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Confidence-guided Centroids for Unsupervised

Person Re-Identification
Yunqi Miao, Jiankang Deng, Member, IEEE, Guiguang Ding, Senior Member, IEEE, and Jungong Han, Senior

Member, IEEE

Abstract—Unsupervised person re-identification (ReID) aims
to train a feature extractor for identity retrieval without ex-
ploiting identity labels. Due to the blind trust in imperfect
clustering results, the learning is inevitably misled by unreliable
pseudo labels. Albeit the pseudo label refinement has been
investigated by previous works, they generally leverage auxiliary
information such as camera IDs and body part predictions.
This work explores the internal characteristics of clusters to
refine pseudo labels. To this end, Confidence-Guided Centroids
(CGC) are proposed to provide reliable cluster-wise prototypes
for feature learning. Since samples with high confidence are
exclusively involved in the formation of centroids, the identity
information of low-confidence samples, i.e., boundary samples,
are NOT likely to contribute to the corresponding centroid. Given
the new centroids, the current learning scheme, where samples
are forced to learn from their assigned centroids solely, is unwise.
To remedy the situation, we propose to use Confidence-Guided
pseudo Label (CGL), which enables samples to approach not only
the originally assigned centroid but also other centroids that are
potentially embedded with their identity information. Empow-
ered by confidence-guided centroids and labels, our method yields
comparable performance with, or even outperforms, state-of-the-
art pseudo label refinement works that largely leverage auxiliary
information.

Index Terms—Person Re-identification, Unsupervised Learn-
ing, Centroid, Visual Surveillance.

I. INTRODUCTION

PERSON re-identification (ReID), one of the fundamental

tasks in intelligent visual surveillance, aims to retrieve

a person of interest across multiple cameras [1]–[3]. Due

to the label-free training manner, unsupervised person ReID

methods have attracted increasing attention. Unsupervised

ReID methods can be broadly categorized into two types:

unsupervised domain adaptation (UDA) methods [4]–[8] and

purely unsupervised learning (USL) methods [9]–[13]. The

former pre-trains a model on person-related datasets, i.e.,
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Fig. 1: Training samples (cluster ID = 1) and their silhouette

scores at epoch 0 (blue), epoch 25 (orange), and epoch 50

(green) on MSMT17 [14]. Higher silhouette scores denote

samples are clustered at higher confidence. Best viewed in

color.

source domain, and fine-tunes it on ReID-related datasets,

i.e., target domain. Apart from requiring additional annotated

labels, UDA methods are vulnerable to the large gap between

the source domain and the target domain. In contrast, USL

methods do not require any labeled data for training, which

are more challenging but well fit real-world scenarios. In the

paper, we focus on USL methods.

Existing USL methods generally follow a two-stage training

scheme: 1) clustering, i.e., obtaining the pseudo labels via

a clustering algorithm such as DBSCAN [15], and 2) net-

work training, i.e., optimizing the network in a “supervised”

manner with assigned cluster IDs. Contrastive loss such as

InfoNCE [4] or ClusterNCE [9] usually serves as training

objectives. Due to the blind trust in imperfect clustering

results, the learning is inevitably misled by unreliable pseudo

labels, where multiple identities are merged into one cluster

or samples of one person are assigned to multiple clusters.

Despite that some pseudo label refinement [10]–[13], [16] have

been proposed, they generally leverage auxiliary information,

such as camera IDs [10], [12], body part predictions [11],

or are facilitated by generated samples [13]. In the paper,

we aim to refine pseudo labels by merely exploiting internal

characteristics within samples, i.e., the sample-wise clustering

confidence, which appears to be more valuable.

To measure the sample-wise clustering confidence, i.e., how
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well a sample fits its cluster, we employ a metric: silhouette

score [17]. The score presents the ratio between intra-cluster

distance and inter-cluster distance, which ranges from -1 to +1

(higher is better). To demonstrate the relationship between the

clustering confidence and the silhouette score, we visualize sil-

houette scores of training samples of MSMT17 [14] in Fig. 1.

Samples are from the same cluster (cluster ID=1) but at differ-

ent training epochs, i.e., 0, 25, and 50, respectively. As training

goes on, the clustering is gradually enhanced by involving

more effective features and a more discriminative network.

At first, images are grouped by coarse visual features, yet by

identity-related information in the end. Meanwhile, sample-

wise silhouette scores continuously shift towards higher values

during training. Given this consistency, a conclusion can be

drawn that, a higher silhouette score implies the sample

better fits its cluster, i.e., being clustered at higher confidence.

Previous learning schemes [9], [13] adopt all-sample based

centroids, which are obtained by averaging features of all

samples within the cluster, and enforce instances to approach

such centroids. However, our observation suggests that low-

confidence samples either are poor in quality or belong to other

identities. Features of such images will inevitably contaminate

centroids regardless of the training stage. In light of this, we

propose Confidence-Guided Centroids (CGC) to provide more

reliable cluster-wise prototypes for feature learning.

Although the reliability of cluster centroids has been im-

proved, the conventional one-hot labeling strategy aggravates

a problem. Since high-confidence samples exclusively con-

tribute to the formation of cluster centroids, the identity-

related information of low-confidence samples can hardly be

presented in the assigned centroid. To illustrate the problem,

an analysis is conducted on MSMT17 [14], where we intend to

investigate how much identity information of low-confidence

samples can be presented in their assigned centroids. We found

that, with the vanilla all-sample based cluster centroids, only

5.83% low-confidence samples have their identity information

embedded in the assigned centroid at the beginning. Although

the ratio gradually climbs to 17.19%, a large proportion of low-

confidence samples (over 80%) still are pushed to “wrong”

centroids. Unfortunately, the ratio achieves 14.17% at most

with confidence-guided centroids. Given the situation, the one-

hot labeling strategy, which enforces samples to learn from the

assigned centroid solely, is unwise. To address the problem,

we propose to use confidence-guided pseudo labels (CGL),

which encourages instances to approach not only the assigned

confidence-guided centroid but also others where their identity

information is potentially embedded.

