19] R50 0.8457±0.072 0.9273 0.9028 0.6845 0.4779 0.7491 0.8346 1.869e-09

MoCoV2+CLD [19] R50-Att. 0.8519±0.070 0.9412 0.9044 0.7019 0.4859 0.7563 0.8402 7.792e-07

PIRL [16] R50 0.8612±0.078 0.9403 0.8931 0.6929 0.4839 0.7487 0.8317 2.707e-02

PIRL [16] R50-Att. 0.8677±0.073 0.9408 0.8961 0.702 0.4863 0.7589 0.8408 8.771e-03

PIRL+PLD (ours) [20] R50 0.8649±0.077 0.9431 0.9027 0.7042 0.4919 0.7547 0.8426 5.694e-03

PIRL+PLD (ours) [20] R50-Att. 0.8738±0.071 0.9466 0.9053 0.7069 0.4977 0.7601 0.8458 1.178e-02

SSL-CPCD (ours) R50 0.8709±0.070 0.9421 0.9192 0.7107 0.5033 0.763 0.8542 -

SSL-CPCD (ours) R50-Att. 0.8862±0.067 0.9469 0.9227 0.7197 0.5105 0.7703 0.8598 -

TABLE IV

QUANTITATIVE COMPARISON FOR POLYP SEGMENTATION TASK

Method Backbone DSC F2 Recall PPV P-values

U-Net [54] none 0.7933±0.053 0.7671 0.7945 0.9131 2.881e-10

Res-UNet [55] R50 0.7867±0.074 0.7667 0.7723 0.9139 1.670e-04

Res-UNet [55] R50-Att. 0.792±0.066 0.7743 0.7862 0.9187 7.117e-06

SimCLR [45] R50 0.7892±0.068 0.7621 0.7639 0.9146 2.936e-07

SimCLR [45] R50-Att. 0.7945±0.058 0.7759 0.7903 0.9162 6.977e-05

SimCLR+DCL [51] R50 0.7879±0.056 0.7609 0.7653 0.9169 4.690e-05

SimCLR+DCL [51] R50-Att. 0.7933±0.051 0.7822 0.7741 0.9038 8.816e-06

MoCoV2+CLD [19] R50 0.7946±0.093 0.779 0.7846 0.9173 3.697e-11

MoCoV2+CLD [19] R50-Att. 0.8029±0.077 0.7953 0.7998 0.9201 7.327e-09

PIRL [16] R50 0.7906±0.069 0.7842 0.7946 0.9135 7.502e-03

PIRL [16] R50-Att. 0.7969±0.067 0.7893 0.8056 0.9177 1.432e-02

PIRL+PLD (ours) [20] R50 0.8069±0.058 0.7913 0.8093 0.9189 5.519e-03

PIRL+PLD (ours) [20] R50-Att. 0.8116±0.049 0.7989 0.8132 0.9211 4.107e-02

SSL-CPCD (ours) R50 0.8173±0.047 0.8032 0.8104 0.9217 -

SSL-CPCD (ours) R50-Att. 0.8232±0.043 0.8081 0.8234 0.9259 -

our method is better on mean average mAP but significantly

improves over AP50, AP75 and size-based metrics.

3) Comparison for polyp segmentation task: The Kvasir-

SEG dataset was also used to assess the performance of SSL-

based approaches in our experiment for segmentation as a

downstream task in endoscopy. Here, we have chosen Res-

UNet [55] as the baseline network for both the supervised and

the self-supervised learning approaches. Results for supervised

U-Net [54] approach have also been provided for comparison.

Table IV compares the result of the proposed SSL-CPCD

with other SOTA SSL approaches and baseline supervised

model. While proposed SSL-CPCD provided an improvement

of 3.12% and 3.72% on DSC and Recall, respectively, for the

baseline ResNetUNet in a supervised setting, our approach

also showed improvements of 2.03%, 1.28%, 2.36% and

0.58% over MoCoV2 + CLD in DSC, F2-score, recall and

PPV, respectively. Higher recall while keeping the precision

(PPV) high (over 90%) indicates that our method is more

medically relevant.

