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Given the fact that the existing literature lacks the real-time estimation of road capacity and incident location using data from
inductance loop detectors, a data-driven framework is proposed in this study for real-time incident detection, as well as road
capacity and incident location estimation. )e proposed algorithm for incident detection is developed based on the variation in
traffic flow parameters acquired from inductance loop detectors. )reshold values of speed and occupancy are determined for
incident detection based on the PeMS database. )e detection of the incident is followed by the real-time road capacity and
incident location estimation using a Cell Transmission Model (CTM) based approach. )e data of several incidents were
downloaded from PeMS and used for the development of the proposed framework presented in this study. Results show that the
developed framework detects the incident and estimates the reduced capacity accurately. )e location of the incident is estimated
with an overall accuracy of 92.5%. )e performance of the proposed framework can be further improved by incorporating the
effect of the on-ramps, off-ramps, and high-occupancy lanes, as well as by modeling each lane separately.

1. Introduction

An incident is among the most unfavorable events that
significantly affect the roadway capacity and decrease the
reliability of the system. )e impact of disruption due to
incident could be minimized by implementing real-time
intervention strategies. )e effectiveness of the intervention
measures depends on accurate real-time information about
the location, duration, and impact of the incident.

)e main problem caused by the incident is not the lack
of capacity but the temporary reduction of capacity due to
the incident [1]. Golob et al. [2] found a strong relationship
between the likelihood of incidents and traffic conditions.
Sun and Li [3] investigated the relationship between inci-
dents and different traffic conditions. Mattsson and Jenelius
[4] calculated the increment in the travel time of links when
certain links in the network are closed. Goldberg [5] found
that, with an increase in capacity utilization, the redundancy
of the system decreases, making the systemmore vulnerable.

Among traffic flow parameters, the capacity of the road
section is directly affected by the incident, which then affects
the other parameters such as speed, delay, and occupancy.

)e capacity of the road is not a fixed value. It varies with
the change in traffic conditions, road environment, and
weather conditions. Estimating the capacity round the clock
is a cumbersome task. )e capacity estimation becomes
more critical when an incident occurs, as a significant part of
the delay faced by drivers is due to the incident [6, 7]. Ahmed
and Hawas [8] introduced a threshold-based approach for
incident detection and validated the model through simu-
lation data. Sheu [9] used traffic flow and occupancy data of
I-880 freeway in Oakland, California, for real-time incident
detection using discrete-time, nonlinear, stochastic system
modeling. Rossi and Gastaldi [10] used fuzzy logic for in-
cident detection from loop detector data. Zhang and He [11]
and Gu and Qian [12] developed a deep learning approach
for detecting the incident through social media. Xiao [13]
proposed a model based on ensemble learning for incident
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detection. Kinoshita and Takasu [14] formulated a simple
model for incident detection from probe car data. Oh [15]
conducted statistical analyses and identified traffic condi-
tions that lead to traffic incident likelihood. Chen et al. [16]
determined factors which contribute to increasing the
likelihood of incidents on I-25. Wang and Papageorgiou [17]
estimated the real-time traffic state using the loop detector
and predicted the traffic state by a second-order traffic flow
model. Ngoduy [18] developed a technique for estimating
the real-time traffic state for a section of freeway using a
particle filtering algorithm. CTM-EKF (Cell Transmission
Model-Extended Kalman Filter-) based technique has been
applied for real-time traffic state estimation for traffic net-
work disrupted with an incident [19–21].

Real-time capacity estimation is beneficial when there is
a significant reduction in capacity due to events such as
incidents. Chen et al. [22] proposed a zero-inflated negative
binomial (ZINB) model for incident risk information, which
can be beneficial for traffic management. Traffic incident is a
random event, and reduced capacity can be modeled as a
random variable [23]. Hadi and Sinha [24] used multiple
pieces of software and estimated the incident capacity at
different trials. Knoop and Hoogendoorn [6] collected data
from a helicopter and estimated incident capacity through
microsimulation. )e reduced capacity due to the incident
creates congestion for the upstream traffic. If the informa-
tion is not disseminated to the drivers at the upstream of the
incident location, then congestion will prevail, and longer
queues will be formed. )e increased upstream occupancy is
associated with more severe incidents [25]. Smith and Qin
[23] analyzed a large dataset of traffic flow and incident data
and found a 63% reduction in capacity when one lane of
traffic was blocked, while 77% reduction was observed when
two of three lanes were blocked. Almotahari and Yazici [26]
used PeMS database for estimation of delay caused by re-
duced capacity after the incident. Bertini and Myton [27]
identified bottlenecks on the freeways in California using
PeMS database.