In summary, our contributions are as follows:

1) We propose Confidence-Guided Centroids (CGC) to pro-

vide cluster-wise prototypes for feature learning. The

reliability of centroids is improved via filtering out low-

confidence samples during formation.

2) To overcome the problem that the identity information

of low-confidence samples is rarely presented in their

assigned centroids, we propose to use confidence-guided

pseudo labels (CGL) during training. Apart from the orig-

inally assigned centroid, instances are also encouraged to

approach other centroids where their identity information

are potentially embedded.

3) The proposed method only exploits internal characteris-

tics for unsupervised person re-identification. Extensive

experiments on benchmark datasets demonstrate that our

method yields better or comparable performances with

state-of-the-art ones that largely leverage auxiliary infor-

mation.

II. RELATED WORK

A. Unsupervised Person ReID.

The existing unsupervised person ReID methods are di-

vided into two categories: a) Unsupervised Domain Adaptation

(UDA) methods, and b) purely UnSupervised Learning (USL)

methods.

UDA methods boost the performance by transferring the

knowledge learned from the labeled source domain to the

unlabeled target one [4]–[7], [18]. To bridge the gap between

source and target domain, IDM [5] generates intermediate do-

mains’ representations based on the “shortest geodesic path”.

SECRET [6] maximizes the consistency between pseudo la-

bels generated by different domains. MET [7] eliminates the

noise via the aggregated information from multiple viewpoints.

Meanwhile, MET improves the temporal consistency between

clustering at different iterations. UST [18] presents a loss

function with only one hyper-parameter for UDA person

ReID. Instead of aggregating the information, UST aggregates

weights from different training iterations to create the final

model to better exploit the knowledge throughout the adapta-

tion.

Since UDA methods are highly prone to the large gap

between the source domain and the target domain, they are

hardly applicable to real-world scenarios [1], [19].

USL methods do not require any identity labels during train-

ing [9]–[11], [13], [16], [20], [21]. Instead, they exploit pseudo

labels as guidance. Pseudo labels can be generated either by

the image similarity [20], [22] or clustering algorithms [9],

[13], [23], [24]. Specifically, SSL [20] and MMCT [22]

formulate unsupervised person ReID as a classification task

and predict pseudo labels based on the image similarity. In

terms of clustering-based methods, BUC [23] and HCT [24]

employ the bottom-up clustering scheme to gradually merge

similar individual samples into clusters. Recently, Cluster-

Contrast [9] adopts a contrastive learning scheme, which

initializes, updates, and performs contrastive loss computation

at the cluster level. However, clustering-based methods are

generally sensitive to the pseudo label noise brought by

imperfect clustering results.

B. Noise Reduction of Pseudo Label.

Recently, how to handle noise pseudo labels in clustering-

based methods has become a research hotspot. Generally,

previous unsupervised person ReID methods refine the pseudo

labels by auxiliary information or additional generated sam-

ples. Specifically, SpCL [4] employs a self-paced learning

scheme to gradually obtain more reliable clusters for the

pseudo label refinement. JVTC [25], RLCC [16] and OPLG-

HCD [26] leverage temporal information to refine visual
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similarity based pseudo labels by encouraging the consistency

between clustering results of two consecutive iterations. Ad-

ditionally, CAP [12], IICS [27] and O2CAP [28] split each

cluster into multiple proxies according to camera IDs. By

applying feature learning constraints on such camera-aware

proxies, the pseudo label noise brought by varying viewing

points can be eliminated. Apart from generating pseudo labels

via the global clustering, PPSL [29] constructs patch surrogate

classes, which are then assigned to a pair of person images of

different camera views via gradient-guided similarity separa-

tion. Moreover, the identity prediction consistency of different

body parts is also employed to refine pseudo labels. For

example, PPLR [11] employs the complementary relationship

between reliable features of human global and body parts for

the pseudo label refinement. Instead of building upon a single

backbone network, ESSL [30] ensembles feature outputs by

multiple backbones to improve the reliability of clustering,

thereby the robustness of learned features.

Apart from the auxiliary information, some works focus on

how to make full use of the training data [31], [32] or refine the

original cluster centroids [33]. GSAM [31] suggests gathering

samples of the same class into groups during the training,

which alleviates the negative impact brought by individual

samples. HDCLR [32] makes full use of outlier instances

by enhancing self-supervised signals from both instances’

self-contrastive level and probability distillation respectively.

RTMem [33] proposes to use a randomly sampled instance

within the mini-batch to update cluster centroids.

Moreover, some works suggest generating additional sam-

ples to reduce the pseudo label noise. Specifically, GCL [34]

generates extra images towards different views for a person

and GCL+ [35] further augments id-related features. Then

view-invariant identity features can be disentangled by enforc-

ing the original view and the generated ones to share the same

identity representations.

The contrastive feature learning scheme is also adopted

by later works [10], [36], [37]. ICE [10] alleviates the label

noise by enhancing the consistency between augmented and

original instances. GRACL [36] sets up two proxies for each

cluster to capture inter- and intra-ID relations respectively,

where samples are enforced to approach the positive proxy

via relation-aware contrastive learning modules. Instead of

a single label, AdaMG [37] assigns each sample with a

group labels to capture complementary and diverse features

through clustering. Recently, ISE [13] generates boundary

samples from a given sample and their neighboring clusters.

The discriminability of the network is improved by enforcing

generated samples to be correctly classified.

Unlike the above methods, this work explores whether

internal characteristics can facilitate pseudo label refinement.