4) Computation time: For the PIRL approach (top SOTA

approach) it took 37 s per epoch for pretext training, while

ours (SSL-CPCD) took 40 s per epoch with a total of nearly

22.5 hrs. However, for the fine-tuning of the downstream tasks,

all methods reported in this paper with the same backbone took

the same amount of time per epoch compared to baseline and

SOTA models (e.g., for classification 31s per epoch, detection

took 27s per epoch and segmentation approach took 29 s per

epoch). With our model, the fine-tuning approach converged

TABLE V

GENERALISATION STUDY FOR THE UC CLASSIFICATION TASK

Method Backbone Top 1 Spec. Recall QWK P-values

Baseline [28] R50 0.5856 0.7239 0.5569 0.5379 2.315e-11

Baseline [23], [28] R50-Att. 0.6055 0.7539 0.5739 0.6572 6.812e-08

SimCLR [45] R50 0.5737 0.7020 0.5256 0.5611 6.076e-09

SimCLR [45] R50-Att. 0.5777 0.7139 0.5420 0.6018 1.497e-06

SimCLR+DCL [51] R50 0.5976 0.7297 0.5622 0.6345 4.277e-07

SimCLR+DCL [51] R50-Att. 0.6016 0.7458 0.5758 0.6542 9.603e-06

MoCoV2+CLD [19] R50 0.6175 0.7716 0.5878 0.6939 5.657e-08

MoCoV2+CLD [19] R50-Att. 0.6135 0.7823 0.5737 0.6902 6.069e-11

PIRL [16] R50 0.6255 0.8213 0.6097 0.7312 1.370e-03

PIRL [16] R50-Att. 0.6335 0.8397 0.6139 0.7469 9.677e-04

PIRL+PLD (ours) [20] R50 0.6370 0.8359 0.6197 0.7507 2.574e-02

PIRL+PLD (ours) [20] R50-Att. 0.6453 0.8415 0.6223 0.7662 5.047e-03

SSL-CPCD(ours) R50 0.6534 0.8501 0.6249 0.7835 -

SSL-CPCD(ours) R50-Att. 0.6733 0.8677 0.6403 0.7887 -

at 200 epochs compared to others (e.g., PIRL took 500 epochs

for convergence).

C. Generalisation

To ensure the generalisation of the proposed approach, we

trained our model and other methods on one dataset and then

tested them on an unseen dataset from different institutions.

1) Generalisibility study for UC classification: We used the

UC classification model trained on the LIMUC dataset col-

lected at Marmara University School of Medicine. We tested

this model on our in-house dataset (collected at the John

Radcliffe Hospital, Oxford). Table V the generalisability of

our SSL-CPCD model and other SOTA approaches on UC

classification task. Our proposed SSL-CPCD obtained an

acceptable Top 1 accuracy of 67.33%, F1-score of 64.69%,

specificity of 86.77%, recall of 64.03% and QWK of 78.87%.

While outperforming all SOTA approaches, compared with

MoCoV2+CLD, our method achieves an improvement of

5.98% on top 1 accuracy and nearly 9% in QWK. Table V

shows that our SSL-CPCD outperforms other SOTA methods

in various evaluation metrics.

2) Generalisability study for polyp segmentation: All models

for both baseline and SOTA approaches were first trained on

the Kvasir-SEG dataset and then tested on the CVC-ClinicDB

dataset, for which the results are presented in Table VI. Our

proposed SSL-CPCD drastically surpassed baseline supervised

approaches (over 10% on DSC for U-Net and over 7% on DSC
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TABLE VI

