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A B S T R A C T   

Background: The core clinical sign of Parkinson's disease (PD) is bradykinesia, for which a standard test is finger 
tapping: the clinician observes a person repetitively tap finger and thumb together. That requires an expert eye, a 
scarce resource, and even experts show variability and inaccuracy. Existing applications of technology to finger 
tapping reduce the tapping signal to one-dimensional measures, with researcher-defined features derived from 
those measures. 
Objectives: (1) To apply a deep learning neural network directly to video of finger tapping, without human- 
defined measures/features, and determine classification accuracy for idiopathic PD versus controls. (2) To 
visualise the features learned by the model. 
Methods: 152 smartphone videos of 10s finger tapping were collected from 40 people with PD and 37 controls. 
We down-sampled pixel dimensions and videos were split into 1 s clips. A 3D convolutional neural network was 
trained on these clips. 
Results: For discriminating PD from controls, our model showed training accuracy 0.91, and test accuracy 0.69, 
with test precision 0.73, test recall 0.76 and test AUROC 0.76. We also report class activation maps for the five 
most predictive features. These show the spatial and temporal sections of video upon which the network focuses 
attention to make a prediction, including an apparent dropping thumb movement distinct for the PD group. 
Conclusions: A deep learning neural network can be applied directly to standard video of finger tapping, to 
distinguish PD from controls, without a requirement to extract a one-dimensional signal from the video, or pre- 
define tapping features.   

1. Introduction 

Neurological disorders are the leading cause of disability in the 
world, and the fastest growing of these is Parkinson's disease, with 
numbers predicted to rise from 6.9 million in 2015 to 14.2 million in 
2040 [1]. It is notable that Parkinson's remains a clinical diagnosis that 
relies largely on visual judgements made by the eye of an experienced 
physician. Indeed, in 1817, three of the six cases originally described by 
James Parkinson were people he simply observed in the street [2], and 
in modern diagnostic criteria the cardinal motor feature of the condition 
is a visual sign: bradykinesia [3]. This term refers to slowness of move
ment and decrement in amplitude or speed (or progressive hesitations / halts) 
as movement continues [3]. A common clinical test for bradykinesia is 

finger tapping, in which the clinician observes the patient repeatedly 
tapping their index finger and thumb together ‘as wide and as quick as 
possible’ (for 10 taps [4] or 10 s [5]), and judges whether the tap speed, 
amplitude and/or rhythm are impaired [3–5]. 

Reliance on clinician visual judgement has two limitations. First, it 
requires an experienced specialist clinician, a resource in short supply 
globally [6]. Second, visual judgements are inherently subjective, and, 
even experts show considerable inter-rater variability for visual signs 
[5,7–10]. This has the potential to contribute to delayed or inaccurate 
diagnosis, impaired assessment of change over time, and imprecise 
measurement of treatment outcomes. 

In response, there have been numerous attempts to use technology to 
objectively quantify the finger tapping test for Parkinson's bradykinesia. 
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Two common approaches have been to measure finger tapping with 
‘wearable’ sensors (such as gyroscope and infrared devices) [11–30], or 
by tapping on a smartphone screen [31–36]. The first of these requires 
specialist equipment, that has never become widely available. The sec
ond cannot record tapping amplitude, and relies on patient motivation 
to interact with a specific application. 

More recently, computer vision techniques have been applied to 
standard video in attempts to automate the finger tapping test [37–47]. 
Unlike wearable sensors, video information is much closer to what an 
expert clinician sees during examination. However, previous publica
tions discard most of this information at the outset, following the same 
basic approach used in wearable and screen-tapping studies. That is to 
first convert the tapping signal into a one-dimensional (1D) time series, 
such as finger-to-thumb distance over time. The resultant 1D time series 
is usually then processed further to derive specific measurements, such 
as opening velocity and coefficient of variation, which researchers 
choose to be representative of elements in the clinical definition of 
bradykinesia. Such measurements by themselves, or in combination, 
cannot discriminate the hand of a person with Parkinson's (PwP) from 
that of a control participants, because the distributions of scores in PwP 
and controls overlap considerably [11–14,23,24,29,30,32,34,35]. Ma
chine learning, including deep learning, has been applied to finger 
tapping measures from video [37–48]. However, it is important to note 
that these studies apply machine learning only after the signal has been 
first reduced and constrained to researcher-defined measures from a 1D 
signal. 

It is possible that there are movement patterns present during finger 
tapping in Parkinson's that are outside the current definition of brady
kinesia. Such patterns could be invisible to clinicians, or only recog
nisable to clinicians in an automatic, unconscious way. Deep learning 
using neural networks is a machine learning technique that does not 
require human-defined features, such as finger to thumb distance or 
opening velocity; instead, it can learn the features most predictive of a 
given category, without predefined rules. This provides a way to look for 
patterns that are characteristic of Parkinson's in video, without 
restricting patterns to one-dimensional, human-defined measures. 