Although a previous work, CACL [38], improves the effec-

tiveness of features by suppressing an internal characteristic -

color, it is applied at the image level. In the paper, we inves-

tigate the sample-wise clustering confidence, which describes

how well a sample fits its cluster at the feature level. With

such a criterion, better cluster centroids and pseudo labels can

be obtained for feature learning.

III. METHODOLOGY

A. Problem Statement

Let T = {xi}
N
i=1 denote an unlabeled training dataset,

where xi represents i-th image and N is the number of images.

The USL ReID task aims to train a feature extractor Eθ in an

unsupervised manner, where ReID features F = {fi}
N
i=1 are

derived. The identity retrieval during inference is based on

such ReID features. The training scheme of clustering-based

USL methods [4], [9], [12], [13] alternates between two stages:

Stage I: Clustering. At the beginning of each epoch, train-

ing samples are clustered by DBSCAN [15]. Cluster IDs

yi ∈ {1, ..., C} serve as one-hot pseudo labels for the network

optimization. Meanwhile, based on clustering results, a cluster-

based memory bank M = {mi}
C
i=1 is initialized by cluster

centroids that are formulated as,

mi =
1

|C|

∑

fi∈C

fi, (1)

where fi represents the feature of i-th sample in the cluster

C, and |C| denotes the cluster size.

Stage II: Network Training. With the obtained pseudo labels,

the network is then optimized in a “supervised” manner

with the training objective, i.e., ClusterNCE [9], which is

formulated as,

L = −log
exp(Φ(f ·m+)/τ)

∑C

j=1
exp(Φ(f ·mj)/τ)

, (2)

where m+ refers to the centroid of the cluster that f belongs

to, mj represents j-th centroid in the memory bank, Φ(u · v)
represents the cosine similarity between vector u and vector

v, and τ is the temperature parameter. The memory bank is

updated in a momentum manner [9] as,

mi ← µ ·mi + (1− µ) · f, (3)

where µ is the updating factor and f refers to the feature of

instance belonging to i-th cluster in the current mini-batch.

In this paper, we follow the framework of iterative clustering

and network training. However, our method, as illustrated in

Fig. 2, differs from previous works mainly in two aspects:

1) cluster centroids. Instead of using all samples to calculate

the centroids, we adopt confidence-guided centroids (CGC)

to provide reliable cluster-wise prototypes for feature learning

(Sec. III-C), and 2) pseudo labels. Apart from the assigned

centroid, our confidence-guided pseudo labels (CGL) encour-

ages instances to approach other centroids where their identity

information is potentially embedded (Sec. III-D). Note that

clusters consisting of a single point, i.e., outliers, are not

involved during training.

B. Silhouette Score

To describe the sample-wise clustering confidence, i.e., how

well a sample fits its cluster, we employ a metric named

silhouette score [17]. The score simultaneously considers two

key factors of clustering, i.e., tightness and separation.
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information is potentially embedded via our confidence-guided pseudo labels (CGL). Best viewed in color.

Formally, for i-th data point in cluster CI , its average dis-

tance to other data points within the cluster can be calculated

as,

ai =
1

|CI |

∑

i,j∈CI ,i ̸=j

d(i, j), (4)

where d(i, j) refers to the distance between i-th and j-th

data points and |CI | represents the cluster size. Similarly, the

distance between i-th data point and samples belonging to its

nearest neighboring cluster CJ can be denoted as,

bi = min
J ̸=I

1

|CJ |

∑

j∈CJ

d(i, j). (5)

Given the intra-class distance ai and the minimal inter-class

distance bi, the silhouette score si is formulated as,

si =
bi − ai

max(ai, bi)
. (6)

The silhouette score ranges from [−1, 1]. If an instance has

a higher silhouette score, it has a smaller intra-class distance

and a large inter-class distance. In other words, it is clustered

at a higher confidence [17].

C. Confidence-guided Centroids

Based on the observation that images with lower silhou-

ette scores (confidence) generally contain high uncertainty

regarding person identity, previous all-sample based cluster

centroids are undoubtedly unwise. To remedy the problem, we

build confidence-guided centroids (CGC) with high-confidence

images only.

Specifically, the confidence-guided centroid of i-th cluster

mi can be formulated as,

mi =
1

|Cq|

∑

fi∈Cq

fi, Cq = {fi ∈ C|si > δ}, (7)

where a confidence-guided subset Cq is selected from the

original cluster C by a silhouette score threshold δ. All

confidence-guided centroids are then stored in a confidence-

guided memory bank Mq = {mi}
C
i=1 for network optimiza-

tion.

According to Fig. 1, our confidence-guided centroids can

filter out images that are poor in quality or with cluttered

backgrounds at early stages. While, at later stages, such cen-

troids effectively exclude some low-confidence samples that

possibly belong to other identities. In summary, the proposed

confidence-guided centroids can provide more reliable cluster-

wise prototypes for feature learning.

D. Confidence-guided Pseudo Labels

Another problem of the clustering-based USL methods is

that samples, especially low-confidence ones, very likely carry

different identity information with their assigned centroids.

Our confidence-guided centroids also confronts the problem

since only high-confidence samples are included in the forma-

tion of centroids, as illustrated in Fig. 2. Given the situation,

the previous learning scheme, which enforces samples to

approach their assigned centroids solely regardless of the

identity consistency in-between, is unwise. To alleviate the

problem, we propose to use confidence-guided pseudo labels

(CGL). Such labeling encourages samples to approach not only

the assigned centroid but other centroids where their identity

information is potentially embedded.

