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Abstract

Real-time detection of surgical tools in laparoscopic data plays a vital role in under-
standing surgical procedures, evaluating the performance of trainees, facilitating learning,
and ultimately supporting the autonomy of robotic systems. Existing detection meth-
ods for surgical data need to improve processing speed and high prediction accuracy.
Most methods rely on anchors or region proposals, limiting their adaptability to varia-
tions in tool appearance and leading to sub-optimal detection results. Moreover, using
non-anchor-based detectors to alleviate this problem has been partially explored without
remarkable results. An anchor-free architecture based on a transformer that allows real-
time tool detection is introduced. The proposal is to utilize multi-scale features within the
feature extraction layer and at the transformer-based detection architecture through posi-
tional encoding that can refine and capture context-aware and structural information of
different-sized tools. Furthermore, a supervised contrastive loss is introduced to optimize
representations of object embeddings, resulting in improved feed-forward network perfor-
mances for classifying localized bounding boxes. The strategy demonstrates superiority to
state-of-the-art (SOTA) methods. Compared to the most accurate existing SOTA (DSSS)
method, the approach has an improvement of nearly 4% on mAP50 and a reduction in the
inference time by 113%. It also showed a 7% higher mAP50 than the baseline model.

1 INTRODUCTION

Minimally invasive surgery (MIS) vision analysis has proved to
be crucial in developing new technologies that can improve the
outcome and performance of various minimally invasive proce-
dures [1]. Vision analysis of surgical data could facilitate scene
understanding by providing context and characteristics of the
procedures [2, 3]. After the procedures, this information can
be used in the feedback report for computer-assisted diagno-
sis and automatic assessment of operative skills. During surgical
procedures, vision analysis can be used in a real-time decision
support system for computer-assisted detection and diagno-
sis. Additionally, with the latest MIS technology, human-robot
collaborative surgery can be achieved using vision analysis to
automate specific tasks [4–6].

Current research has associated understanding of the sur-
gical scene with descriptive solutions to domain-related tasks.
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Some of the most relevant are depth estimation, phase recog-
nition, tool recognition, detection, and tracking, and anatomy
recognition and detection [7]. Although all of these tasks share
some similar principles, the development of solutions for each
of them requires different data types with different acquisi-
tion challenges [8]. Tool-related tasks are the ones that have
found the path less resistant to the data acquirement and
hence, to prove concepts and develop complex solutions [9].
Therefore, they have stood out as pivotal for higher under-
standing acquisition and constrained the focus of this work to
tool detection.

Object detection, in computer vision, is the component that
extracts patterns from digital images or video frames and syn-
thesizes the information in the classification and localization of
specific objects [1, 3]. In surgical scenarios, challenges for the
analysis are exacerbated by the nature of the surgical data [10].
Visual artefacts are commonly encountered since the surface of
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tools and tissues are reflective, there is a constant movement of
tools and camera, the production of gases when cauterizing or
cutting blurs the images, changes in the illumination produce
shadows, there is occlusion of tools and tissues of interest, and
fine details of the anatomies change from one patient to another.
Scale variation and multi-class classification are also important
problems in a surgical scenario due to the high similarity among
surgical tools and the constant forward and backward move-
ment of the endoscopic camera. Finally, real-time processing is
critical since the system and surgeon’s actions must be taken in
real-time, and any delay might compromise the patient’s safety
and incur surgical accidents.

Early surgical tool detection methods attempted to address
some of these problems based on handcrafted filters. However,
now their performance has been overcome by deep learning-
based detectors [8, 11]. Implementing these models shifted the
research community’s focus from hand-crafted feature extrac-
tors to deep-learning methods that allow the generation of
optimal filters. These increase detectors’ performance and com-
plexity, bring new deep learning-related challenges and expose
others [2, 7]. For instance, receptive field constraints pose a
trade-off between the extraction of local and global features [8].
In the surgical scenario, both local and global features are
needed to differentiate similar tools and tissues at different
scales. Anchor dependency is another major issue in modern
detectors [12–14]. The detectors with the best performance in
medical and non-medical data rely on pre-defined anchor boxes.
They represent a prior assumption about the size, aspect ratio,
and location of objects in the image. It is particularly detrimen-
tal to the detector’s performance in a surgical scenario with high
variance in the objects’ location, orientation and scale [10, 15].
To mitigate these problems, we considered that a multi-scale
analysis and an increased capability of contextualization are key
components in developing an optimal solution. On top of this,
the development of a tailored object representation space that
solves ambiguities in the multi-class classification task is yet to
be presented. Thus, our contribution can be summarized as
below:

∙ Generation of richer features through incorporating a
Res2Net [16] as backbone, an architecture that makes
local-scale consideration for the extraction of features.

∙ Multi-scale position encoding of two projected features maps
extracted from the backbone to incorporate features at multi-
ple scales in the self-attention mechanism of the transformer.
We call this new architecture our proposed “’dense trans-
former” (DTX) network and it is inspired by the DETR
detector [14].

∙ Contrastive learning over the object representation of the sur-
gical tools to encourage consistency and separability in the
feature embeddings of the different classes.

2 RELATED WORK

For object detection (also called location detection), the devel-
opment of new methods has been mainly driven by the research

groups that have facilitated datasets with tool location annota-
tions [10] since they provide the means for supervised training
and validation of results. For instance, Sarikaya et al. [17]
presents the ATLAS dataset for robotic MIS instrument detec-
tion in a mock environment. It provides an interesting and
valuable framework for proving concepts in robotic MIS. How-
ever, its use in developing models for real-world scenarios is
limited. Jin et al. [18] presented the first Fast RCNN-based
model for instrument detection on real surgical scenarios by
adding location annotation to 2532 frames of the m2cai16-tool
dataset. Although the reported performance of their model is
low (5 FPS and 0.6 mAP[50]), the m2cai16-tool-location dataset
and deep learning techniques have significantly impacted the
works forming state-of-the-art (SOTA) in surgical tool detec-
tion. Zhang et al. [19] proposed a Fast RCNN-based model and
addressed the problem of anchor dependency with a modulated
feature block to incorporate the anchor shape information in
the generated feature maps from the backbone. A YOLO-based
model was presented by Choi et al. [20]. His work reported the
fastest inference time of 48 FPS in the m2cai16-tool-location
dataset but low performance for localization over preselected
videos for validation. A similar single-stage YOLACT++ [21]
framework with multi-scale fusion was used for an instance
segmentation of tools in ROBUST-MIS challenge dataset [22].
However, the developed method only enabled the presence of
tools but not their class categories. Sai and Sinha [23] presented
a multitask model for tool presence, detection (multi-class), and
phase classification based on a DSSD architecture (deconvolu-
tional single shot detector). They explained how features from
different parts of the architecture can be taken to solve differ-
ent tasks and achieve improved performance regarding location
inference. They did not report on the inference time, but based
on the original DSSD paper [24], the speculated inference time
is 15 FPS. Recently, Ali et al. [25] trained their model on the
m2cai16-tool-location dataset under a semi-supervised learning
paradigm using a teacher-student framework to address the data
scarcity problem for multi-class tool detection. Their results
showed improved accuracy with 10% of the annotated data,
but inference time was not reported. Zhao et al. [26] proposed
a lightweight cascaded CNN architecture from coarse to fine.
The first stage in a two-stage detector was similar to a region
proposal stage but with fixed-sized regions. The second was a
regression network of the surgical instrument tip region. They
reported an inference time of nearly 24 FPS; however, they
detected and tracked tip instruments without classification. Sim-
ilarly, Liu et al. [15] proposed a method for tool location without
classification over the ATLAS dataset and a relabelled version
of the Endovis Challenge 2015 dataset. Also, they focused on
anchor-dependant methods using a compact stacked hourglass
network that predicted the centre of the boundary box (but not
multi-class instruments) with high accuracy and speed (37 FPS).

