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Aims One of the major challenges in the quantification of myocardial blood flow (MBF) from stress perfusion cardiac magnetic 
resonance (CMR) is the estimation of the arterial input function (AIF). This is due to the non-linear relationship between 
the concentration of gadolinium and the MR signal, which leads to signal saturation. In this work, we show that a deep learn
ing model can be trained to predict the unsaturated AIF from standard images, using the reference dual-sequence acquisition 
AIFs (DS-AIFs) for training.

Methods 
and results

A 1D U-Net was trained, to take the saturated AIF from the standard images as input and predict the unsaturated AIF, using 
the data from 201 patients from centre 1 and a test set comprised of both an independent cohort of consecutive patients 
from centre 1 and an external cohort of patients from centre 2 (n = 44). Fully-automated MBF was compared between the 
DS-AIF and AI-AIF methods using the Mann–Whitney U test and Bland–Altman analysis. There was no statistical difference 
between the MBF quantified with the DS-AIF [2.77 mL/min/g (1.08)] and predicted with the AI-AIF (2.79 mL/min/g (1.08), 
P = 0.33. Bland–Altman analysis shows minimal bias between the DS-AIF and AI-AIF methods for quantitative MBF (bias of 
−0.11 mL/min/g). Additionally, the MBF diagnosis classification of the AI-AIF matched the DS-AIF in 669/704 (95%) of 
myocardial segments.

Conclusion Quantification of stress perfusion CMR is feasible with a single-sequence acquisition and a single contrast injection using an 
AI-based correction of the AIF.
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Introduction
Stress perfusion cardiac magnetic resonance (CMR) is typically performed 
with a dynamic contrast-enhanced acquisition in which a bolus of a 
gadolinium-based contrast agent is visualized passing through the left ven
tricle (LV) and perfusing the myocardium. This is performed under stress 
conditions using pharmacologically induced vasodilation to assess areas of 
inducible hypoperfusion. On the weight of evidence from recent clinical 
trials, stress perfusion CMR is now one of the guideline-backed methods 
of choice for the identification of myocardial ischaemia.1 It has been shown 
to be highly accurate for the diagnosis of significant coronary artery disease 
(CAD) and is non-inferior to the invasive reference standard for guiding 
the management of patients with stable CAD.2–4 However, Villa et al.5

showed that the diagnostic accuracy of stress perfusion CMR depends 
on the level of training of the operator, due to the complexity of visually 
interpreting the scans. Observer-independent quantitative perfusion ana
lysis may overcome this limitation.

The quantification of myocardial blood flow (MBF), by modelling the 
tracer-kinetics, represents a viable alternative to visual assessment and 
can be automated.6 It, thus, reduces the dependence on the experience 
of the operator. Additionally, quantitative MBF has been shown to be of 
independent prognostic value,7 allow the detection of coronary micro
vascular dysfunction,8 and provide insight into ischaemia in a range of 
other cardiovascular conditions.9–11 From a technical standpoint, one 
of the major challenges of MBF quantification is the sampling of the ar
terial input function (AIF) as required for the tracer-kinetic modelling. 
The AIF is typically sampled from the basal left ventricular (LV) blood 
pool or aortic root12 and because the whole bolus of contrast passes 

through the LV cavity more-or-less simultaneously, very high concen
trations of contrast agent are recorded at the peak of the AIF. There 
is known to be a non-linear relationship between the concentration 
of gadolinium and the measured MR signal, particularly at high concen
trations and thus, on the standard acquisitions, the measured signal in 
the LV is saturated.13

There are potential solutions to the AIF saturation but all have chal
lenges for use in routine clinical practice. For example, a dual-bolus in
jection of contrast agent, one with a lower dose of gadolinium and 
hence less saturation, can be used but this adds complexity to the scan
ning.14 The dual-bolus increases the potential for errors with the two 
injections, and has the limitation of measuring the AIF and myocardial 
tissue curve at different times. Most recent research in quantitative 
stress perfusion CMR uses a dual-saturation acquisition sequence in 
which a short saturation time is used to acquire a low-resolution image 
slice, with reduced signal saturation for AIF estimation, and the myocar
dium information is subsequently acquired with a standard higher reso
lution acquisition.15,16 As yet, these dual-saturation methods are not 
available outside of specialized research settings. The increased imaging 
time required for the extra AIF slice also means that there is less time 
available to acquire the standard three slices, potentially leading to re
duced spatial resolution or image quality, particularly at high heart rates.