)e estimation of the location of an incident enables the
traffic control system to divert the flow to an alternate route
to reduce congestion on the affected road. In the literature,
the offline estimation of the incident location has been
performed using incident datasets. One or multiple locations
were identified, which were vulnerable to the incident. )ese
locations are called blackspots or hotspots, having a high
probability of an incident. Blackspot analysis requires spatial
and temporal data for determining the precise location
[28–31]. )e location of an incident can be identified by
kernel density and K-means clustering in GIS to estimate the
locations with a high probability of an incident [32–35]. )e
location of the incident in the existing literature is mostly
estimated offline, and a real-time incident location esti-
mation framework is lacking.

)e impact of capacity reduction due to incidents can be
minimized by implementing real-time optimal intervention
strategies. )e change in information of traffic flow pa-
rameters due to disruption events can be used to prompt the
request for initiating the intervention. )e information
about capacity variation helps traffic management system to

manage the traffic optimally and disseminate correct in-
formation to drivers. Intelligent Transportation System
(ITS) based applications for real-time dynamic traffic as-
signments such as ATIS (Advanced Traveller Information
Systems) and ATCS (Adaptive Traffic Control Systems) can
be made more accurate and useful using reliable information
about the impact, time, and location of the incident. )e
accuracy of the traffic state estimation depends on the lo-
cation of the incident with respect to the sensor [36]. )e
time of road-crash is also essential to divert the traffic to
alternative routes. Diversion of traffic is implemented until
the capacity of the road is restored to its normal value. )e
suboptimal diversion strategy may lead to increased con-
gestion on the road network and intensify the impact of the
incident [37].

)e review of the literature indicates that a significant
amount of research has been done in the domain of capacity
estimation. Previous studies, along with other strategies,
considered the capacity as a dynamic parameter. However,
an explicit framework for real-time road capacity and in-
cident location estimation using loop detector data does not
exist in the available literature. )is study develops a
framework for incident detection, capacity estimation, and
estimation of incident location based on data of traffic flow
parameters obtained from loop detectors. )e proposed
framework is based on the open-source data of the Cal-
ifornia State Department of Transportation (PeMS). Inci-
dent data, along with traffic flow data, are analyzed to
develop the proposed framework. )e change in traffic flow
parameters and congestion developed upstream after the
incident will be used to detect the incident and estimation of
the incident location, respectively.

2. Model Development

Real-time estimation algorithms need to collect, process, and
update the data to the system in a very short interval of time,
which can be achieved by minimizing the number of var-
iables and developing computationally efficient algorithms.
)e macroscopic traffic flow parameters provide essential
information that is enough for the estimation of the traffic
state. Loop detectors measure macroscopic traffic data of
flow, speed, and occupancy in real-time at fixed time in-
tervals. )ese loop detectors are embedded in the pavement
and provide continuous temporal information for that point.
)e spatial information between the detectors can be cap-
tured by using traffic flow models such as the Cell Trans-
mission Model (CTM) with measurements acquired from
the sensors.

)e traffic flow parameters measured at the loop de-
tectors are affected by the incident due to the reduction of
capacity. )e variation of traffic flow parameters due to the
incident can be used for incident detection, estimation of
capacity, and estimating the location of the incident in a road
section between two consecutive loop detectors. However,
variation in the traffic flow parameters recorded at the sensor
could be due to the factors other than the incident such as
the daily variation, weekly variation, or variation due to the
weather impact. )erefore, an appropriate incident
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detectionmodel is needed to detect false alarms and improve
the efficiency of the incident detection process.