Another MIS-related dataset is the Cholec80 dataset [27],
which includes phase and tool presence annotations for 80
videos of cholecystectomy. Vardazaryan et al. [28] proposed
preserving spatial information with a fully convolutional neu-
ral network. It predicts instrument presence, and posteriorly, an
analysis of the activation maps gives the instrument location.
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They used a subset of the Cholec80 dataset, selecting images
with one instrument per frame since the analysis does not allow
multi-instance detection. In 2020, Shi et al. [29] at Shandong
University took 4011 frames from the Cholec80 dataset and
added spatial annotations on the tips of the tools for multi-
instance detection. They proposed a two-stage detector, an
attention-guided convolutional neural network with coarse and
refined modules, to achieve high inference time (55.5 FPS) and
mAP (91.65%). Cholec80-location subset was also used on a
one-stage detector by Yang et al. [30], adding modifications
to the backbone and neck of the architecture. In the back-
bone, they used a GoshtNet architecture and cross-stage partial
connections to increase inference time and enhance the learn-
ing process. In the neck of the detector, they used a U-Net
and spatial pyramid pooling to address the multi-scale problem.
This work reported an mAP of 91.6% and a time inference of
38.5 FPS. However, there is no free access to this Cholec80-
location subset for a fair comparison in the tool detection
and classification tasks, limiting the usability and reproducibil-
ity of the techniques explored in these works. In 2022, Kondo,
S. [31] explored the use of a transformer for tool presence
without location.

Although numerous studies have made notable advances
in object detection for surgical instruments in MIS, existing
approaches have only partially addressed the challenges of high
accuracy and inference speed. Therefore, there is a need for a
comprehensive solution that concurrently tackles these issues
and enables the practical deployment of a real-time tool detector
in MIS settings with higher detection and localization perfor-
mance. As detailed above most of the public datasets either have
only presence (e.g. Cholec80) or lack labels for different surgical
instrument types (e.g. Endovis Challenge 2015 dataset). Thus,
in this work, we will evaluate our method on the m2cai16-tool-
location dataset, which has been largely used for multi-class tool
detection and localization.

3 METHOD

In this work, we propose a new setup for the architec-
ture and training of a multi-scale transformer-based detector
(Figure 1) that incorporates Res2Net architecture as a backbone
and extracts multi-scale features maps (from two resolutions)
addressing the limitation of small receptive fields and enhanc-
ing overall model robustness against scale changes of objects
in the images. The extracted features from the backbone go
through different 1×1 2D convolutional layers (Conv2d) that
reduce the channel dimension to 256. They bring the feature
maps from different resolutions to the same feature space.
Thereby, global multi-scale feature analysis is enabled in the
transformer encoder (Tx-encoder). Subsequently, the decoder
of the transformer (Tx-decoder) creates a set of object represen-
tations that are ultimately processed by two feed-forward neural
networks that predict the class and location of the objects. In
addition to the Hungarian loss, we also proposed the integra-
tion of a contrastive loss (CL loss) in the training of the model.
CL loss leverages the output of the TX-decoder to encourage

consistency and separability over the generated object repre-
sentations. Below we provide a detailed description of the final
network architecture and the combined loss functions used in
this work.

3.1 Architecture details

Similar to the recent DETR network [14], after the extraction
of features from the backbone network, we use a transformer
for learning reliable feature representations using self-attention
mechanisms. However, extra projection layers and concatena-
tion of scales are added for the feature maps taken from the
backbone. The projection layers (1 × 1 convolutional layers)
reduce the channel dimension to 256, so there is a common
feature space between scales (see Figure 2(a–c)). We then scale
the positions (x j , y j ) of the features at different scales such
that the position of each feature is referenced to a common
location (x, y) despite coming from different resolutions (see
Figure 2(b). The position for each channel ck, with k repre-
senting the index of the feature channel in the sine positional
encoder, is calculated using Equation (1) where width and height
are represented as ws and hs , respectively, at scale s.

pos(x j , y j , ck ) =

⎧⎪⎨⎪⎩

4𝜋

ws
x j k ∈ [0, 152]

4𝜋

hs
y j k ∈ [153, 255]