Therefore, there is a clear unmet need for an AIF sampling approach 
that is both widely available and easy to integrate in clinical routine, 
ideally with a single-bolus of contrast agent and a commercially available 
single-saturation sequence acquisition. In this work, we present the arti
ficial intelligence-based AIF (AI-AIF), a deep learning model trained to 
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predict the unsaturated AIF from a saturated single-bolus, single- 
sequence AIF. This builds on the idea that deep learning models can ef
ficiently learn non-linear mappings, and thus, well-approximate com
plex physical processes that are otherwise difficult to model, and 
other recent work on deep learning for parametric mapping,17 diffusion 
modelling,18 and tracer-kinetic modelling.19,20 Specifically, we show that 
the non-linear mapping from saturated to unsaturated AIF can be learn
ed from a data set of paired saturated and unsaturated AIFs acquired 
with a dual-saturation sequence. This deep learning-based non-linear 
correction can then be applied prospectively to the AIF from standard 
stress perfusion CMR data to allow accurate quantification without the 
need for a dual-bolus or dual-sequence acquisition, as shown in Figure 1. 
It is expected that this will increase the availability of quantitative stress 
perfusion and make it easier to adapt in clinical practice.

Methods
Study population
This was a multicentre retrospective study, with data included from two UK 
centres [King’s College London (centre 1) and the University of Leeds (centre 
2)] which was approved by the institutional research ethics committee and 
complied with the Declaration of Helsinki. All patients included in this study 
provided written informed consent, in accordance with the National 
Research Ethics Service approvals (15/NS/0030 and 18/YH/0168, respectively).

The data used in this study consisted of two parts. The training data set 
was a retrospective sample of patients exclusively from centre 1, and a test 
set was comprised of both an independent cohort of consecutive patients 
from centre 1 and an external cohort of patients from centre 2. The exter
nal dataset, acquired at a different centre, on a different type of MRI system, 
and at a different magnetic field strength was included to assess the gener
alization capacity of the model.

Training dataset
The training dataset consisted of a retrospectively collected convenience 
sample of 201 patients who, between January 2017 and July 2021, under
went cardiac MRI including contrast-enhanced stress perfusion at centre 
1 and consented for their anonymized data to be used for research pur
poses. This dataset was split randomly into 181 and 20 patients for training 
and model validation, respectively.

Test dataset
The centre 1 test dataset retrospectively enrolled 28 consecutive patients 
scanned between February 2021 and August 2021, and this was supplemen
ted by 16 patients from centre 2 scanned between March 2021 and 
September 2021.

Image acquisition
The CMR examinations were performed using two different types of scan
ning systems. A 3-Tesla (T) Achieva system (Philips Healthcare, Best, the 
Netherlands) was used at centre 1 and a 1.5-T Ingenia system (Philips 
Healthcare, Best, the Netherlands) at centre 2.

The gadolinium-enhanced perfusion studies were performed with a sat
uration recovery spoiled gradient echo sequence with an optimized dual- 
sequence AIF slice implementation to allow MBF quantification, as previous
ly described.15 The typical imaging parameters were as follows: repetition 
time 2.2 ms, echo time 1.0 ms, 100 ms, flip angle 15°, and SENSE acceler
ation factor 1.8. The low-resolution AIF slice was acquired with the same 
acquisition parameters except for the short saturation recovery time which 
was 23.5 ms. In addition to the low-resolution AIF slices, three high- 
resolution short-axis slices were acquired covering the LV. A bolus of 
0.075 mmoL/kg Gadobutrol (Gadovist, Bayer AG, Leverkusen, Germany) 
was injected intravenously at 4 mL/s using an injector pump (Spectris 
Solaris, Medrad, Bayer AG), followed by 25 mL of saline flush. Stress perfu
sion imaging was performed during adenosine-induced hyperaemia (140 µg/ 
kg/min for 3 min, increasing to a further 2 min at 175 µg/kg/min and a fur
ther 2 min at 210 µg/kg/min if an insufficient stress response had been 
achieved).