GENERALISATION STUDY FOR SEGMENTATION TASK

Method Backbone DSC F2-score Recall PPV P-values

U-Net [54] none 0.5826±0.057 0.6029 0.5942 0.7633 1.009-e12

Res-UNet [55] R50 0.6092±0.040 0.6379 0.6265 0.8218 8.708-e05

Res-UNet [55] R50-Att. 0.6027±0.072 0.6499 0.6372 0.8065 6.363-e04

SimCLR [45] R50 0.5942±0.069 0.6498 0.6334 0.8312 1.982-e07

SimCLR [45] R50-Att. 0.6113±0.055 0.6556 0.6673 0.8329 6.621-e04

SimCLR+DCL [51] R50 0.6039±0.059 0.6501 0.6586 0.8293 8.193-e06

SimCLR+DCL [51] R50-Att. 0.6092±0.049 0.6679 0.6598 0.8301 2.770-e03

MOCOv2+CLD [19] R50 0.6268±0.047 0.6498 0.6509 0.8277 9.913-e09

MOCOv2+CLD [19] R50-Att. 0.632±0.050 0.6691 0.6675 0.8362 7.076-e07

PIRL [16] R50 0.6196±0.049 0.6742 0.6703 0.8378 5.501-e03

PIRL [16] R50-Att. 0.6277±0.053 0.6801 0.6770 0.8396 6.950-e04

PIRL+PLD (ours) [20] R50 0.6459±0.062 0.6617 0.6802 0.8311 1.669e-03

PIRL+PLD (ours) [20] R50-Att. 0.6573±0.066 0.6720 0.6827 0.8368 9.618e-03

SSL-CPCD (ours) R50 0.6705±0.043 0.6903 0.6812 0.8379 -

SSL-CPCD (ours) R50-Att. 0.6793±0.040 0.6978 0.6897 0.8488 -

with the same backbone on ResUNet). In addition, our method

obtained an improvement of 4.73% and 6.8%, respectively,

over MoCoV2+CLD and SimCLR on DSC. Similarly, over

5% improvement on PIRL is evident in both backbone settings

(R50 and R50-Att.).

D. Ablation studies

We have conducted an extensive ablation study of our ap-

proach. First, we ablated the impact of multiple loss functions,

including NCE, GCLD, and the added angular margin m.

Then, we conducted an ablation study experiment to further

evaluate the performance of our proposed approach under

different parameter settings.

1) Loss functions: Table VII shows the quantitative results

of our ablation study in loss functions. Initially, our proposed

method, which contains three loss functions, achieves 79.12%

on top 1 accuracy and 72.09% on the F1 score for the

classification task. Similarly, it has the best AP50 and mAP of

91.92% and 87.09%, respectively. On the segmentation task,

TABLE VII

ABLATION STUDY RESULTS FOR DIFFERENT LOSS FUNCTIONS ON

VALIDATION SET

Loss Class. task Det. task Seg. task

function Top 1 F1 AP50 mAP DSC PPV

NCE 0.8341 0.7693 0.9527 0.9004 0.8883 0.9438

NCE+GCLD 0.8495 0.781 0.9613 0.9062 0.8987 0.9569

NCE+GCLD+m 0.8603 0.7933 0.9697 0.9119 0.9037 0.9604

TABLE VIII

EFFECT OF DIFFERENT HYPER-PARAMETER SETTING USING

VALIDATION SET

Parameter settings
Top 1 AP50 DSC

λ
′

τ

0.1 0.2 0.8342 0.9461 0.8897

0.25 0.2 0.8415 0.9489 0.8917

0.5 0.2 0.8509 0.9611 0.8968

1 0.2 0.8405 0.9522 0.8903

0.1 0.4 0.8425 0.9503 0.8940

0.25 0.4 0.8467 0.9517 0.8987

0.5 0.4 0.8603 0.9653 0.9037

1 0.4 0.8446 0.9549 0.8962

0.1 0.6 0.8332 0.9566 0.8863

0.25 0.6 0.8383 0.9607 0.8907

0.5 0.6 0.8498 0.9697 0.8935

1 0.6 0.8352 0.9625 0.8886

TABLE IX

HYPER-PARAMETER STUDY FOR DIFFERENT NUMBER OF CLUSTERS

No. of clusters
Top 1 AP50 DSC

k

2 0.8533 0.9697 0.9037

3 0.8540 0.9578 0.9015

4 0.8603 0.9618 0.8999

5 0.8582 0.9601 0.8957

7 0.8498 0.9627 0.9004

10 0.8519 0.9609 0.8986

TABLE X

ABALATION STUDY FOR DIFFERENT LEARNING RATE USING VALIDATION

SET

Method LR Top 1 F1 Spec. Recall QWK

0.05 0.7987 0.7298 0.9214 0.7340 0.8707
0.01 0.8010 0.7317 0.9220 0.7379 0.8732

SimCLR [45] 0.005 0.8021 0.7326 0.9246 0.7433 0.8751
0.001 0.8049 0.7345 0.9239 0.7414 0.8769

0.0005 0.8004 0.7301 0.9206 0.7355 0.8716
0.0001 0.7955 0.7270 0.9189 0.7328 0.8647

0.05 0.8501 0.7817 0.9469 0.7869 0.9253
0.01 0.8559 0.7899 0.9502 0.7873 0.9299

SSL-CPCD 0.005 0.8567 0.7905 0.9507 0.7889 0.9305
(ours) 0.001 0.8603 0.7933 0.9523 0.7911 0.9326

0.0005 0.8533 0.7882 0.9487 0.7891 0.9279
0.0001 0.8429 0.7846 0.9453 0.7865 0.9231

TABLE XI

COMPARISION WITH SOTA METHODS FOR DIFFERENT PERCENTAGES

OF TRAINING SAMPLES FOR FINE-TUNING IN CLASSIFICATION AS A

DOWNSTREAM TASK. RESNET50 IS TAKEN AS BASELINE FOR ALL

CASES.

