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Abstract—Learning from Demonstration (LfD) techniques are
invaluable for capturing complex human behaviors for robotic
arm manipulations, yet they frequently encounter challenges such
as avoiding singularities and respecting joint limits when directly
applied to robotic systems. These challenges often lead to mechan-
ical non-compliance, inaccuracies, and increased computational
demands during control method adjustments. To address these
issues, this study introduces a robust approach that integrates
Damped Least Squares Inverse Kinematics (DLS-IK) with Prob-
abilistic Movement Primitives (ProMPs). By leveraging DLS-IK
to generate kinematically feasible trajectories, and embedding
these within the ProMPs framework, our method not only ensures
mechanical compliance but also capitalizes on the probabilistic
modeling capabilities of ProMPs. This synergy addresses a signifi-
cant gap in traditional LfD applications—aligning human demon-
strations with the mechanical constraints of robotics, independent
of the demonstrator’s expertise. Our integrated approach refines
the LfD process, enabling the generation of precise, reliable,
and mechanically compliant movements in robotic arms, thereby
reducing the typical inaccuracies and computational burdens
associated with conventional LfD methods.

Index Terms—Inverse Kinematics, DLS, LfD, ProMPs, Robotic
arm

I. INTRODUCTION

The challenge of kinematic singularities is a prominent

concern within the field of robotic manipulators [1], [2].

At such points, the robotic arm encounters configurations

where it loses one or more degrees of freedom, complicat-

ing control over its movements. Traditionally, these issues

are addressed using Inverse Kinematics (IK) solutions [3].

However, the implementation of Learning from Demonstration

(LfD) techniques [4]–[6], where robots learn actions from

human demonstrations, intensifies the difficulty of managing

singularities. Human demonstrators often overlook the robotic

arm’s susceptibility to singularities and joint limits, which can

lead to suboptimal guidance during demonstrations.

This study seeks to enhance LfD methods by addressing

such inherent challenges when employing human demonstra-

tions for training robotic arms. Current LfD approaches may

fail to consider the full mechanical constraints of robotics, re-

sulting in increased computational complexity and suboptimal

robotic performance. We introduce a novel integration of the

Damped Least Squares method for Inverse Kinematics (DLS-

IK, see Fig. 1) [7] with Probabilistic Movement Primitives

Fig. 1: The DLS-IK demonstration learning involves a struc-

tured process from the target end effector posture through

forward and inverse kinematics for determining joint angles,

ultimately culminating in the creation of a trajectory plan using

ProMPs learning.

(ProMPs) [8], [9], aimed at overcoming these limitations

by ensuring both kinematically-feasible and mechanically-

compliant trajectory learning.

The gap in traditional LfD methods lies in the alignment of

human demonstrations with the mechanical and operational

principles of robotic arms [10]. This misalignment often

necessitates various ad-hoc adjustments and control methods,

which compromise the accuracy of the outcomes and increase

the system’s computational burden. Our approach leverages

the robust trajectory generation capabilities of DLS-IK to

navigate the complexities of singularities and joint constraints

effectively. Integrating these trajectories within the ProMPs

framework utilizes the probabilistic modeling strengths of

ProMPs, while ensuring that the learning process adheres to

mechanical feasibility.

In summary, our contributions are: (1) An advanced DLS-

IK method that not only controls velocity damping but also

adheres to joint constraints through the null space principle

of the robotic arm. (2) Incorporation of this refined DLS-

IK approach into the ProMPs framework, which significantly

enhances the robot’s ability to learn and generate motion

trajectories that are both mechanically compliant and efficient,



effectively addressing singularity issues and joint limitations.

(3) An investigation into the impact of the Jacobian condition

number in the DLS-IK process on the stability and robustness

of robot arm movements, particularly near singularities. Our

findings demonstrate improved stability and velocity control

via local optimal parameter selection.

II. RELATED WORKS

Inverse Kinematics (IK) is a fundamental technique in

robotics and animation that involves determining the joint

parameters required to position a robot’s end effector, such as

a gripper, at a desired location and orientation. The singularity

problem, which arises when a robot’s Jacobian matrix becomes

ill-conditioned or singular, can be addressed using IK solutions

[7], [11]. Among various IK methods, the DLS approach has

proven effective in maintaining the stability of the robot arm

when operating near singularities. DLS introduces a damping

factor that modifies the Jacobian matrix, enabling smooth and

stable motion even in the presence of singularities.