AI-AIF
The AI-AIF uses a deep learning model that is designed to resolve the issue 
of signal saturation in the AIF for quantitative stress perfusion CMR. As 
shown in Figure 1, the deep learning model takes the saturated AIF signal 
from a standard high-resolution stress perfusion scan and predicts the 
unsaturated AIF signal without the need for any additional input (like the 
dual-bolus or dual-sequence). The model is trained with data from dual- 
sequence acquisitions, acquired at an established centre with extensive ex
perience in quantitative stress perfusion CMR. In particular, the unsaturated 
data from the short saturation acquisition are used to create a reference 
standard unsaturated AIF and the network was trained to predict this curve 
from saturated AIF sampled from the standard acquisition. The final AI-AIF 
model is made available at https://github.com/cianmscannell/ai-aif, along with 
the code used for model training.

Model architecture
A 1D U-Net21convolutional network (CNN) was employed which con
sisted of five resolution steps, with each resolution step being comprised 
of two 1D convolutional blocks with batch normalization, ReLU activations, 
and dropout (probability = 0.2). 1D max-pooling and transposed convolu
tions are used for down- and up-sampling, respectively. This model archi
tecture was chosen empirically based on the validation data.

Training details
The model was initialized with He normal weights22 and was trained for 
20 000 iterations (including data augmentation), with a batch size of 10 using 

Figure 1 Artificial intelligence-based arterial input function correction: an illustration of the AI-AIF model which takes the saturated AIF from a stand
ard acquisition (left, sampled from the (round) region of interest (ROI) in the LV blood pool) and predicts an unsaturated version which, with the myo
cardial tissue curve (square ROI), is used in the quantification process to generate a stress MBF map, without the need for any additional input such as 
from a dual-sequence or dual-bolus acquisition. The neural network model used is a 1-D U-Net model, as is commonly for signal and image processing, 
which consists of a down-sampling block (encoder) and an up-sampling block (decoder) to reconstruct an output of the same dimensions as the input.
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the ADAM optimization algorithm (learning rate, 0.001)23 to minimize the 
mean squared error (MSE) between the predicted and reference standard 
unsaturated AIFs. The model with the best validation accuracy was chosen.

Training data
The training database consists of 1D time curves of paired saturated and 
unsaturated AIFs extracted from dual sequence acquisitions. The pre- 
injection portion of the AIF is cropped to begin four beats before the arrival 
of the contract agent in the LV. The values of both the AIFs are normalized 
by the maximum of the saturated AIF for both training and inference, and 
can be later correspondingly unnormalized to allow MBF quantification. 
The curves are cropped or padded to give 64 time points.

Data augmentation
The data augmentation strategy was chosen in order to preserve the quan
titative information present in the AIF signal-intensity curves. To achieve 
this, independent Gaussian noise with zero mean and a standard deviation 
of 0.02 for the training input and 0.03 for the output was added. This noise 
was chosen not to substantially impact the signal of the curves but to simu
late slightly different realizations of AIF. Furthermore, a random time-offset 
of 0, 1, 2, or 3 was applied to the starting time of both the input and output 
to simulate different arrival times of the contrast agent.