Method
% training

samples
Top 1 F1 Spec. Recall QWK

100 0.7539 0.6702 0.8670 0.6906 0.8251
Baseline 50 0.7462 0.6580 0.8602 0.6732 0.8187
(ResNet50) [28] 20 0.7263 0.6432 0.8513 0.6655 0.8065

10 0.7004 0.6277 0.8242 0.6387 0.7879

100 0.7651 0.6859 0.8874 0.7098 0.8376
PIRL [16] 50 0.7236 0.6472 0.8324 0.6588 0.7993

20 0.6903 0.6363 0.8196 0.6350 0.7832
10 0.6813 0.6139 0.8017 0.6247 0.7649

100 0.7752 0.7040 0.8891 0.7129 0.8509
PIRL+PLD 50 0.7497 0.6719 0.8560 0.6861 0.8196
[20] 20 0.7301 0.6636 0.8455 0.6727 0.8043

10 0.7135 0.6359 0.8397 0.6518 0.7937

100 0.7912 0.7209 0.9043 0.7198 0.8693

SSL-CPCD 50 0.7811 0.7133 0.8977 0.7158 0.8562

(ours) 20 0.7692 0.6978 0.8749 0.6897 0.8242

10 0.7551 0.6897 0.8666 0.6709 0.8001

the combined loss also showed improvement when combined

with various strategies, yielding 81.13% on DSC and 92.18%

on PPV. It can be observed that compared with classically

using noise contrastive loss only, our approach and modifica-

tions led to significant improvements in all downstream tasks

by a larger margin (top 1 accuracy, mAP, and DSC improved

respectively by 2.61%, 0.97% and 2.07%).

2) Impact of hyper-parameters: The quantitative results for

the ablation study of different parameter settings are shown in

Table VIII. We set different weight and temperature in Eq. (3-

8). Weight parameter λ
′

= {0.1, 0.25, 0.5, 1} and temperature

τ = {0.2, 0.4, 0.6} are used for searching best parameters

experimentally. As shown in Table VIII, when weight and tem-

perature parameters are 0.5 and 0.4, respectively, our method

achieves the best results in classification and segmentation
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TABLE XII

COMPARISION WITH SOTA METHODS FOR DIFFERENT PERCENTAGES

OF TRAINING SAMPLES FOR FINE-TUNING IN DETECTION AS A

DOWNSTREAM TASK. RESNET50 IS TAKEN AS BASELINE FOR ALL

CASES.

Method
% training

samples
mAP AP25 AP50 AP75 P-values

100 0.8637±0.101 0.9377 0.8965 0.6973 6.150e-03
RetinaNet [53] 50 0.8321±0.123 0.9051 0.8709 0.6779 1.479e-05

20 0.8207±0.095 0.8778 0.8587 0.6583 3.290e-04
10 0.8093±0.117 0.8599 0.8327 0.6467 3.157e-06

100 0.8612±0.078 0.9403 0.8931 0.6929 2.707e-02
PIRL [16] 50 0.8455±0.081 0.9194 0.8793 0.6799 9.670e-05

20 0.8260±0.087 0.8817 0.8571 0.6642 4.551e-04
10 0.8135±0.082 0.8627 0.8369 0.6498 7.619e-05

100 0.8649±0.077 0.9431 0.9027 0.7042 5.694e-03
PIRL+PLD [20] 50 0.8398±0.069 0.9156 0.8769 0.6826 1.191e-03

20 0.8261±0.072 0.8942 0.8551 0.6717 2.233e-02
10 0.8172±0.079 0.8653 0.8390 0.6521 8.582e-03

100 0.8709±0.070 0.9421 0.9192 0.7107 -
SSL-CPCD 50 0.8587±0.059 0.9229 0.8917 0.7027 -
(ours) 20 0.8439±0.075 0.9060 0.8764 0.6793 -

10 0.8307±0.077 0.8966 0.8671 0.6762 -

TABLE XIII

COMPARISION WITH SOTA METHODS FOR DIFFERENT PERCENTAGES

OF TRAINING SAMPLES FOR FINE-TUNING IN SEGMENTATION AS A

DOWNSTREAM TASK. RESNET50 IS TAKEN AS A BASELINE FOR ALL

CASES.