To the best of our knowledge, only one previous paper has applied a 
deep learning neural network directly to 2D video data [49]. However, 
this was to disintiguish two grades of bradykinesia (0 and 1, rather than 
the 5 grades in the standard rating scale [50]). The study did not feature 
control participants, and did not apply deep learning to the differences 
between controls and PwP. 

In this paper we describe and test a new approach to computer vision 
of video of the finger tapping test. Specifically, we apply a deep learning 
neural network directly to video of finger tapping. We test the ability of 
this network to discriminate Parkinson's finger tapping from that of 
control participants. In addition, we use class activation maps to visu
alise the most important spatial and temporal regions of the tapping 
video that the network learns to ‘look at’ to distinguish Parkinson's from 
control. 

2. Methods 

2.1. Ethical review 

The study was approved by the United Kingdom Health Research 
Authority, North of Scotland Research Ethics Committee (IRAS project 
ID 256116). Informed, written consent was given by all participants. 

2.2. Participants and video recording 

A total of 152 videos of finger tapping were collected from 77 par
ticipants, consisting of 40 people with idiopathic Parkinson's (PwP) and 
37 healthy controls. The left and right hands of each participant were 
recorded separately, with two videos rejected because the hand moved 
outside the camera frame. 

All PwP had previously been diagnosed by a movement disorder 
specialist neurologist at Leeds Teaching Hospitals NHS Trust United 
Kingdom, according to Movement Disorder Society clinical diagnostic 
criteria [3]. At the time of video recording, they were subjectively and 
objectively in the ‘on’ state, following their regular medication regime. 
PwP with postural hand tremor were not excluded. Controls were 
recruited from the spouses, partners or friends of the PwP, as well as 
hospital or university staff. The control participants had no history of 
Parkinson's or other neurological diagnosis. 

Participants rested their elbow on a chair arm with their forearm and 
hand free to move as per the Item 3.4 Finger Tapping protocol of the 
Movement Disorder Society revision of the Unified Parkinson's Disease 
Rating Scale (MDS-UPDRS) [51]. Only the hand and forearm were 
within the video frame. The distance between camera and hand was 
approximately 1 m, but not tightly defined. Digits 1 and 2 were closest to 
the camera. No specific instructions were given for flexion or extension 
of digits 3 to 5, and participants were free to position them as they 
preferred, although the researcher gave a brief demonstration in which 
they were extended. 

A smartphone, placed on a tripod lateral to the participant, was used 
to record standard video with only ambient lighting (1920 × 1080 pixel 
resolution, 60 frames per second). Participants were asked to tap index 
finger and thumb together “as quickly and as big as possible” [51] for at 
least 10 s. Each video was edited to an 11 s clip: 1 s prior to tapping onset 
and 10 s of finger tapping (the duration used in the MBRS clinical rating 
scale [52]). 

2.3. Pre-processing 

The high spatial resolution of the videos and the large proportion of 
background and forearm captured in the videos would reduce the effi
ciency of the neural network learning process. Therefore, each frame of 
the video was assigned a bounding box for the hand using hand tracking 
software [53]. An overall box – which encapsulates all the frame-specific 
boxes – was used to crop the video. To have uniform video size, the 
cropped video was down-sampled to 80 × 60 pixels with Gaussian 
smoothing and bicubic interpolation (retaining 60 frames per second) 
using the OpenCV library [54], before conversion to greyscale. 

The videos were split into 1 s clips, overlapping one another by 0.5 s, 
so clips were from 0 to 1 s, 0.5-1.5 s, 1-2 s, etc. This procedure resulted in 
a total of 3148 clips (1637 patients and 1511 controls), each 60 frames 
long with 80 × 60 pixels. These clips provided the visual data to train 
and evaluate the deep learning model. 

Prior to data being passed to the neural network, the training data 
was mean-centred and divided by the overall standard deviation of pixel 
values (i.e. Z-score normalization). The test data were normalized using 
the mean and standard deviation of the training data. 

2.4. Model design 

Since the videos are stored as a 3-tensor with dimensions 60 × 80 ×
60, our model is a neural network based primarily on 3D convolutional 
filters. In particular, we have three layers of convolutions and max- 
pooling, with batch normalization [55] between the convolutions and 
max-pooling operations to improve the convergence rate. A final batch 
normalization occurs after the third max-pooling before a fully con
nected layer with a ReLU nonlinearity and the output layer with a sig
moid nonlinearity. Parameters in the 3D convolutions and the dense 
layers had L2 (i.e. Ridge) regularization to prevent overfitting, in 
addition to a dropout layer (10% dropout) used between the fully con
nected and output layer. In total this model has 20 million learnable 
parameters. The network architecture is described graphically in Sup
plementary Fig. S1. 

The model was built using the Keras framework [56] and trained 
using the Adam optimizer [57] applied to the binary cross-entropy loss 
function. Default momentum parameters were used for the 
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optimization. The learning rate, number of epochs, and regularization 
strength were chosen using a grid search combined with 6-fold cross- 
validation to maximize the F1-score. The learning rate was selected 
from ten log-spaced values between 0.1 and 0.0001, the epochs from 
[100, 200, 400] and regularization strength from [0, 0.001, 0.01, 0.05, 
0.1]. 