MBF quantification
Image analysis
All image analysis and quantification steps are fully-automated. The stress 
perfusion images were initially corrected for respiratory motion using a pre
viously described motion compensation scheme,24 and the segmentation of 
a ROI for the myocardium was performed using a deep learning-based 
automated image processing pipeline6 that detects the right ventricular 
(RV) insertion points. The AIF is extracted as the average of pixels over 
an ROI chosen to comprise the pixels greater than the 75th percentile of 
intensity values within the subendocardial border of the myocardium seg
mentation, i.e. in the LV blood pool.25

Quantification
Since the premise of the AI-AIF and DS-AIF approaches is that they correct 
for the non-linearity of the MR signal with respect to the concentration of 
gadolinium, the concentration of gadolinium [C(t)] can be approximated 
from the signal intensities (S(t)) using a relative signal enhancement conver
sion26:

C(t) =
1

r1 · T1b

S(t) − S(0)
SLV(0)

􏼒 􏼓

with the T1b of blood taken as 1736ms at 3-T or 1435 ms at 1.5-T and r1 the 
contrast agent as 4.5 s-1 mmoL//L ,27 SLV is the signal in the LV blood pool. 
Quantification of MBF is then undertaken by deconvolving the AIF and myo
cardial tissue curves on a pixelwise level, using a Fermi function-constrained 
deconvolution.28

Evaluation
We evaluated the AI-AIF with respect to the reference standard dual- 
sequence AIF (DS-AIF) in two stages. In the first stage, the signal-intensity 
curve of the AI-predicted unsaturated AIF is compared with the DS-AIF. 
Second, the effect of the differences between the predicted and reference 
DS-AIFs on the downstream task of stress MBF quantification is assessed.

AIF curve
The median (interquartile range) (IQR) normalized mean squared error 
(NMSE) between the AI-predicted and reference DS-AIFs is reported. 
Additionally, the difference in peak values (PV), time-to-peak (TTP), and 
full width at half maximum (FWHM) of the AIFs is evaluated, and the distri
butions of PV, TTP, and FWHM of the AI-AIFs are compared with the dis
tributions of PV, TTP, and FWHM of the DS-AIFs using a Mann–Whitney U 
test, and the distributions are visualized with a boxplot.

MBF quantification
Stress MBF is quantified using both the AI-AIF and DS-AIF for all patients in 
the test set, and is reported as median (IQR), with a Mann–Whitney U test, 
used to test for significant differences between the AI-AIF and DS-AIF mea
surements. Bland–Altman analysis was used to assess the bias and limits of 
agreement between the manual and automated analysis. The linear relation
ship between stress MBF derived with AI-AIFs and DS-AIFs is visualized with 
the equation of the line of best with and the associated R2 value is also re
ported. This evaluation is performed both on a patient-wise level (MBF 
averaged over all pixels from each patient) and on an American Heart 
Association (AHA) 16 segment-wise level.29 To assess the generalization 
performance of the AI-AIF model to external data, a further Mann– 
Whitney U test is performed to test for differences, between internal 
and external testing data, in the difference between AI-AIF and 
DS-AIF-derived stress MBF. All statistical analysis was performed in 
Python using SciPy.30

In order to also assess the effect of differences in stress MBF between the 
AI-AIF and DS-AIF methods on the diagnostic accuracy of the quantitative 
stress MBF values, a further evaluation was conducted with respect to the 
optimal cut-off threshold for CAD. In particular, a diagnosis would be chan
ged by the use of the AI-AIF if the stress MBF value was lower than the 
threshold with the AI-AIF and higher with the DS-AIF or vice versa. The 
diagnosis would be unchanged by the use of the AI-AIF if stress MBF was 
lower than the threshold with both the AI-AIF and DS-AIF approaches 
or higher than the threshold with both approaches. In the ideal scenario, 
the use of the AI-AIF instead of the DS-AIF should leave the diagnosis of 
all vessels unchanged, and so the percentage of AHA segments for which 
the diagnoses match is reported. In addition, since the diagnosis for a cor
onary vessel is made based on the average MBF of the two lowest AHA seg
ments in that coronary territory,31 the percentage of vessels for which the 
diagnoses match is also reported. In this study, the quantitative MBF thresh
old is taken to be 1.35 mL/min/g, as found to be optimal by Hsu et al.32 using 
similar methods.