Method
% training

samples
DSC F2 Recall PPV P-values

100 0.7867±0.074 0.7667 0.7723 0.9139 1.670e-04
Res-UNet [55] 50 0.7423±0.063 0.7341 0.7369 0.7579 2.511e-03
(Supervised) 20 0.7167±0.077 0.7062 0.7098 0.6809 9.621e-06

10 0.6949±0.080 0.6897 0.6907 0.6706 5.825e-06

100 0.9067±0.042 0.8832 0.8897 0.9663 3.238e-02
Polyp-PVT [56] 50 0.8621±0.053 0.8487 0.8479 0.9409 1.181e-02
(Supervised) 20 0.8539±0.059 0.8376 0.8301 0.9241 6.489e-03

10 0.8346±0.057 0.8192 0.8221 0.9103 4.670e-05

PIRL [16] 100 0.7906±0.069 0.7842 0.7946 0.9135 7.502e-03
with Res-UNet 50 0.7589±0.072 0.7433 0.7476 0.8772 9.017e-05
(SSL) 20 0.7418±0.078 0.7306 0.7411 0.8591 1.109e-06

10 0.7273±0.086 0.7139 0.7186 0.8267 8.940e-08

PIRL [16] 100 0.8997±0.051 0.8781 0.8792 0.9580 2.209e-03
with Polyp-PVT 50 0.8660±0.045 0.8465 0.8518 0.9433 4.091e-05
(SSL) 20 0.8541±0.059 0.8329 0.8396 0.9387 4.672e-04

10 0.8302±0.060 0.8201 0.8254 0.9312 2.063e-07

PIRL+PLD [20] 100 0.8069±0.058 0.7913 0.8093 0.9189 5.519e-03
with Res-UNet 50 0.7749±0.053 0.7623 0.7646 0.8855 3.431e-07
(SSL) 20 0.7495±0.067 0.7541 0.7372 0.8661 7.073e-06

10 0.7371±0.069 0.7230 0.7287 0.8415 2.901e-05

PIRL+PLD [20] 100 0.9083±0.049 0.8862 0.9007 0.9624 1.720e-03
with Polyp-PVT 50 0.8691±0.052 0.8513 0.8577 0.9475 2.098e-02
(SSL) 20 0.8571±0.055 0.8381 0.8431 0.9406 7.574e-03

10 0.8399±0.063 0.8279 0.8316 0.9344 6.605e-05

SSL-CPCD 100 0.8173±0.047 0.8032 0.8104 0.9218 -
with Res-UNet 50 0.8063±0.044 0.7867 0.7903 0.8867 -
(ours) 20 0.7749±0.050 0.7647 0.7727 0.8803 -

10 0.7657±0.058 0.7562 0.7597 0.8747 -

SSL-CPCD 100 0.9131±0.039 0.8960 0.9041 0.9693 -
with Polyp-PVT 50 0.8793±0.037 0.8702 0.8833 0.9567 -
(ours) 20 0.8697±0.040 0.8499 0.8669 0.9508 -

10 0.8542±0.047 0.8407 0.8486 0.9387 -

TABLE XIV

COMPARISON WITH LARGER BASELINE BACKBONES FOR

CLASSIFICATION, DETECTION, AND SEGMENTATION TASKS.

Method Parameters Top 1 AP50 DSC

EfficientNet-v2 [57] (Baseline) 24M 0.7562 0.9090 0.7957

EfficientNet-v2 [57] (+ SSL-CPCD) 24M 0.7948 0.9221 0.8277

EfficientNet-B6 [58] (Baseline) 43M 0.7556 0.9028 0.7911

EfficientNet-B6 [58] (+ SSL-CPCD) 43M 0.7953 0.9207 0.8203

ResNet101 [28] (Baseline) 44.5M 0.7550 0.8993 0.7890

ResNet101 [28] (+ SSL-CPCD) 44.5M 0.7930 0.9198 0.8149

ResNet152 [28] (Baseline) 60.2M 0.7568 0.9047 0.7938

ResNet152 [28] (+ SSL-CPCD) 60.2M 0.7972 0.9214 0.8229

SENet-154 [59] (Baseline) 440M 0.7612 0.9138 0.8016

SENet-154 [59] (+ SSL-CPCD) 440M 0.8021 0.9343 0.8353

tasks with 79.77% on Top 1 accuracy and 82.32% on DSC,

respectively. For the detection task, the best performance of

our SSL-CPCD was obtained when λ
′

= 0.5 and τ = 0.6. We

additionally explored different learning rates for all compared

methods, and our experiments were conducted on a validation

set that suggested the same learning rate of 0.001 (Table X).