(1)

Then the embeddings after positional encoding are flatted
to a shape (hsws , 256), and these are concatenated along the

first axes such as (
∑s=2

s=1 (hsws ), 256) is the final input shape to
the transformer encoder (Tx-encoder) (see Figure 2(c)). Within
the Tx-encoder, the multi-head self-attention modules focus
the attention on the features from different scales that are
more relevant to the final prediction. In this way, we lever-
age the transformer for performing attention to both local and
global features. The transformer decoder (Tx-decoder) takes a
matrix of zeros as the query to initialize the decoding process.
This query shapes the final output by assuming the maximum
number of objects in the image and encrypting each object
representation in 256 values. Finally, two feed-forward neural
networks make the final prediction. A one-layer perceptron with
a softmax activation function processes each object representa-
tion for its classification giving the highest probability to the
detected object (or not-object class). For the prediction of the
boundary box of each object representation, a multi-layer net-
work (3 layers) infers the coordinates of the box (centre x, y, w,
and h).

3.2 Loss functions

We introduce a contrastive loss function in addition to the loss
function implemented in DETR [14]. We have a similar match-
ing stage, but unlike DETR, we exploit the matching solution to
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FIGURE 1 DTX network architecture. Our proposed DTX architecture uses a Res2Net [16] to extract feature maps at two different scales and forms a dense
feature embedding by adding the projection layers (Conv2d) that set the same number of channels in each projection. Then our network, inspired by DETR [14],
exploits the use of scaled positional encoders to locate the features from different projections under a common framework. Finally, the decoded object
representations by the transformer go through two different feed-forward neural networks for class and boundary box prediction.

FIGURE 2 Feature map processing. (a) Embedded feature map structure after the projection layer. The position x and y of each feature are encoded in the first
and second half of the channels, respectively. (b) The positions x, y of the feature maps are scaled by Equation (1) so the transformer can be aware of the location of
the features under a common framework. (c) Input of the transformer: Flattened and concatenated features after positional encoder. Bipartite graph. (d) GT boxes
in green form the set of vertices V , and predicted boxes in blue form the subset V̂ . Initially, all elements between sets are connected.

incorporate the contrastive loss and jointly optimize it with the
Hungarian loss.

3.2.1 Matching stage

For each image, a V̂ set is formed by the predictions of the
model and a V set is formed by padding the objects in the
ground truth (GT) such that both sets have the same number
of elements. Each element vi in V contain (ci , bi ) where ci is
the class associated with the boundary box bi and the padded
elements have a ci value of no-object class (∅). Similarly, the ele-
ment v̂ j in V̂ contain (ô j , ĉ j , b̂ j ) for the object representation,

class and boundary box predicted by the model. All the elements
in one set are connected to the elements in the second set to
form the graph , thus forming a bipartite graph (Figure 2(d)).

The comparison between the boundary boxes in the GT and
the predictions are given by the box loss in Equation (2), where
a weighted sum of the L1-norm and the generalized intersec-
tion over union (GIoU) are used. The matching costs (mc) of a
connection (edge) in  is given by Equation (3), where b̂ j and bi
are boundary boxes (predicted and GT), p̂ j (ci ) is the predicted
probability of class i (the GT class) for the predicted box j , and
box the box loss function.

box(b̂ j , bi ) = 𝜆1(L1(b̂ j , bi )) + 𝜆2(G IoU(b̂ j , bi )) (2)
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mc ji = box(b̂ j , bi ) + 𝜆3(1 − p̂ j (ci )) (3)

The costs matrix CM is then calculated for all samples at indexes
i and j by finding the matching cost between the elements of the
prediction and the GT. Later, the Hungarian algorithm is used to
find unique correspondences between the elements of the sets
such that the sum of the matching costs of those correspon-
dences is the minimum. It does that by finding the permutation
of the rows in CM that minimize the trace of the matrix so,
in the found permutation h, h(i ) is the index j of the matched
prediction to the element i in the GT.