Results
Study population
The test data set baseline characteristics are summarized in Table 1. The 
AI-AIF model was applied to all patients in the test data set and quan
titative perfusion analysis was successfully performed in all 704 AHA 
segments with both the DS-AIF and AI-AIF methods.

AIF curve
Figure 2 compares the predicted AI-AIF with the reference standard 
DS-AIF and the standard high-resolution AIF for three representative 
patients. A strong agreement is shown in Figure 2A and B with less 
good agreement seen in Figure 2C. The median NMSE between the 
DS-AIF and AI-AIF curves was 1.9% (2.5). While the average agreement 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline characteristics

Characteristic All (n = 44)

Age 63 (17)

Female sex 15 (34%)

Hypertension 17 (39%)
Diabetes mellitus 10 (23%)

Hyperlipidaemia 6 (14%)

(Previous) Smoker 5 (11%)
Prior history of CAD 21 (48%)

A summary of the baseline characteristics of the test set patient cohort. Data are shown 
as median (IQR) or n (%).
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is good, a similarly bad agreement to Figure 2C (NMSE ≥  6.5%) is found 
in 5/44 (11.4%) of test cases. In addition to being similar in terms of ab
solute error, the quantitative metrics which describes the curves (PV, 
TTP, and FWHM) are similar between the DS-AIF and AI-AIF, as shown 
in Figure 3. There were no significant differences in any of these metrics 
between the DS-AIF and AI-AIF. The median PV (in normalized 
signal-intensity units) was 1.48 (0.53) for the DS-AIF and 1.47 (0.44) 
for the AI-AIF (P = 0.94), the median TTP was 6.60 s (1.75) for the 
DS-AIF and 6.60 s (1.76) for the AI-AIF (P = 0.99), and the median 
FWHM was 5.34 s (3.09) for the DS-AIF and 5.54 s (2.18) for the 
AI-AIF (P = 0.21). This indicates that the AI-AIF model can correct 
for the signal saturation in a standard single-sequence acquisition and 
yield curves that closely match those acquired with a dual-sequence.

MBF quantification
The median MBF was 2.77 mL/min/g (1.08) quantified with the DS-AIF 
and 2.79 mL/min/g (1.08) quantified with the AI-AIF. There was no stat
istically significant difference between the approaches (P = 0.33). There 
were also no significant differences between the median MBF for the 
subgroup of patients from centre 1 (2.39 mL/min/g (1.02) vs. 
2.49 mL/min/g (1.24), P = 0.31) or the subgroup of patients from centre 
2 (3.01 mL/min/g (0.65) vs. 3.08 mL/min/g (1.08), P = 0.49). Three ex
ample patients comparing pixelwise MBF maps between the DS-AIF 
and AI-AIF are shown in Figure 4. Though subtle differences are appar
ent between the DS-AIF and AI-AIF-derived maps, the diagnostic infor
mation appears to be preserved. There was a significant difference 
between median MBF at centre 1 of 2.39 mL/min/g (1.02) vs. at centre 
2 of 3.01 mL/min/g (0.65) with the DS-AIF, and 2.49 mL/min/g (1.24) vs. 
3.08 mL/min/g (1.08) with the AI-AIF (P < 0.01 and P = 0.02, respective
ly). However, there was no significant difference (P = 0.11) in the me
dian difference in MBF between the DS-AIF and AI-AIF at centre 1 
[−0.23 mL/min/g (0.48)] and centre 2 [−0.11 mL/min/g (0.62)]. This in
dicates that the AI-AIF performs similarly well at both centres and that 
the difference in MBF values between centre 1 and centre 2 was a result 
of the different patient cohorts or differences in the imaging system re
lated to the field strength or the pulse sequence.