To substantiate the effect of the number of clusters on cross-

level grouping for the loss computation, we conducted an

additional study (Table IX). It can be observed that the best

results were obtained when using the same number of clusters

as the number of classes in each downstream task.

3) Limited data settings: It can be observed that compared

to the baseline method and most accurate SSL technique

(PIRL [16] and PIRL+PLD [20]), our approach outperforms

in all data settings for all cases. For example, in classification

task (Table XI) with only 10% data our SSL-CPCD approach

outperforms the supervised ResNet50 trained with 100% data,

while only 50% data was required to outperform other two

most accurate SSL methods. Similarly, for detection task

(Table XII) under all data settings, our method outperforms all

other approaches with 2%-3% improvements. Finally, for the

segmentation downstream task (Table XIII) where two fully

supervised models are used residual U-Net (Res-UNet [55])

and polyp segmentation with pyramid vision transformers

(Polyp-PVT [56]), our method surpassed Res-UNet with only

50% data (nearly 2%) and Polyp-PVT trained on 50% data

was achieved by only 20% using our approach. Also, it is

evident that the supervised method (Res-UNet) dropped DSC

score from 0.78 (on 100%) to 0.69 (on 10%), a drop of 9%,

while our approach only dropped by 5%. A similar drop was

observed for Polyp-PVT (7% compared to only 5%).

4) Comparison with other larger models: It can be observed

from Table XIV that our approach (SSL-CPCD) consistently

provides a perfomance boost of nearly 4% in classification,

≈ 2% in detection, and ≈ 3% in segmentation independent of

model size.

5) Model efficiency: Compared to the baseline SSL PIRL

model [16], the proposed SSL-CPCD demonstrated faster

convergence both during the pretext learning stage and the

fine-tuning stage (e.g., loss at 100th epoch from the proposed

approach of 2.16 vs 3.36 during pretext, and 0.11 vs 0.35

on the fine-tuning stage). While the inference time from all

methods was the same for all SSL-based methods as the

baseline supervised methods, our SSL-CPCD took nearly 22.2

hours (compared to 20 hours 30 minutes with the baseline

PIRL) for pretext training and nearly 1 hour 40 minutes

for fine-tuning for all downstream tasks (31s per epoch for

classification, 27s per epoch for detection and 29s per epoch

for segmentation tasks).

E. Qualitative Analysis

In the UC classification task in Fig. 3, a t-distributed

stochastic neighbour embedding (t-SNE) plot of test image

samples embedding, and gradient weighted activation map

(Grad-CAM) method is used to visualise model performance.

It can be observed in Fig. 3 a) that more compact and

interpretable clusters were obtained using perplexity of 15

compared to perplexity of 5. It can be observed (Fig. 3 a.ii)
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Fig. 3. a) t-SNE plot for the raw test data, baseline network (supervised)
and two SSL approaches with perplexity of 5 in a. i) and 15 in a. ii);
and b) attention maps of the proposed SSL-CPCD compared to other
SOTA methods for multi-class ulcerative colitis classification task (MES
0, MES 1, and MES 2). Principal Components Analysis (PCA) was used
to reduce the dimension of the feature maps to 50 as suggested in [27].
It is to be noted that t-SNE plots were obtained before 1000 iterations
(set maximum) as the t-SNE converged, i.e., the same error after a
certain number of iterations. The minimisation cost (Kullback-Leibler
divergence) error was higher for all plots for the perplexity of 5 compared
to the perplexity of 15.

that the test images are stochastically distributed in raw sample

distributions. It is important to note that data points close to

each other in the t-SNE visualisation are likely to be similar

in the original higher dimensional embedding space [27]. This

means that points forming tight clusters are more similar than

points in other clusters. It can be observed that after model

training, images of the same class cluster appear tentatively

in the same region. The SSL-CPCD method that utilises

group-wise loss based on clustering demonstrates improved

grouping and their distinct seperation from other clusters in

different MES classes than the baseline supervised model

and SSL-based PIRL approach. Using SSL-CPCD, it can be

observed that the same categories are more concentrated in the

same area, and there are clear boundaries between different

categories, which in other cases are not apparent.

Similarly, while looking at the attention (Fig. 3 b), the

baseline method focuses on the wrong location in some images

(see the first and second rows in Fig. 3 b). In other SOTA

SSL methods, the model notices the correct location, but the

lesion location is inaccurate. Our proposed SSL-CPCD can

accurately identify the severely affected lesion area and shape.