3.2.2 Hungarian loss

The Hungarian loss function [14] is then applied as shown
in Equation (4), which is a weighted combination of the
cross-entropy loss and the defined box loss function.

H (V , V̂ ) =
∑

i

−𝜆3 ln( p̂h(i ) (ci ))ci + 𝟙{ci≠∅}Lbox(b̂h(i ), bi )

(4)

3.2.3 Contrastive loss

We propose to add a complementary contrastive loss (CL) that
is jointly optimized with the Hungarian loss in our final loss
function. The use of CL helps to cluster representations for
each class while separating clusters of different classes. The
proposed loss is a variation of the normalized temperature-
scaled cross-entropy loss (NT-Xent loss) presented in SimCLR
[32]. The main difference is that the proposed CL loss can
operate over a supervised paradigm leveraging the solution pro-
vided by the Hungarian algorithm. To do so, we look at the
samples k in the batch B that contains (Vk, V̂k, hk) for the
GT, predictions, and optimal correspondences, and we aim to
find all the positive  and negative  contrastive pairs for
each class c in the batch as presented in algorithm 1. c con-
tains all the pairs of object representations (o, o′ ) such that their
classes are equal, and c contains all the pairs such that their
classes are different. Note that c avoids the self-comparison,
but when the number of representations related to a given
class is equal to 1, the pair (o, o) added in c to pull apart
that representation from the rest of classes in the batch. Then
Equation (5) shows the contrastive loss for each class using
c and c, it applies cosine similarity sim between the object
representations.

CLc
(c,c) = −log

∑
(o,o′ )∈c

exp(sim(o, o′ ))∑
(o,o′ )∈(c∪c ) exp(sim(oi, o′ ))

(5)

The total contrastive loss is the average of all the con-
trastive losses per class in a given batch B with nc classes and
size bs. Thus, the final loss  which is an equally weighted
sum of the Hungarian loss and the contrastive loss, can be

ALGORITHM 1 Supervised contrastive learning algorithm for multi-class
labels.

Require: Batch: B; Classes: C

nc = 0 ▹ number of classes

 = 0

for c ∈ C do

pos_samples = neg_samples = {}

for k ∈ {0 to len(B)} do

for i ∈ {0 to len(V [k])} do

if V [k].c[i] == c then

pos_samples ← V̂ [k].o[h[k](i )]

else

neg_samples ← V̂ [k].o[h[k](i )]

end if

end for

end for

 = = {} ▹ positive & negative contrastive pairs

for o ∈ pos_samples do

for o′ ∈ neg_samples do ← (o, o′ )

end for

pos_samples.pop (o) ▹ Remove the reference from the list

for o′ ∈ pos_samples do ← (o, o′ )

end for

if  == ∅ then ← (o, o)

end if

end for

nc = nc + 1

 =  + Eq5( , )

end for

contrastive = ∕nc

represented as:

(B) =
𝜆4

bs

bs∑
k=0

H(Vk, V̂k ) +
𝜆4

nc

nc∑
c=0

CLc
(c,c). (6)

4 EXPERIMENTS AND RESULTS

4.1 Dataset

We evaluate our architecture on the publicly available m2cai16-
tool-location dataset [18] containing 2532 labelled frames from
15 videos of cholecystectomy procedures performed at the Uni-
versity Hospital of Strasbourg in France. To make our method
comparable and reproducible, we have used the same split pro-
posed in the original paper [18]. The final experimental dataset
comprises 1405 images for training, 843 images for validation,
and 563 images for testing (held-out set). As Sahu [33] pointed
out, this dataset poses an extra challenge to a solution for the
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multi-class classification problem since it mirrors the imbalance
appearing of the surgical tool during the operation. Therefore,
the seven tool classes plus one extra for the background class
were considered in the ground truth labels, and a discussion
on how the implemented solution alleviates this problem is
presented in the results section.

4.2 Experimental setup

4.2.1 Data augmentation

All images were resized to 320×320 pixels. Six different geomet-
ric transformations were selected for data augmentation. During
training, the transformations were randomly applied with a 33%
probability each.