In this study, the proposed algorithm continuously
evaluates the information acquired from sensors to detect
the incident.)e detection of incident triggers the algorithm
for capacity and the location of the incident estimation. )e
incident is detected when variation in traffic flow parameters
like speed and occupancy exceeds predefined threshold
limits. )e threshold limits are established by performing a
comparative analysis of post-incident data with the data
during normal traffic conditions. If the difference of speed
△Uk and the difference in occupancy△Ok at current time k
with the weekly average are higher than the threshold limits
α and β, respectively, then there might be a possibility of an
incident. )is is verified by further comparing the current
speed and occupancy values with the average values of these

parameters for the past 15 minutes (k: 15min). )e incident
is detected when the difference of speed and occupancy with
previous three-time intervals △􏽢Uk, △􏽢Ok also exceeds the
threshold limits c and δ, respectively. Figure1 describes the
overall framework for this research, and the list of variables
with their symbols is shown in Figure 2.

Various components of the overall research framework
are described in the following subsections.

2.1. IncidentDetection. )e PeMS database contains detailed
information on incidents, including spatiotemporal infor-
mation like time, date, day, location, and duration. More-
over, it also contains the type of incident and incident
severity. )e incident causes congestion at the upstream
sensor when traffic demand is higher, and the impact of the

Δ Uk > α
&

Δ Ok > β

Δ Uk > γ
&

Δ Ok > δ

YES

YES

NOComparsion of
OS with actual
occupancy Ok

Occupancy increased at upstream OS

Move to next cell

YesNo

Incident (capacity affected)

Sensor data

Estimation of capacity and
incident location algorithm

Comparsion of speed and occupancy Uk, Ok
with weekly average Uk, Ok

Comparsion of speed and occupancy
Uk, Ok with previous time interval Uk, Ok

Division of road section into
number of cells Cn

Upstream flow as CTM demand
FN

Incident in each cell is simulated by
decreasing capacity

Ce = Cp ∗ l ; l = 1, 2, 3, ...

Estimated capacity and location
of incident

No

Figure 1: Overall framework of this research.
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accident is also significant to cause congestion.)e incidents
occurring when traffic demand is low, or when the impact of
the accident is significantly low to cause any congestion, are
not included in the scope of this study. Furthermore,
modeling such incidents is not significant in devising real-
time traffic control and incident management strategies.
)erefore, in this study, only those incidents are selected,
which resulted in oversaturated flow conditions as the
proposed framework relies on the sensor information.

)e data of numerous accidents were downloaded, out of
which nine incident scenarios are analyzed. Traffic data are
collected from the upstream sensor of incident location
reported in the incident report of the PeMS database. For
incident detection, the data of four weeks before the incident
date were collected to determine the average weekly values of
occupancy and speed.

Figure 3 shows the change in speed recorded at the
upstream sensor of the incident location and compares it
with the average weekly speed, which is estimated by taking
the average of speeds observed on the same day for the past
four weeks. )e speed of vehicles significantly reduced after
the incident, and the comparison of speed with the weekly
average shows an evident trend that can be used to detect the
incident. However, the detection of the incident cannot rely
only on one criterion. )erefore, the comparison of occu-
pancy with the weekly average was also included in the
incident detection model. Figure 4 shows the change in
occupancy measured at the upstream sensor during the
incident. )e occupancy at the upstream sensor was sig-
nificantly increased after the incident, which is used as one of
the criteria for incident detection.

)e time of the incident from PeMS data of the selected
freeway sections is shown in Table 1, along with measured
speed and occupancy after the incident.)e data provided in
PeMS database aggregate speed and occupancy for 5-minute
intervals. Due to the 5-minute aggregation, the effect of the
incident on speed and occupancy is diluted, and, in some
cases, it takes 1–2 intervals to show the impact of the

incident on the upstream sensor data. )is lag can also be
attributed to the time taken in the propagation of traffic
congestion towards the upstream sensor after the incident.

)e proposed incident detection model detects the in-
cident based on the difference in four parameters.)ese four
parameters are based on the difference in current speed and
occupancy with their corresponding weekly average and the
average of the previous 15 minutes (three intervals). )e
threshold values of these parameters can be derived based on
the data presented in Table 2. )e higher threshold values of
these parameters will reduce false detection. However, there
could be a possibility of missing the accident with too high
threshold values. Similarly, the lower threshold values will
ensure the maximum possibility of incident detection and
could also result in some false detections.