Fig. 4. Qualitative comparison of our proposed SSL-CPCD with other
SOTA methods for polyp detection tasks.

Fig. 5. Qualitative comparison of our proposed SSL-CPCD with other
SOTA methods for polyp segmentation task.

For the polyp detection task (Fig. 4), it can be seen that

baseline and other SSL methods cannot accurately locate the

polyp’s spatial location. Most methods have enlarged bound-

aries and even multiple bounding boxes, especially for the

second and fourth examples in the figure. However, our SSL-

CPCD approach can locate the polyp position more accurately,

and the bounding boxes are closer to ground truth.

In the polyp segmentation task (Fig. 5), the baseline method

incorrectly identifies non-polyp regions as polyps and over

or under-segments the area. Although other SSL methods

did not misidentify the polyp region, they only segmented

part of the polyp. SSL-CPCD can segment polyps more

accurately, similar to ground truth labels. Our proposed SSL-

CPCD maintains the best segmentation results in all examples.

V. DISCUSSION AND CONCLUSION

While supervised learning methods have been widely used

in the endoscopic image analysis, however, due to limited

labelled data availability and large variability in disease-

relevant changes in the tissue structure or used imaging devices

at different centres, their generalisability can be largely af-

fected [60], [61]. We explored a self-supervised-based learning

approach (SSL) that can learn semantically meaningful fea-

tures and representations invariant to texture and illumination

changes in endoscopic images that are more robust. SSL can

learn robust features as they are not supervised or incentivised
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by labels under the pretext of training. Thus, it can learn

label-relevant features during fine-tuning and other intrinsic

properties that may help generalise better [6]. In addition,

self-supervised approaches are a scalable way to learn visual

representations without labels and are well-known to be robust

to class imbalance compared to supervised approaches [6].

We use patch generation during pretext training first that is

independent to the class labels in the dataset (i.e., unlabelled

samples are used). Here, patches will have their own labels,

e.g., solving generated as a jigsaw puzzle in our case, and the

model tries to learn representations by learning the similarity

and dissimilarity between the patches and the target image. So,

there is no notion of class imbalance within pretext training.

The learned visual representations during pretext tasks help

to fine-tune the model performance on the downstream task

more effectively and are widely known to be robust to class

imbalance in the dataset as suggested by Liu et al. [6]. Our

work is validated on inconspicuous ulcerative colitis data and

more visible polyps. This gives us an insight into the strength

of the performance of SSL approaches on variable data and

target lesion types.

We show that these representations, using unlabeled en-

doscopic images, mitigate the risk of limited labels and

provide improved results compared to widely used supervised

techniques. Even though the SSL-based approaches have been

proposed in the past for natural scenes [16], [45], [46], to

our knowledge, no study has been conducted comprehensively

for endoscopic image analysis. We propose a novel composite

pretext-class discrimination loss (CPCD) that combines noise

contrastive losses for the single instance level and group-

based instance, showing significant improvements compared

to other SSL methods. Here, instance discrimination obtains

meaningful representations through instance-level contrastive

learning, which can be used to reflect the apparent similarities

between instances.

MES 0

a) Classification task - MES scoring in
ulcerative colitis

b) Detection task - localisation of polyps
in colonoscopy

c) Segmentation task - pixel-level segmentation of polyps in colonoscopy

MES 1

MES 2 MES 1 MES 3 MES 2

MES 1 MES 2
Original
image

Original
image

Ours
(RetinaNet)

Ours
(ResUNet)

Ours
(PVT)

Ground
truth

Original
image

Ours
(ResUNet)

Ours
(PVT)

Ground
truth

Ground
truth

*wrongly classified classes are in red

Fig. 6. Limitations of our proposed approach (SSL-CPCD) for different
data conditions, including blur, difficult scene views due to organ topol-
ogy or camera positions, imaging artefacts such as specularity and pixel
saturation.

The assumption that instance discrimination is established

is based on the fact that each example is significantly different

from others and can be treated as a separate category. However,

endoscopic image data tend to have higher similarity in their

video images, making it extremely hard to learn reliable

features. Thus, there is a significant similarity between training

data in conventional self-supervised learning, which will lead

to the negative pairs used in the contrastive learning process

being likely to be composed of high similarity instances,

which will lead to a large number of false positives in the

training process of contrastive learning repulsion. We solve

this problem in two directions. First, we propose a patch-level

instance-group discrimination, GCLD loss, which can perform

k-means clustering on instances so that similar instances are

clustered into the same group. The error rejection of high-

similarity instances was alleviated in the subsequent con-

trastive loss. In addition, we further optimise the loss function

by adding an angular margin m between positive and negative

samples in contrastive learning (see ablation study results in

Table VII). Our proposed SSL-CPCD significantly improves

all three representative tasks for anomalies in colonoscopy

images. In the ulcerative colitis classification task, SSL-CPCD

succeeded with the highest Top 1 accuracy of 79.77% and

the highest F1 score of 72.79% on LIMUC (see Table II).