4.2.2 Model configuration

The optimal hyper-parameters for our model are reported
in this section. However, a hyper-parameters search grid is
presented in the ablation study. The building blocks in the
Res2Net50 architecture (the used backbone) were configured to
split the feature maps into four sets of 26 channels each. In the
neck of our architecture (see Figure 1), the feature maps that go
through the projection layers were taken from layers 2 and 4 of
the backbone. The number of queries that initialize the decoder
process in the transformer was set to 32, and the number of
layers in the encoder and decoder of the transformer to 6.

4.2.3 Training setup

We build our model leveraging part of HuggingFace’s Trans-
formers repository [34] and making the pertinent changes to
match the model’s description presented in Section 3. During
training, an AdamW optimizer with a step learning rate sched-
uler was added. The scheduler tracked and modified the learning
rate from 1.0e−04 to 1.0e−06, with a factor of 0.5 at every 40
epochs. In addition, a stopping criteria tracking the validation
loss was included in the experiment. It had a patience of 50
epochs and considered a minimum delta of 1.0e−0.5. We run all
our code in a setting with multiple CPU processors provided
by the Research Computing Team at the University of Leeds
in their High-Performance Computing facilities. The requested
nodes provided 48GB system memory and an NVIDIA V100
32 GB graphic card.

4.2.4 Evaluation metrics

We present and compare the performance of our model based
on two widely used metrics called mean average precision
(mAP) for object detection. For this metric, a threshold value
is used to determine if detection is considered a true positive
or a false positive based on the IoU (intersection over union)

value ranging from [0.5 ∶ 0.05 ∶ 0.95] for overall mAP and at
specific IoUs, e.g. [0.5] and [0.75]. The second metric reported
is the inference time in frames per second (FPS).

4.3 Comparison with SOTA and baseline
methods

In this section, we provide a comparison with state-of-the-art
methods used for detection tasks on the m2cai16-too-location
dataset. Alongside this, we also present quantitative results on
the baseline model and provide results for different architectural
changes that have been proposed.

4.3.1 Quantitative results

Tables 1 and 2 present the comparison of the SOTA methods
for supervised surgical tool detection, anchor-free methods in
the literature and our propositions for overall mAP and AP
for each class category, respectively. From Table 1, it is evi-
dent that our proposed approaches outperformed both the
SOTA methods and other anchor-free methods. For example
our final model (DTX+MS+CL) has mAP[50] is 4% above the
best SOTA method (DSSS), and nearly 7% higher than the
baseline DETR. Our experiments also showed an additional
improvement at mAP[75] over the baseline with 0.572 com-
pared to 0.524, which is 9% above. On the FPS, our method
achieves 113% higher than the SOTA DSSS method and is
only slightly lower than DETR-baseline methods (4 FPS lower).
Table 2 showed significant improvement in all class categories
compared to the SOTA and the baseline DETR, regardless of
the frequency with which each tool class appears in the dataset’s
images. Common (for example the grasper and hook) and
rare (for example scissors and bipolar) tools are detected with
high mAP, which suggests that the model focuses on relevant
features from the images for the formation of the object repre-
sentations associated with each class. For example compared to
the most accurate method, DETR, our approach achieves 8%,
7.7%, 11%, 3%, 8.8%, 2.7%, and 5.2% respectively, for grasper,
bipolar, hook, scissors, clipper, irrigator, and specimen bag.

4.3.2 Qualitative results

Figure 3 shows predictions from our proposed approach
(DTX+MS+CL). The selected samples were the images with
very low errors (on the left) and the images with the most signif-
icant errors (on the right). It can be observed that for the frames
with optimal predictions, the predicted boxes (in blue) com-
pletely overlap the ground truth boxes (in green). However, for
those with erroneous predictions (in the right), in most cases,
either the object was not present (frame incorrectly labelled)
or the object was incorrectly classified due to the fact that the
intrinsic characteristics of the object are not present. In the sec-
ond case, we can observe that our model makes a good guess by
associating the object with a fairly similar tool. Figure 4 shows
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TABLE 1 Quantitative results. Comparison of state-of-the-art surgical tool detection methods, anchor-free methods, and our proposed dense transformer
(DTX) with and without multi-scale and contrastive loss inclusions.