There was a strong linear relationship between the MBF values esti
mated with the DS-AIF and AI-AIF approaches on both per-patient (y = 
0.93x + 0.28 with the  R2 value of fitting 0.74, Figure 5A) and per-segment 
(y = 0.90x + 0.37 with the  R2 value of fitting 0.741, Figure 5B) levels. 
Additionally, the Bland–Altman analysis (per-patient in Figure 5C and 
per-segment in Figure 5D) shows minimal bias between the DS-AIF 
and AI-AIF methods for quantitative MBF with a mean bias of 

−0.11 mL/min/g and limits of agreement that are in line with the inter- 
study repeatability of stress MBF values.33 Finally, the effect on the diag
nostic accuracy of the use of the AI-AIF in place of the DS-AIF was as
sessed. The classification of CAD with respect to the optimal MBF 
threshold agreed for 95.0% (669 out of 704) AHA segments and 
89.4% (118 out of 132) coronary vessels.

Discussion
In this work, a deep learning-based correction of the signal saturation in 
the AIF for quantitative stress perfusion CMR is proposed which has 
the potential to solve the long-standing issue of the AIF estimation 
for accurate quantification. To date, there has been limited evidence 
of quantitative stress perfusion CMR without the use of a modified ac
quisition scheme, either a dual-bolus contrast injection scheme or a 
dual-saturation acquisition sequence, but there has been no clinical val
idation or adoption.34 The need for modified acquisitions has limited 
the use of quantitative stress perfusion CMR thus far, but the AI-AIF 
model has been shown to allow the quantification of perfusion CMR 
with both a single contrast injection and a standard single-saturation ac
quisition sequence. Crucially, this is simpler and more available than any 
other approach for MBF quantification.

Even though the dual-bolus protocol can be used without any add
itional technology, its clinical adoption has been limited due to the com
plexity added to the scan and the extra work involved in the two 
injections. Also, despite being proposed nearly 20 years ago,35 there 
has been no widely available implementation of the dual-sequence 
and no commercial solution, so it is limited to use in a small number 
of research centres. The code for the AI-AIF model developed in this 
work is provided as open-source, and thus, is widely available, making 
it easy to use and not dependent on the availability of technology or 
the local experience. It is also easily compatible with existing software 
for quantifying MBF,6 and so, it can be used in a fully-automated manner. 
The relative simplicity of the method and availability of the code also 
makes it straightforward to integrate the AI-AIF with existing perfusion 
quantification software.

The AI-AIF will not only simplify the scanning workflow, which 
would make the imaging more likely to be performed and more avail
able, but it is also less prone to human error. The image analysis and 
post-processing are further simplified, especially compared with the 
dual-sequence in which an additional imaging slice is acquired that 
then needs customized processing methods for image registration, 
segmentation, and proton-density correction. The AI-AIF only 

Figure 2 Example comparison of AI-AIF and DS-AIF curves. A representative set of AIF curves from the test set showing both the DS-AIF and AI-AIF 
curves in comparison to the saturated standard AIF. (A) and (B) show strong agreement between the DS-AIF and AI-AIF, as evidenced by the low NMSE. 
(C ) shows a less strong agreement in a case where the DS-AIF does not markedly correct for saturation in the AIF.
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requires the standard high-resolution slices, and thus, no customized 
image processing. As well as being an important future step towards 
clinical adoption and standardization, since the AI-AIF model is a 
post-processing step, it will facilitate the retrospective analysis of 
data acquired without a dual-bolus or dual-sequence. An important 
application of this would be to retrospectively quantify data from 
clinical trials, which used visual assessment only, to build further evi
dence for the use of quantitative MBF.

The results presented in this study evaluate the AI-AIF model 
compared to the reference standard DS-AIF considering both the 
direct correspondence of the AIF curves, the quantitative MBF 
values derived with the AIFs, and the effect of differences in the 
quantitative MBF values on the patient’s diagnosis. This analysis 
used both an independent cohort of patients from centre 1 and an 
external cohort of patients from a second centre to give an idea 
of the real-world performance with data acquired at a different 
centre with a different imaging system and a different magnetic field 
strength. These results are considered to be promising, but it is 
acknowledged that further clinical validation is required before the 
potential adoption of the AI-AIF.