)e optimum threshold values were estimated by
modeling all the incident locations using the four above-
mentioned parameters by changing their values from 10% to
90% with an interval of 10%. )e maximum difference in
parameter values that detected all the incidents was selected
as the threshold value for that parameter. Table 3 shows the
number of incidents detected with different values of
the parameters and highlights the cells corresponding to the
threshold values.

Based on Table 3, the threshold values of the parameters
are taken as follows:

α � 30,

β � 10,

γ � 10,

δ � 30.

(1)

2.2. Estimation of Road Capacity and Incident Location.
)e proposed algorithm for estimation of road capacity
and incident location uses the Cell Transmission Model
(CTM) [38], which divides a road segment into

Uk = Speed of road section at kth interval of time
Ok = Occupancy of road section at kth interval of time
Os = Simulated occupancy
U = Weekly average speed of road section at Kth interval
O = Weekly average occupancy of road section at Kth interval
U = Average speed of previous time interval
O = Average occupancy of previous time interval
Δ Uk = Difference of speed with weekly average at Kth interval of time

Δ Uk = Difference of speed with average of previous time interval at Kth interval of time
Δ Ok = Difference of occupancy with average of previous time interval at Kth interval of time
α = Threshold limit for average weekly difference of speed
β = Threshold limit for average weekly difference of occupancy
γ = Threshold limit for average of previous time interval of speed
δ = Threshold limit for average of previous time interval of occupancy
Fn = Flow of Nth sensor
Cp = Base capacity veh/hr/lane
Ce = Estimated capacity veh/hr/lane

Δ Ok = Difference of occupancy with weekly average at Kth interval of time

Figure 2: List of variables with their symbols.
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homogenous cells of equal lengths. In equation (2), the
CTM updates traffic occupancy ni for each future time-
step k+1 and all the cells in a road network. yi is the
outflow from cell i.

ni(k + 1) � ni(k) + yi(k) − yi+1(k), (2)

yi(k) � min ni−1(k), Qi(k), Ni(k) − ni(k)( 􏼁. (3)

In equation (3), Qi is the capacity flow, and Ni is the
maximum possible occupancy of a cell. )e CTM uses a
triangular or other piecewise linear forms of the funda-
mental diagram, as shown in Figure 5 [39].

)e traffic flow from the upstream sensor of the incident
location is taken as a demand for CTM.)is component of the
framework, shown in Figure 1, is activated after the incident
detection algorithm has detected the incident. A CTM-based
approach models the incident scenario by splitting the section
of the road into cells of equal lengths. Each cell Cn between two
sensors is modeled as the candidate cell.

)e algorithm utilizes calibrated CTM parameters for
PeMS traffic data. Dervisoglu and Gomes [40] calibrated
the fundamental diagram for PeMS database at 12 dif-
ferent sections of freeways. Table 4 shows the calibrated
traffic flow parameters that were used as input to the
CTM.
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Figure 3: )e comparison of pre-incident, during the incident and post-incident speeds with the weekly average speed.
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Figure 4: )e comparison of pre-incident, during the incident and post-incident occupancies with the weekly average occupancy.

Table 1: Comparison of postincident speed and occupancy with the weekly average values.

Freeway Day/time Weekly average
speed (mph)

Reduced speed after
the incident (mph)

Weekly average
occupancy (%)

Increased occupancy
after the incident (%)

SR99-N 22/5/2018 12 : 54 62.63 36.30 8.82 20.44
SR94-W 1/1/2020 17 : 42 66.00 27.50 7.90 39.33
I215–N 10/3/2017 11 :10 58.34 32.10 8.14 39.12
I80-E 15/1/2020 18 : 58 56.75 38.50 10.52 16.61
I8–W 20/10/2017 14 : 08 63.42 37.30 10.24 36.90
SR24-E 15/01/2020 23 :15 70.17 45.30 2.45 7.0
I105-E 8/1/2018 18 : 34 56.25 23.50 20.53 24.62
I105–W 10/8/2018 11 :10 62.28 40.50 9.46 10.73
I15–N 4/10/2018 8 : 24 68.18 33.90 11.65 25.21
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A number of scenarios are developed and simulated using
calibrated CTM. )e possibility of an incident occurring in
each cell and its impact on each lane is modeled. )e total
number of scenarios is equal to the product of the number of
cells and the number of lanes. Each scenario is simulated with
the demand from the upstream sensor and the resulting
simulated occupancy Os for each scenario is compared with
the actual occupancy Ok. )e scenario that yields the least
difference in the occupancy is selected to provide the esti-
mated location and capacity of the incident cell.