Specifically, we build a distance matrix D ∈ R
N×C ,

where N and C denote the number of samples and clus-

ters at the current epoch, respectively. In the paper, clusters

consisting of one sample are ignored [9]. As normalized

identity features and centroids are adopted, D(i, j) represents

the cosine distance between i-th sample and j-th confidence-

guided centroid. Since similar samples are more likely to be

scattered in neighboring clusters [13], the identity information

of boundary samples is probably embedded in neighboring

centroids. Therefore, when setting the learning target for

samples, neighboring centroids should be assigned with higher

confidence while distanced ones should be given lower confi-

dence. To this end, a confidence matrix P ∈ R
N×C is obtained

by,

P(i, j) =
pi,j

∑C

j=1
pi,j

, pi,j = σ(−D(i, j)), (8)
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Algorithm 1: Pipeline of our method

1 Require: Unlabeled data with pseudo labels

T = {(xi, yi)}
N
i=1, where yi ∈ {1, . . . , C}

2 Require: Initialize the backbone encoder Eθ

3 Require: Threshold δ for Eq. (7)

4 Require: Coefficient β for Eq. (9)

5 for n in [1, epoch num] do

6 Extracting features F by Eθ

7 Clustering F into C clusters with DBSCAN

8 Building CGC dictionary Mq by Eq. (7)

9 for m in [1, iteration num] do

10 Sampling a mini-batch from T
11 Computing CGL with Eq. (9)

12 Computing loss with Eq. (10)

13 Updating encoder Eθ

14 Updating centroids with Eq. (3)

15 end

16 end

where P(i, j) represents the confidence of j-th centroid given

by i-th sample,
∑C

j=1
P(i, j) = 1, and σ(·) is the Sigmoid

function. By integrating the confidence matrix with the origi-

nally assigned one-hot pseudo label yi, the confidence-guided

pseudo label of i-th sample ỹi can be formulated as,

ỹi = β · yi + (1− β) · P(i, ·), (9)

where P(i, ·) indicates i-th row of confidence matrix P , and

β ∈ [0, 1] is the coefficient for the pseudo label refinement.

According to a previous work [39], the training objective,

i.e., ClusterNCE, can be considered as a non-parametric clas-

sifier, where centroids stored in the memory bank serve as

the weight matrix of the classification layer. Therefore, the

training objective of our method can be rewritten as,

Lq =
1

N

N
∑

i=1

[

ℓce
(

MT
q fi, ỹi

)

]

, (10)

where ℓce refers to the cross-entropy loss. Compared to Eq. (2),

the training objective of our method can be obtained by simply

applying two modifications: 1) replacing the original M with

our confidence-guided memory bank Mq , and 2) replacing

the one-hot pseudo label yi with our confidence-guided one

ỹi. The training details are presented in Algorithm 1.

IV. EXPERIMENT

A. Datasets and Evaluation Protocol

Datasets. We evaluate our proposed method on the Market-

1501 [40] and MSMT17 [14] datasets.

Market-1501 includes 32,668 images of 1,501 identities

captured by 6 cameras. Among them, 12,936 images of 751

identities are used for training while the resting 19,732 images

of 750 identities form the test set.

MSMT17 contains 126,441 images from 4,101 identities

captured by 15 cameras. The training set is composed of

32,621 images of 1,041 identities and the test set consists

of 93,820 images of 3,060 identities. MSMT17 is more

challenging due to the diversity in backgrounds, illuminations,

poses, and occlusions.

Evaluation Protocol. Following previous methods [4], [9],

[10], [13], the mean average precision (mAP) [41] and the

cumulative matching characteristic (CMC) [40] top-1, top-5,

top-10 accuracies are adopted as evaluation metrics. Note that,

there are no post-processing operations, such as reranking [42],

during inference.

B. Implementation Details

Following previous works [9], [13], we adopt ResNet-

50 [43] pre-trained on ImageNet [44] as our backbone feature

encoder. All layers after layer-4 are replaced by a general-

ized mean pooling (GeM) [45] layer followed by the batch

normalization layer [46]. The output 2048-dimensional ReID

features are firstly normalized and then used for identity

retrieval during inference. Our framework is built upon a state-

of-the-art USL method [9]. For a fair comparison, we follow

all experimental settings except for the formation of cluster

centroids and the training objectives, as described in Sec. III.

The coefficient β in Eq. (9) is empirically set as 0.8 to achieve

optimal performances.

During training, input images are resized to 256×128. We

adopt random flipping, cropping, and erasing [47] as data

augmentation. Each mini-batch is formed by 16 identities,

each with 16 images. Both identity and images are randomly

selected from the training set. For the optimization, we adopt

Adam [48] optimizer with a weight decay of 0.0005. The

learning rate is set to 3.5 × 10−4 initially, and is divided by

10 every 30 epochs. We train for a total of 70 epochs on

Market-1501 [40], and 50 on MSMT17 [14].

C. Comparison with State-of-the-art Methods

We compare our method with state-of-the-art (SOTA)

unsupervised person ReID methods in Table I. Since our

method can be an add-on to boost the performance of pre-

vious clustering-based USL methods, we adapted Cluster-

Contrast [9] as our baseline following ISE [13]. As can be

seen, the proposed strategies, i.e., CGC and CGL, improve the

mAP/top-1 accuracy by +2.9% / +1.7% on Market-1501 and

+3.2% / +2.2% on MSMT17. Additionally, ISE [13] proposes

to reduce the pseudo label noise of Cluster-Contrast [9]

by leveraging generated samples in latent space, which is

orthogonal to our method. Therefore, we apply our method

to ISE, which further improves the performance by achieving

85.6% mAP and 94.3% top-1 accuracy on Market-1501 and

35.7% mAP and 66.1% top-1 accuracy on MSMT17.

Moreover, the performance can be further boosted by lever-

aging auxiliary information on top of the proposed strategies.