Model mAP[50∶95] mAP[50] mAP[75] FPS Backbone Input size

SOTA comparison

F. R-CNN [18] NA 0.631 NA 5 VGG-16 NA

F. R-CNN [19] NA 0.696 NA 15* ResNet101 NA

YOLO [20] NA 0.722 NA 48 DarkNet19* 448×448

DSSS [23] NA 0.912 NA 15* ResNet101 320×320

F. R-CNN+SSL [25] 0.468 0.902 0.462 15* ResNet50-FPN NA

Anchor free methods

FCOS [13] —– 0.900 —– 12 ResNet50 450×450

DETR [14] (baseline) 0.520 0.886 0.524 36 ResNet50 320×320

Our proposed approaches

DTX 0.536 0.926 0.557 35 ResNet50 320×320

DTX + MS 0.543 0.939 0.561 32 Res2Net50 320×320

DTX + MS + CL 0.545 0.945 0.572 32 Res2Net50 320×320

DTX, dense transformer (our method); contrastive loss, CL;MS, multi-scale backbone
NA, not available; * This value was not officially reported by the author

TABLE 2 Quantitative results. Average precision (AP) comparison per class.

Method Grasper Bipolar Hook Scissors Clipper Irrigator S. Bag

SOTA comparison

Fast R-CNN [18] 0.483 0.670 0.784 0.677 0.863 0.175 0.765

Fast R-CNN [19] 0.541 0.695 0.868 0.739 0.842 0.416 0.771

YOLO [20] 0.893 0.324 0.932 0.666 0.903 0.424 0.914

Anchor free methods

FCOS [13] 0.846 0.927 0.942 0.905 0.903 0.857 0.922

DETR [14] (baseline) 0.826 0.910 0.864 0.915 0.844 0.932 0.911

Our proposed approaches

DTX (ours) 0.871 0.957 0.933 0.900 0.926 0.942 0.950

DTX + MS 0.891 0.955 0.955 0.965 0.933 0.921 0.956

DTX + MS + CL 0.894 0.980 0.960 0.945 0.919 0.957 0.959

DTX, dense transformer (our method); contrastive loss, CL; MS, multi-scale backbone

that the object representation space generated by our model in
the decoder of the transformer is organized after implement-
ing contrastive learning by maximizing the distance between the
cluster of the classes and arranging misclassified objects. This
adds up to the AP improvement presented in Tables 1 and 2,
strongly suggesting that the error due to the misclassification
of objects is considerably alleviated with our approach while
boosting the performance. Having solved this problem, future
efforts could be focused on developing methods that increase
the precision of the predicted boundary box so that the value in
the IoU is improved. Appendix Figure A1 shows the attention
maps from the transformer’s last layer in the decoder. Since
we use feature maps at different scales, these images demon-

strate how the relationship between the features in the regions
of attention is present at different scales.

4.3.3 Ablation study

The performance of models over the validation set for dif-
ferent network configurations (e.g. scales, feature layers, and
feature maps) and combinations of relevant hyper- parameters
(e.g. number of queries) is presented in Appendix Table A1. It
can be observed that for different numbers of queries ranging
from 32 to 100 queries, 32 queries boosted the performance
of the model on the mAP[75] by 8.8% compared to using the
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FIGURE 3 Qualitative results: Frames taken from the test set with their respective predictions. Predictions with the highest IoU are presented on the left, and
predictions with the lowest IoU are presented on the right.