3. Results and Discussion

3.1. Incident Detection Using PeMS Data. )e open-source
data of the Department of Transportation California (PeMS)
was used for the application of the model in a real envi-
ronment. )e incident details mentioned in Table 1 were
collected from the incident log of the PeMS database. )e
framework proposed in Figure 1 is applied to capture the
selected incidents listed in Table 1. )e results of incident
detections are shown in Table 5, which compares the inci-
dent time reported by PeMS data with the time of incident
detected by the algorithm.

)e average difference in the reported incident time and
the incident time detected by the algorithm is 9 minutes. )e
least difference of 1 minute was observed for the incident that

occurred at I105-E. )e highest difference of about 27 minutes
was observed for the incident reported at I80-E on January 15,
2020, at 18 : 58 hrs. )e incident reported on SR24-E was
detected 10 minutes before its reported time. )is shows the
discrepancy in the incident reporting time, which must have
been recorded with some error. )e change in traffic flow
parameters at the selected sensor of SR24-E indicates the oc-
currence of the incident before the reported time, which could
be due to the inaccurate field report of the incident.

)e observed difference in the reported incident time
and the incident detection time for the selected incidents can
be attributed to the following factors:

(i) Error in the reporting of the incident time.
(ii) Time taken to spill back the queue from the incident

location to the upstream sensor. )e incident de-
tection algorithm is based on the change in traffic
parameter values at the sensor. )erefore, this time
may cause a delay in the incident detection and the
accuracy of the detection time depends on the quick
change in traffic conditions at the upstream sensor
after the incident.

(iii) )e PeMS data available and used in this study are
aggregated at 5-minute intervals. )e aggregation of
the data for longer time intervals dilutes the impact
of the incident on traffic flow parameters.

Critical density

αμ

Fl
ow

 (v
eh

/h
r/

ln
)

Density ρ (veh/km/ln)

Capacity

ρjam

Figure 5: Fundamental Diagram used as input for CTM.

Table 2: Speed and occupancy comparison with weekly and previous time interval average.

Freeway
Percentage difference of

upstream speed with weekly
average speed △Uk (%)

Percentage difference of
upstream speed with previous

time intervals △Ok (%)

Percentage difference of
upstream occupancy with weekly
average occupancy △􏽢Uk (%)

Percentage difference of
upstream occupancy with
previous time intervals △􏽢Ok

(%)

SR99-N −42.04 −39.74 56.76 49.84
SR94-W −58.33 −40.80 79.90 86.26
I215–N −44.98 −43.82 79.18 65.81
I80-E −39.03 −26.85 36.63 47.59
I8–W −41.19 −38.92 72.25 69.74
SR24-E −35.44 −18.96 65.00 65.71
I105-E −58.22 −36.08 16.61 52.04
I105–W −34.97 −32.80 11.53 37.62
I15–N −50.28 −43.31 53.77 61.77
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3.2. Capacity Estimation. When an incident is detected in
the system, the component of the framework for capacity
estimation is activated. )e methodology of the capacity
estimation algorithm is discussed in Section 2.2. Figure 6
shows the results of the capacity estimation of all nine in-
cidents. )e capacity profile is compared with the speed data
to highlight the variation in traffic conditions with the
change in capacity.

Figure 6 illustrates the estimated capacity profiles at the
selected freeway sections. )e estimated capacity profile is
compared with the speed profile to highlight the perfor-
mance of the proposed incident algorithm.

Table 6 shows the estimated capacity as a function of
the available number of lanes for all the incidents selected
in this study. In PeMS data, the number of lanes affected
due to the incident is not included in the incident report.
)erefore, the capacity flow or the number of affected
lanes due to the incident is not known. )e accuracy of
estimated capacity in the absence of actual value of re-
duced capacity cannot be measured. However, the per-
formance of the proposed algorithm can be observed in

Figure 6, which shows that the estimated capacity changes
with the change in traffic conditions measured at the
sensor.