Probabilistic Movement Primitives (ProMPs), an LfD

framework, learns robot motion trajectories from human

demonstrations. However, ProMPs heavily rely on the quality

of the demonstrations [4], [12] and do not inherently address

the singularity problem, which can lead to suboptimal or

infeasible motions if the demonstrations fail to consider factors

such as singularity avoidance and joint limits. Therefore,

we propose integrating IK principles, specifically the DLS

method, into the ProMP framework to tackle the singularity

issue and enhance the robustness and stability of the generated

motions. By incorporating DLS-based IK solutions and con-

sidering joint limits during the learning and generation phases,

our method seeks to improve the overall quality and feasibility

of the generated robot motions.

III. METHODS

A. Inverse Kinematics

Inverse kinematics is the inverse of forward kinematics,

which ascertains the end effector’s position from known joint

parameters [13]. For robots with several degrees of freedom,

it is common to employ the Jacobian matrix, which correlates

the velocities of the robot’s joints to the end effector’s velocity.

The IK challenge is often approached by calculating the

Jacobian’s inverse (or pseudo-inverse):

ẋ = Jθ̇ (1)

where θ̇ denotes the vector of joint velocities, J is the

Jacobian matrix, and ẋ represents the Cartesian velocity of

the end effector. This iterative method helps approximate joint

angles for complex robotic arms.

B. Damped Least Squares

The Damped least Squares (DLS) method modifies the basic

least squares solution by adding a damping term to improve

stability and handle singular configurations [14]. The Jacobian

matrix (J) of the robot, which relates changes in joint angles

to changes in end effector position and orientation, plays a

central role in this method.

Given a desired change in end effector position (∆x), the

change in joint angles (∆θ) can be approximated using the

pseudo-inverse of the Jacobian:

∆θ = J†∆x (2)

However, directly using the pseudo-inverse can lead to large

joint velocities in the vicinity of singularities. To mitigate this,

the DLS method introduces a damping factor (λ), modifying

the formula to:

∆θ = (JTJ + λ2I)−1JT∆x (3)

Here, JT is the transpose of the Jacobian, I is the identity

matrix, and λ is the damping factor, a small positive constant.

This addition ensures that the solution is less sensitive to

singularities and results in smoother motion.

Additionally, the relationship between the damping factor λ

and the condition number of the Jacobian κ(J) in the context

of the DLS is critical for maintaining the stability of the robotic

arm’s movements, especially near singularities.

κ(J) =
σmax

σmin

(4)

High condition number of Jacobian (κ(J) large) indicates

that the Jacobian matrix is near singular or ill-conditioned.

To reduce the influence of these instabilities, the larger λ pro-

vides more damping, which effectively regularizes the pseudo-

inverse by reducing the contribution of directions associated

with small singular values. This helps to prevent excessively

large joint velocities and torques.

Low condition number of Jacobian (κ(J) small) indicates

that the Jacobian matrix is well-conditioned. A smaller λ

allows the control to more precisely follow the desired end

effector path or force application.

C. Controlling in the null space

Controlling in the null space refers to a technique used to

achieve a specific task (the primary task), while simultaneously

satisfying additional constraints or optimizing secondary ob-

jectives to achieve some secondary task [15]. The null space

refers to the space of motions that don’t move the end effector

and hence don’t affect the primary task.

In this approach, we first calculate the joint velocities

(q̇primary) required for the primary task (e.g., reaching a target

end effector position and orientation) using the DLS method.

This involves modifying the pseudo-inverse calculation of the

Jacobian to include a damping factor, which helps to prevent

large joint velocities near singularities of the Jacobian. α is set

to control the strength of the penalty for large joint velocities.