Taking the camera information as an example, we compare

our method with USL methods trained with camera labels:

IICS [27], CAP [12], ICE [10], and PPLR [11]. Follow-

ing [10], [12], we embed camera labels into confidence-guided

centroids, i.e., computing the centroid with features that belong

to the same cluster as well as the same camera ID. As shown

in Table I, with camera-aware cluster centroids, mAP improves

by +2.2% on Market-1501 and +10.1% on MSMT17.
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Method Reference
Market-1501 MSMT17

mAP top-1 top-5 top-10 mAP top-1 top-5 top-10

USL methods without any labels

BUC [23] AAAI’19 38.3 66.2 79.6 84.5 27.5 47.4 62.6 68.4
SSL [20] CVPR’20 37.8 71.7 83.8 87.4 - - - -
MMCL [22] CVPR’20 45.5 80.3 89.4 92.3 11.2 35.4 44.8 49.8
HCT [24] CVPR’20 56.4 80.0 91.6 95.2 - - - -
SpCL [4] NeurIPS’20 73.1 88.1 95.1 97.0 19.1 42.3 55.6 61.2
JVTC [25] ECCV’20 41.8 72.9 84.2 88.7 15.1 39.0 50.9 56.8
GCL [34] CVPR’21 63.4 83.7 91.6 94.3 18.0 41.6 53.2 58.4
RLCC [16] CVPR’21 77.7 90.8 96.3 97.5 27.9 56.5 68.4 73.1
OPLG-HCD [26] ICCV’21 78.1 91.1 96.4 97.7 26.9 53.7 65.3 70.2
ICE [10] ICCV’21 79.5 92.0 97.0 98.1 29.8 59.0 71.7 77.0
PPLR [11] CVPR’22 81.5 92.8 97.1 98.1 31.4 61.1 73.4 77.8
ISE [13] CVPR’22 84.7 94.0 97.8 98.8 35.0 64.7 75.5 79.4
GSAM [31] TIP’22 79.2 92.3 96.6 97.8 24.6 56.2 67.3 71.5
CACL [38] TIP’22 80.9 92.7 97.4 98.5 23.0 48.9 61.2 66.4
GRACL [36] TCSVT’22 83.7 93.2 97.6 98.6 34.4 64.0 75.0 79.3
AdaMG [37] TCSVT’23 84.6 93.9 97.9 98.9 38.0 66.3 76.9 80.6
RTMem [33] TIP’23 83.0 92.8 97.4 98.5 32.8 57.1 70.0 74.9
ESSL [30] TIFS’23 83.4 92.9 97.1 97.8 42.6 68.2 77.9 81.4

Cluster-Contrast [9] (Baseline) ACCV’22 82.4 92.5 96.9 98.0 31.4 61.2 72.5 76.9

Baseline+RM - 83.3 93.0 97.1 98.0 32.8 62.4 73.6 78.1
Baseline+WS - 83.4 93.0 97.2 98.1 32.5 62.3 73.3 77.5
Baseline+CGC - 84.1 93.1 97.2 98.2 34.1 63.1 75.0 79.0

Baseline+CGL - 83.4 93.2 97.1 98.2 33.7 62.5 73.9 78.4
Baseline+CGL+CGC (Ours) - 85.3 94.2 97.6 98.5 34.6 63.4 74.6 79.3

ISE+CGL+CGC (Ours) - 85.6 94.3 97.9 98.9 35.7 66.1 76.3 80.0

USL methods with camera labels

IICS [27] CVPR’21 72.1 88.8 95.3 96.9 18.6 45.7 57.7 62.8
CAP [12] AAAI’21 79.2 91.4 96.3 97.7 36.9 67.4 78.0 81.4
ICE [10] ICCV’21 82.3 93.8 97.6 98.4 38.9 70.2 80.5 84.4
PPLR [11] CVPR’22 84.4 94.3 97.8 98.6 42.2 73.3 83.5 86.5
O2CAP [28] TIP’22 82.7 92.5 96.9 98.0 42.4 72.0 81.9 85.4
PPSL [29] TIP’22 82.3 94.1 97.4 98.8 43.1 73.2 89.4 90.8

Baseline+Ours† - 87.5 95.6 98.2 98.9 44.7 75.8 85.4 87.9

TABLE I: Comparison of ReID methods on Market-1501 and MSMT17. The best USL results WITHOUT and WITH camera

information are marked in red and blue, respectively. † indicates using the additional camera knowledge.

As stated in Sec. II, existing SOTA methods generally

leverage auxiliary information or extra samples to refine

pseudo labels. For example, JVTC [25], RLCC [16] and

OPLG-HCD [26] leverage the temporal information, CAP [12]

and IICS [27] leverage the camera IDs, PPLR [11] employs

the predictions of body parts, and GCL [34] as well as

ISE [13] leverages generated samples. As a departure from

the above methods, our method yields SOTA performances by

exclusively involving internal characteristics, i.e., the sample-

wise clustering confidence.

Note that AdaMG [37] and ESSL [30] outperform our

method on MSMT. It is important to highlight that AdaMG

utilizes three memory modules, and ESSL combines features

from multiple backbones, whereas our method uses a single

backbone network only. From the perspective of resource

consumption, our method appears to be significantly more

practical. Additionally, both AdaMG and ESSL take advantage

of multiple clustering results with different hype-parameter

settings, whereas ours is built upon a one-shot clustering result

only. In our future work, we will integrate our method into

these two methods for evaluation once their source codes are

released. This will provide a comprehensive understanding

of how our approach performs in conjunction with these

advanced methods.

D. Ablation Study

In this section, we thoroughly analyze the effectiveness

of the proposed strategies, i.e.,confidence-guided centroids

(CGC) and confidence-guided pseudo labels (CGL).