3.3. Incident Location Estimation. )is study estimates the
location of the incident in real time as well. )e location and
capacity during the incident are estimated simultaneously,
using the framework described in Figure 1. )e scenario, for
which the difference between simulated occupancy and
measured occupancy is the least, is selected as the outcome
for estimated capacity and location. Figures 7–9 show the
comparison of actual occupancy with the simulated
occupancy.

In Figure 7, the increase in occupancy is observed at
5 : 55 PM at the selected sensor of freeway SR94-W after
the incident at its downstream. According to the incident
report, the incident occurred at 5 : 42 PM, and the lag in
occupancy increase is due to the time required for queue
propagation to the upstream senor. )e actual occupancy
is restored to normal condition in the next interval at 6 : 00
PM, while the simulated occupancy restored to normal
conditions with a lag of one time interval (5 minutes). )e
incident occurred at 576m from the sensor. )e algorithm
estimated the location of the incident in the second cell.
)e second cell starts at 300m and ends at 600m.)us, the
proposed algorithm accurately estimated the location of
this incident.

Figure 8 illustrates the occupancy profile of the freeway
I105-E when an incident is detected in the second cell. )e
occupancy increases after the incident at 18 : 35. According
to the incident details mentioned in Table 1, the incident was
reported at 18 : 34. )e increased occupancy at the sensor
was observed at 18 : 35. )e simulated occupancy shows a
similar trend to that of the actual occupancy, which indicates
that the second cell is the incident cell. Furthermore, the
actual location of the incident is also estimated accurately in
the second cell, which is 320m away from the upstream
sensor.

)e occupancy profile of freeway I105–W is shown in
Figure 9. )e increase in occupancy can be seen in two
places. )e increased occupancy at 10 : 50 hrs was found to
be a daily variation. )e second peak in the occupancy
profile is due to the incident because the reduction in speed
is also observed at the same time in Figure 3. )e time of the
incident mentioned in Table 1 also verifies the increase in

Table 3: Incident detection at different intervals of percentage difference in speeds and occupancies.

% Difference Actual no. of incidents △Uk △Ok △􏽢Uk △􏽢Ok

No. of incidents detected

10 9 9 9 9 9
20 9 9 8 7 9
30 9 9 7 7 9
40 9 6 3 6 8
50 9 3 0 6 6
60 9 0 0 4 5
70 9 0 0 3 1
80 9 0 0 0 1
90 9 0 0 0 0

Table 4: PEMS calibrated fundamental diagram parameters
[40, 41].

Traffic flow parameters Value
Free flow speed (mph) 65
Capacity (veh/hr/lane) 1861
Jam density (veh/mile/lane) 168
Critical density (veh/mile/lane) 29
Shockwave speed (mph) 14

Table 5: Comparison of incident time and detection time.

Freeway Reported incident time Detection time
SR99-N 12 : 54 13 : 00
SR94-W 17 : 42 17 : 55
I215–N 11 :10 11 : 20
I80-E 18 : 58 19 : 25
I8–W 14 : 08 14 :10
SR24-E 23 :15 23 : 05
I105-E 18 : 34 18 : 35
I105–W 11 :10 11 : 20
I15–N 8 : 24 8 : 30
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occupancy. )e incident occurred at 480m from the up-
stream sensor, which corresponds to the second cell. )e
estimated location of the incident is also the second cell,
which shows the accurate performance of the proposed
algorithm.

Table 7 shows the estimated locations of all nine inci-
dents. Locations of six out of nine incidents were estimated
accurately with an overall accuracy of 92.5%

)e sections of the freeways affected with the incident
are shown in Figure 10. In each section, the distance between
the upstream and downstream sensors was divided into cells
of equal length of 300m. )e shaded cell represents the
estimated incident cell, in which the yellow strip indicates
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Figure 6: Comparison of estimated capacities with the speed profile.

Table 6: Details of the estimated capacity during the incident as a
function of available lanes.