Likewise, we reported the highest values of 88.62%, 94.69%,

and 92.27% for mAP, AP25, and AP50 on Kvasir-SEG in the

polyp detection task (see Table III). Furthermore, we report

the best DSC, recall and PPV for the polyp segmentation task

on the Kvasir-SEG dataset (see Table Table IV). Furthermore,

SSL-CPCD on the generalisability assessment it achieves the

highest Top 1 accuracy and QWK of 67.33% and 78.87% (see

Table V), and the highest DSC of 67.93% (see Table VI). From

Fig. 5, it is clear that the boundary margins are improved using

SSL methods compared to fully supervised methods. This

demonstrates that the SSL leverages unlabeled data during pre-

text learning, encouraging the model to capture semantically

meaningful information and robust features from data that is

then transferred to the downstream image segmentation task,

improving the precision of segmentation boundaries. Addition-

ally, P-values from paired t-tests show statistical significance

in results from our methods compared to others. It can be

observed that for all tasks our approach provided P-value

≤ 0.05 (significantly different, Table II, Table III, Table IV). It

can also be observed that the standard deviation provided for

main metrics in detection (mAP, Table III) and segmentation

(DSC, Table III) is smaller compared to all other methods.

However, due to organ topology and the complex

environment of moving the endoscopic camera, there are

unavoidable artefacts, blur due to camera motion and

differences in visual appearances that the training samples

may not sufficiently capture. We investigated which of the

frames gave lower scores in each downstream task (see

Figure 6). It can be observed that for the classification task in

Figure 6 (a) inaccurate results are mainly in the frames where

the organ topology is complex (e.g., lifted mucosa from

surrounding in the first case and the fourth case). Similarly,

the blur in sample 3, labelled MES 2, is identified as MES

1. For the detection task in Figure 6 (b) one can observe an

image in an oblique view that confuses the model and another
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image with a flat polyp being missed due to specularity

surrounding it. A similar under and over-segmentation can

be seen for the semantic segmentation task in Figure 6 (c).

We used various techniques to tackle the implementation

challenges of SSL approaches. For example, in terms of the

requirement of large amounts of data to generate pseudo

labels, we used larger datasets that are publicly available

and then used testing with a held-out smaller dataset. We

also applied various percentage splits on it during fine-

tuning training (e.g., 50%, 20% and 10%) to measure the

effectiveness of the method and its ability to exploit learnt

representations. We observed a similar trend of performance

drop to baseline upon reducing label samples from 100% to

10%, which was also observed in [3]. However, it is essential

to note that our SSL-CPCD approach for classification with

only 10% data samples (Table XI) can get the performance

of fully supervised learning approaches that require 100%

labelled data. A similar trend can be observed for detection

(Table XII) and segmentation (Table XIII) where nearly

50% labelled data are required by fully supervised methods

to reach the performance of SSL-CPCD provided by only

10% of samples. In addition, hidden test centre data (not

provided in training) was used to measure the efficacy and

robustness of all SSL methods. Similarly, to understand the

effect of cluster size k (Table IX) and the various other

hyperparameters (Table VIII), we used a heuristic approach

on all SSL approaches for each downstream task, and the best

values were identified and reported in the paper. A marginal

drop in the performance with different cluster sizes k was

observed compared to the target classes in the downstream

task. This can also be viewed as a limitation of the proposed

method.

Our proposed approach combining image-level and group-

level instances in a contrastive loss-based framework for self-

supervised learning in endoscopic image analysis is unique

and has not been explored before. Our SSL-CPCD approach

can learn representative features from unlabeled images that

are evident to improve any downstream tasks. Our strategy

of the added angular margin increases the geometric dis-

tance between positive and negative samples. Our experiments

demonstrate the effectiveness and improvement of our SSL-

CPCD method over several SOTA self-supervised methods

on three downstream tasks for complex colonoscopic images.

Cross-dataset testing confirmed the generalisation ability of

our SSL-CPCD approach, which is superior to all SOTA SSL-

based methods.
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