Effectiveness of CGC. To better understand how our

confidence-guided centroids benefit feature learning, we an-

alyze how the sample-wise confidence varies throughout the

training process on MSMT17. Specifically, we visualize the

distribution of silhouette scores at different epochs in Fig. 3.

Note that scores of outliers are excluded. Several conclusions

can be drawn from the comparison between Fig. 3(a) and

Fig. 3(b). 1) As training goes on, the number of valid sam-

ples gradually increases, representing as larger areas under

the curve. 2) Starting from the same point (epoch 0), with

our confidence-guided centroids, a noticeable shift towards

higher scores can be found at epoch 25. The shift implies

that CGC can effectively reduce the overall number of low-

confidence samples while enhancing high-confidence ones. 3)

The advantage remains until the end of training. At epoch 50,

the number of high-confidence samples increases, representing

by a higher peak closer to 0.4.

To better demonstrate the effectiveness of CGC, we

compare models trained with the vanilla all-sample based

cluster centroids (“Baseline”), with cluster centroids be-

ing built by excluding 10% samples at the cluster bound-
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(a) Baseline

(b) Baseline + CGC

(c) Baseline + CGC + CGL

Fig. 3: Silhouette scores of valid samples (MSMT17 [14])

at different epochs. Comparisons are conducted between (a)

baseline model, (b) baseline model with confidence-guided

centroids (CGC), and (c) baseline model with CGC and

confidence-guided pseudo labels (CGL). Score shifts are indi-

cated by arrows. Best viewed in color.

ary (“Baseline+RM”), with centroids being built by score-

weighted within-cluster samples (“Baseline+WS”), and with

centroids being built by our confidence-guided strategy

(“Baseline+CGC”). The performances are reported in Table I.

As can be seen, centroids built with both less boundary sam-

ples and score-weighted samples are beneficial to performance

boosting. For example, mAP is improved by 0.9% and 1.0%
on Market-1501, respectively. Such improvements can also be

found in MSMT17. However, the improvement cannot com-

pare with ours (+1.7% / +2.7% on Market-1501/ MSMT17)

as the proposed CGC considers the distance between samples

and not only their assigned centroid but also those potential

ones. The ablation study on CGC reveals the potential of the

clustering confidence in the pseudo label refinement.

Effectiveness of CGL. We also compare the baseline model

(“Baseline”) and the model trained with confidence-guided

pseudo labels (“Baseline+CGL”). The performances are shown

in Table I. As can be seen, CGL improves mAP / top-1

accuracy by +1.0% / +0.7% on Market-1501 and +2.3% /

+1.3% on MSMT17. When both CGC and CGL are employed

during training, the improvements achieve +2.9% / +1.7% on

Market-1501, and +3.2% / +2.2% on MSMT17.

In terms of the sample-wise clustering confidence, we

visualize the distribution of silhouette scores in Fig. 3(c),

when CGL is applied during training. Compared to the model

trained without CGL (Fig. 3(b)), CGL further pushes the

Method Strategy δ
Market-1501 MSMT17
mAP top-1 mAP top-1

Baseline - - 82.4 92.5 31.4 61.2

Ours

Linear - 85.3 94.2 33.6 63.0
Dynamic - 84.9 93.9 33.0 62.8

Constant
-0.1 83.5 93.4 32.7 62.8

0 84.9 94.0 34.6 63.4

0.1 84.0 93.3 34.0 63.2

TABLE II: Comparison of threshold selection strategies of

confidence-guided centroids (CGC) on benchmark datasets.

score towards a higher value at both epoch 25 and epoch

50. Fewer low-confidence samples during training imply that

our CGL contributes to better clustering. In summary, the

above qualitative and quantitative results prove the proposed

scheme can boost performance by enhancing the sample-wise

clustering confidence.

E. Parameter Analysis

Threshold δ in CGC. To obtain the optimal threshold δ in

Eq. (7) for the proposed confidence-guided centroids (CGC),

three types of threshold selection strategies are explored, i.e.,

linear, dynamic and constant, respectively. For the former two

strategies, the threshold gradually increases as training goes

on. The constant strategy employs a fixed threshold throughout

the training process.

Specifically, the linear strategy updates the threshold by

δt = δ0 ∗ t/T + ϵ, where δ0 limits the range of threshold and ϵ
is the offset. In the paper, we set δ0 = 0.2 and ϵ = −0.1.

t and T denote the current epoch and the overall number

of epochs, respectively. In terms of the dynamic strategy, the

threshold is updated by δ = δ0 ∗ tanh(0.1∗ (t−T/2)). We set

δ0 = 0.1 to achieve δ ∈ [−0.1, 0.1], which is the same as the

linear strategy. The range is set empirically in consideration

of the image quality and the distribution of silhouette scores

(see Fig. 3). Apart from the varying threshold, we conduct

the constant strategy by fixing the threshold as {−0.1, 0, 0.1}
respectively. Comparisons between model performances with

different strategies are reported in Table II. As can be ob-

served, our method boosts the performance consistently with

different scheduling schemes, which proves its robustness to

different types of scheduling schemes. The best performance

is achieved when adopting the linear strategy for Market-1501

and applying a fixed threshold δ = 0 on MSMT17. The

optimal settings are employed throughout all experiments.

Coefficient β in CGL. To analyze the impact of the coefficient

β in the proposed confidence-guided pseudo labels (CGL), we

tune the value of parameter β from 0 to 1 while keeping others

fixed. According to Eq. (9), when β is set to 0 or 1, our method

decomposes down to using the confidence matrix or the one-

hot pseudo label exclusively during training. The results on

these two benchmarks are illustrated in Fig. 4. As shown, as β
increases from 0 to 0.8, both mAP and top-1 accuracy increase.