Freeway Capacity available
(total number of lanes) Estimated reduced capacity

SR99-N 4 2
SR94-W 5 2
I215–N 3 2
I80-E 6 5
I8–W 4 2
SR24-E 4 2
I105-E 4 2
I105–W 4 2
I15–N 5 3
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the location of the upstream sensor, while the red strip shows
the location of the downstream sensor. )e pin location icon
in red color shows the actual location of the incident from
the PeMS data.

3.4. Application of Framework in a Simulated Environment.
)e outcomes of the model implementation on field data are
shown in previous sections, showing the acceptable per-
formance of the proposed algorithm. However, there is a
slight deviation when the model outputs are compared with

the field data.)ere are twomain reasons for this error in the
incident detection and capacity estimation:

(i) )ere are off-ramps and on-ramps between the se-
lected sensors. )e propagation of the impact of the
incident on capacity and other traffic flow param-
eters to the upstream sensor can be significantly
affected if there is an on-ramp or off-ramp between
the two sensors. For example, if there is an off-ramp
between the incident location and the upstream
sensor, then the vehicles exiting the road section
could dilute the impact of the incident on the up-
stream sensor and may cause some error in the
estimation. )e proposed model could yield more
accurate results if there are no on-ramps or off-
ramps between the sensors. )is deficiency may also
be improved by integrating the measurements ob-
tained from the on-ramp and off-ramp sensors in the
incident detection and estimation algorithm.

(ii) )e inherent systematic error in measuring the
traffic flow and error in recording the details of the
incident are another factor that makes it difficult to
measure the accuracy of the proposed framework.
For example, due to the error in the incident
reporting time, it becomes difficult to estimate the
accuracy of the incident detection algorithm.

Due to the factors mentioned above, the proposed
framework was applied to a simulated environment. In the
simulated scenario, all the information about an incident,
such as incident occurring time, location, duration, and
capacity reduction, is known.

)e proposed framework was applied to a 5 km long road
section, having 4 lanes, as shown in Figure 11. )e section is a
mid-block section with no on-ramp and off-ramp. It is divided
into 10 cells of equal lengths of 500m. )e free-flow speed is
taken at 60 km/hr. )ere are loop detectors at the beginning
and the end of the road segment. )e sensors provide mea-
surements at 30-second intervals. )e incident occurred in cell
2 at 750m from the upstream detector for 10 minutes from
time-step 30 to 50, which decreased the capacity of the road
section to 2 lanes from 4 lanes.

)e incident detection algorithm requires weekly
average values of measured speed and occupancy at the
same time interval. For this purpose, synthetic mea-
surements were generated by assuming traffic demand
around 7000 veh/hr with a slight variation on each day.
)e outcomes of the model application are shown in
Figure 12, which shows that the proposed algorithm ac-
curately detected the incident and estimated the reduced
capacity. )e incident occurred at the 30th time-step,
which was detected by the algorithm at time-step 33,
showing a lag of 1.5 minutes. )e incident was cleared at
the 50th time-step, which was estimated at time-step 52.
Figure 12 shows the variation in capacity profile. Simi-
larly, the proposed algorithm accurately estimated the
reduced capacity due to the incident. Furthermore, the
estimated location of the incident was also estimated
accurately at cell 2.
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Table 7: Details of location estimation of incident.

Freeway Actual incident location from upstream detector Estimated location Accuracy (%) Overall accuracy (%)
SR99-N Cell 1 Cell 1 100

92.5

SR94-W Cell 1 Cell 1 100
I215–N Cell 2 Cell 2 100
I80-E Cell 2 Cell 1 67
I8–W Cell 2 Cell 3 79
SR24-E Cell 2 Cell 2 100
I105-E Cell 2 Cell 2 100
I105–W Cell 2 Cell 2 100
I15–N Cell 2 Cell 1 87

SR99-N

SR94-W

I215-N

I80-E

I8-W

SR24-E

I105-E

I105-W

I15-N

Incident cell

Location of downstream sensor

Location of upstream sensor

Actual location of incident

Figure 10: Comparison of the estimated and actual incident locations.
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4. Conclusions and Recommendations