As well as closely matching in terms of NMSE (<2%), the AIF curves 
from the AI-AIF were not significantly different in terms of PV, TTP, or 
FWHM. The close match in curves resulted in no significant difference in 
quantitative MBF between the AI-AIF and DS-AIF approaches. The 
Bland–Altman analysis showed minimal bias and 95% limits of agreement 
that were in line with the inter-study repeatability of stress MBF values33

on both per-segment and per-patient levels. Higher MBF was found in 
the external data from centre 2 but this may be because of differences 
in the data acquisition or patient cohorts, and even in this subgroup, 
there is no significant difference between the AI-AIF and DS-AIF. 
There was no increase in the difference between AI-AIF-based and 
DS-AIF-based MBF values between the internal and external testing 
data suggesting that the model can generalize well to new data. It was 
further shown that, according to a previously published diagnostic cut- 
off of 1.35 mL/min/g, the diagnosis of the AI-AIF matched the DS-AIF in 

669/704 (95%) of segments, indicating that the AI-AIF model can be used 
without sacrificing diagnostic accuracy compared with the DS-AIF. 
While these results are generally positive, there were isolated cases 
with less good agreement for which the resulting analysis may warrant 
closer inspection if they are to be used for clinical decision-making.

The implementation of the AI-AIF as a retrospective correction step 
on the AIF curve maintains its flexibility to be used with data from differ
ent types of pulse sequences and acquisition schemes. For example, re
cent work has investigated the acquisition of additional slices to 
increase spatial coverage36 but these adaptations would not affect the ap
plicability of the AI-AIF as it can be applied to the AIF curves regardless of 
how they have been acquired. It is also straightforward to use—so it will 
not be limited to use in experienced centres with advanced research pro
grams. Since, in addition to the trained model, the scripts for training are 
also provided, it could also be retrained to adapt to different types of data 
and improve robustness. This is also relevant for other imaging modalities 
as it is a general solution, and as discussed by Murthy et al.37 saturation 
also occurs with high doses of injected radiotracer activity for perfusion 
imaging on contemporary 3-dimensional PET systems.

This work focussed on stress MBF only, as opposed to both stress and 
rest MBF, as it has been shown that the inclusion of the rest images does 
not improve the diagnostic accuracy.32 This is in line with recent re
search38 and clinical guidelines39 which suggest the omission of the 
rest images in order to reduce the scan time. However, the AI-AIF could 
be easily extended by including the rest images in the training data. 
Further limitations include that despite testing the model on data 
from different centres and magnetic field strengths, the data used 
were from a single scanner manufacturer. Retraining with new data 
would likely be required to transfer the solution to work with data 
from other scanner manufacturers. As discussed, a wider variety of pa
tient data sets could also be added to the model training in future work 
to improve robustness and mitigate potential failures of the model, as 
shown in Figure 2C. Here, there is a large difference between the 
AI-AIF and DS-AIF, and this case is shown to represent the worst 
case in the test set. However, there is seen to be no correction of the 

Figure 3 Quantitative comparison of AI-AIF and DS-AIF curves. Boxplots comparing the distributions of values of the quantitative curve metrics PV 
(A), TTP (B), and FWHM (C ) between the DS-AIF and AI-AIF curves. There is no statistically significant difference between any of the pairs of 
distributions.
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Figure 4 Quantitative MBF maps. A comparison of quantitative MBF maps with both the DS-AIF and AI-AIF for a representative sample of patients, 
(A) and (B) from centre 1 and (C ) from centre 2. There is seen to be a close agreement between the methods, and despite subtle differences, the 
diagnostic information is visually preserved with the use of the AI-AIF.
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AIF with the dual sequence, which is questionable, and shows the limi
tation of the lack of a true gold standard for validation. The dual- 
saturation reference standard itself is designed to minimize saturation 
rather than eliminating it entirely. There may still be residual saturation, 
for example, due to T2* effects, but it has previously been shown that 
these effects are small.40 Furthermore, the quantification step used 
the simplistic Fermi function deconvolution, and future work could ex
tend this to more complex quantification models,41 which could even be 
done using deep learning in combination with the AI-AIF in one model.