A slight performance drop can be found when increasing β
from 0.8 to 1. To achieve the best performance, we set β = 0.8
for all experiments.
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To search for optimal hyper-parameters in real-world unsu-

pervised scenarios, one approach is to randomly select and

annotate a small portion (approximately 5% ∼ 10%) of

the training data, serving as the validation set. Subsequently,

appropriate scheduling schemes and hyper-parameters can be

set empirically determined by monitoring performance on this

labeled validation set. For example, in our validation exper-

iment on MSMT17, we randomly select three subsets (val-

1, val-2, and val-3) to mine optimal hyper-parameters, where

each contains 3000 images with identity labels provided by the

dataset. For each validation set, we train the model with the

rest training set with different hyper-parameters and evaluate

the model on the validation set. The performance in terms of

mAP is illustrated in Fig. 5. As can be observed, despite the

fluctuation for different validation sets, the model achieves the

best performance when setting δ = 0 and β = 0.8.

F. Visualization Results

Identity Feature Distribution. To better understand the ad-

vantages of the proposed strategies, we visualize the distri-

bution of identity features via t-SNE [49]. Specifically, 20

identities are randomly selected from Market-1501 [40] and

MSMT17 [14], respectively. Features of selected identities are

extracted by the baseline model and our model is trained with

confidence-guided centroids (CGC) and confidence-guided

pseudo labels (CGL). The distribution of identity features

is illustrated in Fig. 6. As can be seen, due to the vast

variety in camera views, backgrounds, and poses, the feature

distribution of MSMT17 is more chaotic than that of Market-

1501. Despite such challenges, with the aid of the proposed
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Fig. 4: Comparison of coefficient β in confidence-guided

pseudo labels (CGL) on (a) Market-1501 and (b) MSMT17.
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Fig. 5: Performance on validation sets of MSMT17 in terms

of (a) δ and (b) β.

Baseline (82.4%) Ours (85.3%)

(a) Market-1501
Baseline (31.4%) Ours (34.6%)

(b) MSMT17

Fig. 6: Visualization of the identity feature distribution via

t-SNE [49] on (a) Market-1501 and (b) MSMT17. For each

group, features are derived by the baseline model (left) and the

model trained with the proposed confidence-guided centroids

(CGC) and pseudo labels (CGL) (right), respectively. Model

performances (mAP) are also denoted. Different identities are

denoted by different colors. Best viewed in color.

strategies, features of the same identity are distributed more

compactly while features of different identities are further

separated.

Silhouette Scores of Samples. To better demonstrate the

relationship between the sample-wise clustering confidence

and silhouette scores, more clustering results of our method

are provided in Fig. 7.

As can be seen, samples are coarsely clustered based on

basic visual features at the beginning. As more identity-

related information is learned, yet belonging to different

identities, samples with similar appearances and poses are

gradually grouped together. Additionally, top-ranking images

have higher silhouette scores at epoch 25. Finally, at a later

stage (epoch 50), better identity information is learned, and

images presenting the same identity are grouped together

while images belonging to different identities are scattered into

different clusters.

Identity Retrieval. We present retrieval results on benchmark

datasets in Fig. 8 to demonstrate the improvement of our

method over the baseline. Compared to the baseline, our

method achieves a better retrieval performance, presenting

by more correctly matched images ranking at the top. Ad-

ditionally, our method is more robust to noise caused by low

image quality and cluttered backgrounds. Taking the 4th row in

Fig. 8(a) as an example, the baseline fails to retrieve the correct

match with cluttered backgrounds (8th image retrieved by
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-0.2～0 0～0.1 0.1～0.2

(a) Epoch 0

-0.2～0 0.2～0.40～0.2

(b) Epoch 25

-0.2～0 0～0.2 0.2～0.4

(c) Epoch 50

Fig. 7: Visualization of samples (MSMT17) with silhouette scores at (a) epoch 0, (b) epoch 25, and (c) epoch 50. Samples

within different clusters are indicated by different colors. Best viewed in color.

Ours). Meanwhile, due to the low quality of the query image,

the features extracted by the baseline is inaccurate, which

leads to visually dissimilar images (4th∼10th images) ranking

higher than the similar ones (4th∼10th retrieved by Ours). This

is because the proposed confidence-guided schemes encourage

features to be learned from: 1) better centroids where above

noisy samples are excluded due to their low confidence score,

and 2) multiple potential correct identities. In this way, the

extracted features are not only identity-related but noise-

robust, thereby achieving better retrieval results.

G. More Discussions

Identity Consistency Score. The current learning scheme

forces samples to approach their assigned cluster centroids,

where their identity information is embedded. However, the

existence of noisy labels will lead samples to “wrong” cen-

troids. It is especially problematic for low-confidence samples,

i.e., boundary samples because they can be closer to other

centroids than the assigned ones.

To investigate the problem, we conduct an experiment on

MSMT17 [14] to analyze how much the identity information

of boundary samples can be presented in the assigned cen-

troids, i.e., the identity consistency in-between. Specifically,

we select clusters whose size is over 100 at each epoch.

For each cluster, samples whose silhouette scores rank at

the bottom 5% are empirically marked as boundary samples.

Formally, let C = {(xi, gi)}
Nc

i=1
denote a cluster with Nc

samples, where gi refers to the ground-truth identity label

provided by the dataset. An identity set G = {gk}
M
k=1

is

then constructed by overall M identities occurring in the

cluster. Taking a cluster with 3 samples as an example, i.e.,

C = {(x0, 0), (x1, 0), (x2, 1)}, the corresponding identity set

is constructed by overall M = 2 identity labels: G = {0, 1}.
Following the formation of vanilla all-sample based cluster

centroids (Eq. (1)), the identity information embedded in the

centroid can be obtained by linearly integrating all identities

within the cluster via weights Q = {qk}
M
k=1

, where qk is

obtained by qk = 1

Nc

∑

gi∈C ✶{gi = gk}. ✶{gi = gk} equals

to 1 when gi = gk, otherwise 0. Then, the identity consistency

score (ICS) between boundary samples and the cluster centroid

of C can be calculated as, ICS = 1

Nc

∑

gi∈C qk · ✶{gi = gk}.