)is study proposed a framework that utilizes the measure-
ments obtained from the inductance loop detector for incident
detection, estimation of reduced capacity, and estimation of the
location of the incident as well. )e proposed model is de-
veloped using the sensor data available from PeMS and could
be applied in real time without any modifications. )e pro-
posed algorithm was able to accurately detect the incident and
estimate the reduced capacity of the road section and the
location of the incident. )e location of the incident is esti-
mated with an overall accuracy of 92.5%. )e following
conclusions are drawn from this study:

)e proposed algorithm requires the measurements of
macroscopic parameters such as flow, speed, and oc-
cupancy. )e utilization of macroscopic traffic flow
parameters and limited macroscopic data makes the
proposed algorithm computationally more efficient,
which makes it more suitable for real-time applications.
)e proposed algorithm is applicable when the effect of
the incident is observed at the sensor located upstream
of the incident location. )e minor incidents, when
traffic demand is low and no congestion is caused due
to the incident, cannot be detected by the algorithm.
However, the incidents not causing a significant impact
on traffic conditions do not need real-time traffic
control and incident management measures, which are
otherwise needed.
)e incident is detected when both speed and occu-
pancy exceed the threshold limits. Incidents from PeMS

database were identified to develop the threshold limits
for speed and occupancy.)e threshold limits are based
on the average values of speed and occupancy from the
recorded observations.
)e distance between the incident location and the
upstream sensor affects the accuracy of the incident
detection algorithm. )e time lag of detection may
increase with the increase in the distance between the
incident location and the sensor, as the queue built-up
and spillback time increase with this distance. )e
traffic condition may also affect this time lag.
It was observed from the data that the incident
reporting time and duration of the incidents reported
in PeMS database do not match with the observed data.
)is deviation also affects the estimation of the accu-
racy of the proposed algorithm.
)e incident detection and capacity estimation al-
gorithm was applied to the nine selected incidents to
evaluate its performance. )e location of the incident
was estimated with an average accuracy of 92.5%. )e
average difference between incident reporting and
detection time was 9.8 minutes, which is less than two
time intervals, as the PeMS data are reported at
5-minute intervals. )e accuracy of the number of
affected lanes cannot be determined as the PeMS data
do not provide this information in the incident
report.
)e accuracy of the incident detection of the proposed
algorithm can be further improved when the traffic flow
parameters are provided with higher resolution. )e
aggregation of the data over 5-minute interval dilutes
the impact of the incident, especially during the interval
when the incident occurred. In reality, the inductance
loop detectors provide measurements at 30-second
interval.)e use of measurements at 30-second interval
is expected to improve the estimation accuracy.
)e proposed framework was also applied to a simu-
lated controlled environment. )e model detected the
incident and estimated the capacity and location of the
incident accurately.

)e information of capacity variation is beneficial for the
estimation of traffic state. )e accurate detection of the
incident and capacity estimation are crucial in real-time
traffic and incident management. )e proposed algorithm
enables the traffic controller to devise a strategy that ef-
fectively manages congestion and improves network

Downstream loop detectorUpstream loop detector

Road section length

1 432 65 107 8 9

Figure 11: Model setup for simulated reality.

0

1

2

3

4

5

25
30
35
40
45
50
55
60
65
70
75

0 10 20 30 40 50 60 70 80 90 100

La
ne

s

Sp
ee

d 
(k

ph
)

Time Step

Actual and estimated capacity comparsion with speed

Speed before incident

Speed during incident
Weekly average speed Speed a�er incident

Estimated capacity

Actual capacity

Figure 12: Comparison of estimated capacity with actual capacity.

12 Journal of Advanced Transportation

 1409, 2020, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2020/8857502 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [13/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



performance during the incident. Effective
incident management reduces the time spent by drivers in
congestion, which may result in less anxiety and stress, thus
contributing to improving the road safety of commuters.

)e performance of the proposed framework may be
improved by using CTM-based estimation techniques such
as CTM-KF (Kalman Filter) or CTM-EKF (Extended Kal-
man Filter). Furthermore, data from other available sources
(Bluetooth, Wi-Fi, GSM, and GPS-based sensors) could be
integrated to develop improved algorithms. )e autono-
mous and connected vehicles could provide more useful and
accurate information for incident detection and capacity
estimation. With a reasonable penetration of autonomous
and connected vehicles, the real-time information from
these vehicles could be fused with sensor data to develop
more efficient algorithms.
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