A larger α value will result in smaller joint velocities and

potentially lower energy consumption, but it might also slow

down the convergence of the IK solution. The formula for

q̇primary using DLS is:



q̇primary = JT (JJT + λ2I + αI)−1ẋ (5)

The secondary task in IK minimizes the deviation of each

joint’s angle from the midpoint of its motion range, thereby

calculating the joint velocity. To prevent this secondary task

from affecting the primary task, the secondary joint velocities,

q̇secondary , are projected onto the null space of the Jacobian

related to the primary task. The null space comprises all joint

velocities that do not influence the movement of the end

effector [2].

Given the null space of the Jacobian (N(J)), the projection

of q̇secondary onto N(J) is given by:

q̇null = (I − J+J) · q̇secondary (6)

where I is the identity matrix. J+J projects any vector onto

the column space of J , and thus I − J+J projects onto the

null space.

The final joint velocities q̇final combine contributions from

both tasks, prioritizing the primary task while incorporating

the secondary task as much as possible without interference:

q̇final = q̇primary + q̇null (7)

This ensures that the primary task’s objectives are met first,

and the secondary task’s objectives are met within the degrees

of freedom left by the primary task.

D. DLS-IK

The DLS-IK demonstration learning framework shown in

Fig. 1 is a coherent structure that guides the robotic arm

from an initial target end effector posture to the learned

movements through ProMPs. It begins with the target end

effector posture, which serves as the desired outcome of

the demonstration learning. The forward kinematics module

provides the necessary context by predicting the end effector’s

position from current joint angles.

Focusing on the inverse kinematics, this framework distin-

guishes between two tasks. The primary task utilizes a DLS

approach, adapting the IK computation to maintain stability

and smoothness, especially when the manipulator is close

to singularity points. The associated Equation (5) reflects

the inclusion of a damping term to temper the influence of

singularities in the Jacobian matrix and ensure reliable joint

velocity calculations.

The secondary task addresses additional considerations that

do not affect the primary goal, operating within the robot’s

null space—motions that do not produce movement in the end

effector, thereby not interfering with the primary task. This is

represented by Equation (6), which projects secondary tasks

onto the null space, ensuring that they complement rather than

compromise the primary task. Two tasks will finally be added

to the plan (Equation (7)).

The transition from computed joint angles to an executable

plan involves linear interpolation, creating a smooth trajectory

that the robotic arm can follow over time. This trajectory forms

the basis for the ProMPs learning process, where the sequence

of movements is encoded into a probabilistic model. Through

ProMPs, the robotic arm can generate movements that are not

only based on the learned demonstrations but also adaptable

to new tasks and environments, ultimately ensuring a flexible

and precise execution of complex tasks.

E. Probabilistic Movement Primitives

ProMPs are essential in robotic motion planning and control

for modeling complex motor skills within a probabilistic

framework [16]. Unlike deterministic methods, ProMPs repre-

sent movements as distributions over trajectories, enhancing

adaptability and robustness in dynamic environments and

shifting task objectives.

The trajectory at any time t, y(t), is defined by:

y(t) = φ(t)Tw (8)

where φ(t) represents basis functions, such as Gaussian or

polynomial, and w are weights encoding movement patterns.

These weights are modeled as Gaussian distributed random

variables for simplicity:

w ∼ N (µw,Σw) (9)

This models the variability of movements, where µw and Σw

are the mean and covariance of the weights.

ProMPs employ techniques like maximum likelihood esti-

mation or Bayesian inference to determine these parameters,

using prior knowledge about the weights. They can adapt

to new observations or desired outcomes through Bayesian

conditioning:

p(w|yobs) ∝ p(yobs|w)p(w) (10)

This conditioning process aids in synthesizing new movements

by sampling from the w distribution and recalculating the

trajectory with basis functions.

IV. EXPERIMENTS

We present two experiments conducted to evaluate the effi-

cacy of the proposed DLS-IK method in robotic arm manipula-

tions. The first experiment, termed the singularity experiment,

was designed around two distinct singularity scenarios to

demonstrate how DLS-IK can effectively stabilize and smooth

the manipulator’s movements as it approaches singularity

points. Additionally, this experiment provided insights into the

relationship between the Jacobian condition number and the

stability of the robot arm’s movement, underlining the critical

influence of mathematical conditions in robotic precision and

control.