This study represents a promising initial proof of concept for apply
ing AI to correct the signal saturation in the AIF for quantitative stress 
perfusion CMR. However, further work will be required to enable 
widespread clinical adoption of the approach. In this study, the AI-AIF 
was compared to the reference standard DS-AIF but the quantitative 
MBF values obtained with the AI-AIF would need to be validated vs. 
fractional flow reserve, which is considered the gold standard for iden
tifying ischaemia-related stenosis.

Although the presented test results indicate the performance level in 
a representative and challenging cohort of patients (widespread cardio
vascular risk factors and 48% with a prior history of CAD), the studied 
cohort is still relatively small. The inclusion of more patients for training 
will help the capacity of the model to deal with less common cases and 
more patients for testing will improve confidence in the performance. 
A more extensive use of data augmentation could also achieve more 
variability in the training data and a possibility to realize this would be 

to use a (deep) generative model to generate AIFs for training. 
Further improvements to the model could be possible by exploring 
new model architectures or physics-informed learning schemes, but 
these were not studied in this work, and the U-Net is currently consid
ered one of the methods of choice for signal and image processing.

The availability of the AI-AIF leading to more simplified acquisitions 
combined with the extensive validation,31,32,42 established prognostic 
significance,7,43 and the advantages of CMR perfusion over single pho
ton emission computed tomography (SPECT) or positron emission 
tomography (PET) perfusion, including the superior spatial resolution 
and lack of ionizing radiation, may finally pave the way for more wide
spread clinical adoption of stress perfusion CMR. As discussed, stress 
perfusion CMR is gaining clinical relevance due to the growing body 
of evidence from randomized controlled trials supporting its use2–4,44

but the quantification of MBF will help to reduce the operator- 
dependence,5 highlighting the need for accessible quantitative methods. 
Even more significantly, the quantification of MBF has now been recom
mended in the American guidelines for the evaluation of patients with 
chest pain1 as it is crucial for the evaluation of patients with ischaemia 
and non-obstructive CAD.8,42,45 The proposed method will be import
ant in this context as it makes quantifying stress perfusion CMR as easy 
as quantifying alternative functional perfusion tests, such as PET. With 
similar ease-of-use, quantitative perfusion CMR may become the meth
od of choice, due to its higher spatial resolution, as subendocardial is
chaemia is a key feature in these patients.46,47

Figure 5 Comparison of overall MBF values between the DS-AIF and AI-AIF approaches. This shows scatter plots of MBF with the DS-AIF vs. MBF 
with the AI-AIF, with the line of best fit, its equation and associated R2 values (A) and (B), and the Bland–Altman analysis (C ) and (D) on a per-patient (left 
column) and per-AHA segment basis (right column). The shaded regions represent the 95% confidence intervals for the bias and limits of agreement.
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Conclusion
This study presents a step towards the widespread availability of quan
titative stress perfusion CMR, an approach for accurate quantification of 
stress perfusion CMR from single-bolus and single-saturation sequence 
scans, without any modified acquisition. It uses a deep learning model to 
correct the signal saturation in the AIF which has been trained using an 
extensive database of unsaturated AIFs acquired with a dual-saturation 
acquisition sequence. This is an important step in alleviating the need for 
labour and time-intensive dual-bolus protocols and for proprietary dual 
sequence acquisitions, for which there are variable levels of availability. 
The approach is easy to reproduce or extend as the training code is avail
able, it does not add processing time, and uses a simple model that could 
be directly incorporated with the scanner. The AI-AIF has the potential 
to finally advance quantitative stress perfusion CMR from the research 
domain to integration in routine clinical care.
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