FIGURE 4 Object representation space. Dimensional reduction of the object representation space (TX-decoder’s outputs) using t-SNE, each dot in the graphs
represents a detected object by our model (DTX+MS). At the top, without contrastive learning (CL), the clusters for each class are barely separated, and some
points are mislocated (see red arrows). This distribution is prone to hinter the performance of classifiers. However, at the bottom, we can clearly see how the
integration of the CL alleviates this problem. There is a wide separation between clusters, and all the mislocated points were correctly rearranged.

number of queries proposed by DETR [14]. Our experiments
also showed that a combination of four scales and 26 channels is
the optimal backbone yielding 6.2% and 3.6% of improvement
on the mAP[50] and mAP[75], respectively. The number of lay-
ers in the encoder and decoder of the transformer shows that
a network with six layers provided the best trade-off between
accuracy (0.866) and inference speed (FPS of 36). Finally, it
can be observed that the inclusion of multi-scale (MS) with the

Res2Net backbone increases the mAP[50] by 1.5% and boosts
by 2% when CL is added, with only a slight decrease in FPS.

5 DISCUSSION AND CONCLUSIONS

Even though there are works in surgical tool detection in litera-
ture, these methods are widely built on anchor-based methods,
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do not incorporate multi-scale feature embedding for tackling
variable tool sizes, and suffer from low speed [18–20, 23, 25].
Our approach using a transformer with the incorporation of
multi-scale feature selection is not only independent of anchors
but also provides improved accuracy and inference time com-
pared to SOTA methods in the literature. Utilizing the Res2Net
backbone into our proposed dense transformer (DTX) enabled
the inclusion of local and global features that can jointly tackle
variations in the size of the objects and receptive field con-
straints. Our experiments showed improvement in almost all
the tool categories by a large margin, up to 10.5%, compared
to the baseline model (DETR [14]), which is the most consis-
tent across the tool categories compared to any SOTA methods
(Table 2). Further, we also showed that the incorporation of
contrastive loss aids in minimizing inter-class separation and
maximizing intra-class segregation, which helps to deal with
closely similar-looking tool categories (Figure 4 and Table 2).
The less accurate predictions of our model are probably due
to the fact that there are not enough intrinsic features of the
object within those samples, and confusion might happen, for
example misclassification of grasper and clipper (Figure 3).
Consideration of features from previous frames could alleviate
this problem and boost a more accurate prediction.

In conclusion, we proposed a transformer-based surgical
tool detection method introducing a novel multi-scale feature
assembly and incorporation of contrastive loss function uti-
lizing information from the bipartite graph. The proposed
model is anchor-free and has near real-time performance (32
FPS). To this extent, we also demonstrated the superior-
ity of our approach compared to several SOTA approaches
and other anchor-free methods. The qualitative results also
demonstrated the effectiveness of our model, with high-quality
predictions even in the challenging scenes. In our future work,
we aim to leverage video temporal features to improve tool
detection.
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APPENDIX A

TABLE A1 Grid search for important hyper-parameters and ablation study.

Model mAP[50] mAP[75] FPS Queries

DETR 0.901 0.552 36 32

DETR 0.896 0.507 36 64

DETR 0.857 0.483 36 100

Model mAP[50] mAP[75] FPS Layers Tx-e,Tx-d

DETR 0.895 0.550 36 [6,6]

DETR 0.837 0.470 38 [5,5]

DETR 0.856 0.450 41 [4,4]

DETR 0.774 0.401 45 [3,3]

DETR 0.715 0.220 49 [2,2]

DETR 0.624 0.153 51 [1,1]

Model mAP[50] mAP[75] FPS scales,feats

DETR + MS 0.908 0.488 32 [4,26]

DETR + MS 0.905 0.488 26 [6,26]

DETR + MS 0.924 0.521 24 [8,26]

DETR + MS 0.899 0.443 21 [8,14]

Model mAP[50] mAP[75] FPS feature maps

DTX (ours) 0.927 0.581 36 [3,4]

DTX 0.930 0.590 36 [2,4]

Model* mAP[50] mAP[75] FPS

DTX (ours) 0.926 0.557 36

DTX + MS 0.939 0.561 32

DTX + MS + CL 0.945 0.572 32

*These experiments use the best hyper-params from grid search
DTX, dense transformer (our method); contrastive loss, CL
MS, multi-scale backbone

FIGURE A1 Attention maps for two scales. An attention map for the relevant object representations in each image is provided. This map was divided into the
different scales that were used in our final network.
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