The second experiment focused on integrating the ProMPs

model to contrast the outcomes from DLS-IK demonstrations

with those derived from human demonstrations. This compar-

ison aimed to identify and analyze the limitations inherent in

using human demonstrations for robotic learning. The findings

not only underscored the challenges of relying solely on

human inputs but also validated the necessity of incorporating

the DLS-IK method to enhance learning outcomes.



We employ the Robot Operating System (ROS) [17] frame-

work, the MoveIt [18] library for planning and executing

robotic arm movements. ROS is an open-source platform for

building robot applications, while MoveIt provides a unified

interface for performing motion tasks. We conducted the

experiment on a computer equipped with an Intel i9-11900

processor and an NVIDIA 3050.

A. Approaching a singularity

Fig. 2: (a) illustrates the operation sequence of a Franka robot

arm, beginning with the initial stage (highlighted in orange)

and progressing towards a state near to a singularity. (b)

displays the motion trajectories of Joints 4, 6, and 7, which

are influenced by the singularity.

Fig. 3: The first singularity scenario shows the joint 7 position,

velocity and torque.

TABLE I: The first singularity scenario in terms of condition

number of Jacobian.

Condition number of Jacobian Less than 8 (%) Less than 10 (%)

First singularity scenario 0% 100%
DLS-IK in first singularity scenario 20% 83%

Fig. 4: The second singularity scenario shows the joint (4, 6

and 7) position, velocity and torque.

TABLE II: The second singularity scenario in terms of condi-

tion number of Jacobian.

Condition number of Jacobian Less than 8 (%) Less than 10 (%)

Second singularity scenario 0% 72%
DLS-IK in second singularity scenario 28% 83%

The experiment section evaluates the efficacy of the DLS-

IK method in smoothing velocity profiles under singularity

conditions by analyzing two specific scenarios. In the first

scenario (Fig. 3), joint velocities exhibit a sharp rise as the

arm approaches singularity, with joint 7 notably reaching -1.0

rad/s. With DLS-IK, these velocities are effectively moderated

to around -0.8 rad/s, demonstrating the method’s capability for

stable velocity control.

Torque profiles in the singularity context (Fig. 3) display

small magnitudes with erratic fluctuations. In contrast, DLS-

IK application results in more consistent torque trajectories,

indicating improved control when near singularity.

The second scenario (Fig. 4) shows rapid velocity increases

for joints 4, 6, and 7 without DLS-IK. The DLS-IK method

effectively regulates the velocities of joints 6 and 7, which

are observed to reach -0.6 rad/s and -1.4 rad/s, respectively.

Notably, even as joint 7’s velocity increases past the 0.75-

time mark, it exhibits a smooth ascension. Similarly, joint

4 maintains a steady rate of acceleration, contributing to the

arm’s overall movement stability.

Further analysis into the Jacobian condition number, shown

in Tables I and II, suggests a correlation between lower condi-

tion numbers and more stable control. DLS-IK contributes to

a higher incidence of condition numbers falling below critical

thresholds, demonstrating its utility in achieving stable arm

control near singularities.



B. Human demonstrations comparing with DLS-IK demon-

strations

Fig. 5: An operator manually guiding the end effector of a

Franka robot arm, indicated by the red arrow, to demonstrate

the desired motion. This is essential for collecting human

demonstrations for robotic training.

Fig. 6: Franka joint 1 position and velocity comparing human

and DLS-IK demonstrations.

The figures displayed (Fig. 6, 7, and 8) illustrate the tra-

jectories and velocity profiles for three distinct joints (Joint1,

Joint3, and Joint5) which have significant variation we se-

lected. These were derived from human demonstrations and

DLS-IK demonstrations using ProMPs. Fig. 5 demonstrates

the way of manually guiding the robotic arm from an initial

to a final position to gather data for a human demonstration.

DLS-IK is combined with the ProMPs model, following the

methodology outlined in Fig. 1.

Figure 6 compares the outcomes of learning from human

and DLS-IK demonstrations. For human demonstrations, the

trajectory aligns well with the original, but the velocity profile

shows marked discrepancies, particularly with reduced magni-

tudes and missing sharp peaks and valleys, indicating potential

oversmoothing during the learning process. Conversely, the

trajectory from the DLS-IK demonstration displays a smooth,

continuous curve closely mirroring the input data, with a bell-

Fig. 7: Franka joint 3 position and velocity comparing human

and DLS-IK demonstrations.