Similar to the vanilla scheme, ICS of our confidence-guided

centroids (CGC) scheme can be computed by simply replacing
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Query Baseline (82.4%) Ours (85.3%)

(a) Market-1501

Query Baseline (31.4%) Ours (34.6%)

(b) MSMT17

Fig. 8: Retrieval results of the baseline model (Baseline) and the model trained with the proposed schemes (Ours) on (a)

Market-1501 and (b) MSMT17. The performance of models (mAP) is also reported. For each group, the query image is shown

at the leftmost, followed by the top-10 images of its ranking list given by different models. The green rectangles indicate

correct retrieval results, while red ones denote false retrieval results. Best viewed in color.

C with the confidence-guided subset Cq during the computation

of the weight qk. Since low-confidence samples are filtered out

in the formation of confidence-guided centroids, the identity

set G only includes identities of samples with high confidence

scores. We compare the average ICS throughout the training

with vanilla all-sample based cluster centroids and the pro-

posed confidence-guided ones, and obtain the curves in Fig. 9.

For the vanilla scheme, only 5.83% boundary samples carry

the same identity information with their assigned centroid at

the beginning. Although the ratio gradually climbs to 17.19%,

a large proportion of boundary samples (over 80%) still are

pushed to centroids where their identity information is rarely

presented. Unfortunately, the problem has been aggravated by

confidence-guided centroids, where the ratio achieves 14.17%
at most. The low identity consistency scores point out the

seriousness of the problem and validate the necessity of our

confidence-guided pseudo labels.

Clustering Quality. We also intend to analyze the

improvements brought by the proposed strategies in terms

of clustering quality. Following ISE [13], four evaluation

metrics are employed, which are fowlkes mallows score,
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Fig. 9: Identity consistent score (ICS) of boundary samples at

different epochs. Vanilla and CGC refer to the previous all-

sample based cluster centroids and the proposed confidence-

guided centroids, respectively.

adjusted rand score, adjusted mutual info score and

v measure score, respectively. All the above metrics

represent the consistency between clustering results and

ground-truth labels (higher is better). In the paper, we

investigate how the four metrics vary throughout the whole

training process on two benchmark datasets, i.e.,Market-

1501 [40] and MSMT17 [14]. The results are illustrated in

Fig. 10. To demonstrate the advantages of our method, we

also plot the clustering quality curve of “Baseline” models

and a state-of-the-art method, ISE [13], in Fig. 10. Note that

the ISE curve is plotted by the estimated values from their

publication.

As can be seen, for all training schemes, the clustering

quality gradually improves during training due to the involve-

ment of more effective features as well as more discriminative

networks. Additionally, the model trained with the proposed

schemes outperforms both baseline models and ISE on all

metrics. The improvements validate the effectiveness of the

proposed schemes in clustering quality boosting.

More Backbones. We evaluate the proposed method on two

more backbones: Resnet101 [43] and ConvNeXt-Tiny [50].

Performances are reported in Table III. The performance of the

original backbone (ResNet50) is also reported for reference.

As can be seen, when a more powerful backbone

(ResNet101) is adopted, the performance of our method is

improved on two benchmark datasets. In terms of ConvNeXt,

we choose ConvNeXt-Tiny (28.6M) since it has a comparable

number of parameters to ResNet50 (25.6M). However, the

performance on both datasets drops significantly, which is

possibly due to the insufficient representability of backbone

features. Specifically, the dimensions of features output by

ConvNeXT-Tiny and ResNet50 are 768 and 2048, respectively.

The representability is limited by the feature dimension,

which fails to capture some important cues for person re-

identification. Therefore, our method with ConvNeXT-Tiny

backbone achieves inferior performances on both datasets.

V. CONCLUSION

This paper focused on the pseudo label refinement for

clustering-based unsupervised person ReID, which aims to

alleviate the pseudo label noise brought by imperfect clustering

Backbone
Market1501 MSMT17

mAP top-1 mAP top-1

ResNet101 87.1 95.2 36.2 68.6
ConvNeXt-Tiny 48.7 71.2 16.3 40.1

ResNet50 85.6 94.3 35.7 66.1

TABLE III: Performance of our method on Resnet101 and

ConvNeXt-Tiny backbone network.

results. Instead of relying on auxiliary information such as

camera IDs, body parts, or generated samples, we refined

pseudo labels with internal characteristics, i.e., the sample-

wise clustering confidence. Specifically, we proposed to use

confidence-guided centroids (CGC) to provide reliable cluster-

wise prototypes for feature learning, where low-confidence

instances are filtered out during the formation of centroids.

Additionally, targeting the problem that a large proportion

of samples are pushed to “wrong” centroids, we propose to

use confidence-guided pseudo labels (CGL). Such labeling

enables samples to approach not only the assigned centroid but

other clusters where their identities are potentially embedded.

With the aid of CGC and CGL, our method yields compa-

rable performances with, or even outperforms, state-of-the-art

pseudo label refinement works that largely leverage auxiliary

information.

Limitations and Future Works. Although we conducted

multiple scheduling strategies in the paper, the parameters are

selected empirically. We attempt to explore adaptive thresholds

in the future. Additionally, since the proposed method does

not leverage identity labels, it is applicable to diverse re-id

related tasks, such as vehicle re-id [51], [52] and text-to-image

reid [53]. In the future, we attempt to explore its potential in

the multi-modality context with the help of vision-language

models such as CLIP [54].
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