Fig. 8: Franka joint 5 position and velocity comparing human

and DLS-IK demonstrations.

shaped velocity profile that captures the dynamic characteris-

tics of the motion, suggesting effective learning of fluid and

natural-looking movements.

In Figure 7, the trajectory learned from human demon-

strations is smoother than the original, possibly reflecting

the generalization capabilities of the algorithm. However, the

velocity profile from this model significantly flattens, failing to

replicate the pronounced peaks and valleys observed in human

motions, which suggests a loss of critical dynamic information.

In contrast, the trajectory and velocity profile from the DLS-IK

demonstration maintain a smooth, bell-shaped curve, affirming

the ProMPs’ efficiency in encapsulating the essential dynam-

ics, thereby enabling the generation of seamless and graceful

movements.

Figure 8 shows that while the trajectory from human demon-

strations generally follows the shape of the demonstrated mo-

tion, the associated velocity profile diverges significantly, with

peak velocities higher than those in the demonstration, hinting

at an overestimation of the motion’s speed. The velocity profile

also demonstrates an oscillatory pattern absent in the original

demonstration. In comparison, the trajectory and velocity

profile from the DLS-IK demonstration are smooth and mostly

symmetrical, although with slight asymmetry. Despite this,

the overall fidelity of the velocity profile indicates successful



learning of the motion dynamics by the ProMPs, enabling fluid

and natural-looking movements.

C. Discussion

The implementation of DLS-IK has proven effective in

managing the singularity challenges faced by robotic ma-

nipulators. As the manipulator nears a singularity, DLS-IK

precisely moderates the joint velocities, ensuring they remain

stable and controlled. This capability enhances the precision of

the arm’s movements and results in smoother velocity outputs,

highlighting the direct link between the stability of the arm’s

movement and the condition number of the Jacobian—a lower

condition number corresponds to increased stability and better

control.

The ProMPs approach, while effectively learning and re-

producing the overarching trajectories from human demon-

strations, encounters difficulties with velocity profiles. The

observed velocity inconsistencies point to the complexities of

learning from the inherently variable and sometimes noisy

human demonstration. Addressing these challenges may in-

volve several strategies, such as preprocessing input data,

diversifying the demonstration samples, fine-tuning the ProMP

parameters, applying post-processing techniques, and working

more closely with demonstrators for higher quality demonstra-

tions. These actions underline the importance of careful and

iterative refinement of the data to enhance the reliability of

ProMP-based robotic learning.

Additionally, when ProMPs are informed by DLS-IK-

generated demonstrations, they outperform those based on hu-

man demonstrations by better capturing the motion’s smooth-

ness and continuity. Smooth velocity profiles achieved across

joints indicate that the learned motion primitives can emulate

fluid and lifelike movements. These results shed light on the

effectiveness of integrating ProMPs with DLS-IK, suggesting

a method to replicate intricate robotic motions with enhanced

fidelity and smoothness. Such smoothness in movement is

vital for applications that require delicate and human-like

interactions, thus demonstrating the dual advantage of DLS-

IK: it not only improves robotic precision and stability but also

empowers advanced learning methods like ProMPs to more

accurately reflect the dynamics of human motion.

V. CONCLUSIONS

We have established a significant enhancement in LfD

for robotic arm manipulations by integrating DLS-IK with

ProMPs. This effectively overcomes the key challenges inher-

ent in LfD methods, particularly those concerning singularities

and joint limits.

Through the DLS-IK approach, we generated trajectories

that were not only kinematically viable but also contributed

to the smoothness and stability of robotic arm movements,

especially near singular configurations. The incorporation of

these trajectories into the ProMPs framework capitalized on

its probabilistic modeling strength, thereby reinforcing both

the reliability and the mechanical soundness of the motion

primitives derived from human demonstrations.

Looking ahead, tailoring the DLS-IK parameters for diverse

robotic architectures and use cases could significantly extend

the reach of this methodology. Further investigations might

also refine the demonstration data collection from human,

reducing noise and inconsistencies, where machine learning

could play a role in streamlining the preprocessing of such

data.
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