The model was trained and tested in Keras on an NVIDIA P100 GPU, 
provided by the Leeds Advanced Research Computing facility. 

2.5. Performance of the deep learning neural network 

The classification accuracy of the model to discriminate PwP from 
controls was assessed using five metrics: accuracy, precision, recall, F1- 
score and Area Under the Receiver Operating Characteristic curve 
(AUROC). 

We used cross-validation to obtain realistic performance estimates. 
Examples were split into 6 random folds containing all the clips from a 
given participant. The model, including the normalization of training 
and test data, was then trained on 4 of these folds, with one used as the 
validation set and one for testing; repeating this procedure for each 
combination of folds [58]. This approach ensured that no participant is 
in the training and test data simultaneously. The mean and standard 
deviation of performance over the 6 testing folds is reported. 

2.6. Visualisation of the learned features 

In addition, we examined the features that the deep learning model 
derived to investigate how it learned to differentiate between the patient 
and control groups. 

We plotted the value of the activation function for selected features 
of each 3D convolutional layer to examine what the network “sees” at 
each stage. This visualisation was done for a single PwP and control 
participant over a range of video frames. To select the features from the 
final convolutional layer that best distinguish between patient and 
control, we determined the distribution of the maximal activation for 
each feature on all patient and control videos in the training set, using a 
violin plot. That is, for each video we ran the model and captured the 
maximal activation of each feature on the third convolutional layer. The 
features that exhibited the largest difference between patients and 
controls were further investigated as follows. 

First saliency mapping, a basic form of attention mechanism, was 
applied – showing the pixels that the model focuses on to make its 
classification. Class Activation Maps [59] show the attention of the final 
convolutional layers over the input, making use of the derivative of the 
output classification with respect to the input image. Pixels with steeper 
gradients have more influence over the final decision and therefore are 
intuitively similar to a notion of attention. This form of attention was 
applied to a PwP and control video with results plotted at frames 0, 8, 
and 16, enabling an illustrative view of where each feature is “looking” 
during the clip. 

We further plotted the timeseries of activation values for these fea
tures over the second video to determine when the feature is activated. 
The combination of where and when the features activate enabled us to 
describe their function. 

3. Results 

3.1. Participants 

40 people with Parkinson's (mean age 68 years, SD 10) and 37 
controls (mean age 56 years, SD 19) participated, with a total of 79 
Parkinson's hand videos and 73 control hand videos. The median num
ber of years since diagnosis was 4, and the median Modified Hoehn and 
Yahr Scale was 2 (Table 1). 

3.2. Performance of the neural network to discriminate Parkinson's from 
controls 

Using our cross-validation procedure the model obtained excellent 
performance on the training data, with some evidence of overfitting 
(likely due to the limited amount of data available). The test accuracy 
was 0.69, with test precision 0.73, test recall 0.76, and test AUROC 0.76 
(Table 2). This model had a learning rate of 7.2e-4, regularization 
strength of 0.1, and ran for 400 epochs. 

3.3. Visualisation of the learned features 

To investigate how the final model learned to differentiate between 
PwP and controls, three approaches were used. 

The first approach is to plot the activation function values for 
selected convolutional filters on each of the three 3D convolutional 
neural network layers, shown in Fig. 1. Two filters are chosen at each 
layer to illustrate the diversity of learned features and are plotted for a 
PwP and control participant at frames 0, 5, and 10 of the clip. Supple
mentary Video 1 shows an example of three features in third layer of the 
network for a PwP and control. 

The features selected from the first layer show a movement detector 
to separate the hand from the background and an edge detector that 
focuses on the upper edges of the arm, thumb, and fingers. From layer 
two we show a feature that appears to focus on movement of the forearm 
and one that follows movement in the lower edge of the image (forearm 
and thumb). The features selected from the third layer include one 
which follows the upper edge of the hand and thumb, and one which 
appears to detect stationary patches of skin: the fingers are visible from 
the control hand but not in the patient hand, though the forearm is 
visible in both. 

Table 1 
Participant characteristics.   

Parkinson’s Controls 

Number of participants 40 37 
Hands 79 73 
Mean age [SD], years 68 [10] 56 [19] 
Male:Female 27:13 13:24 
Median years since diagnosis 4 N/A 
Median H&Y [IQR] 2 [1, 3] N/A 
H&Y = 1 17  
H&Y = 1.5 1  
H&Y = 2 7  
H&Y = 2.5 2  
H&Y = 3 11  
H&Y = 4 2  
H&Y = 5 0  

Parkinson’s: Idiopathic Parkinson’s disease. H&Y: Modified Hoehn and Yahr 
Scale [61]. IQR: Interquartile Range. 

Table 2 
Performance of the neural network.  

Metric Training data (SD) Test data (SD) 

Binary cross-entropy loss 0.35 (6e-3) 1.0 (6e-3) 
Accuracy 0.91 (5e-3) 0.69 (1e-1) 
Precision 0.90 (7e-3) 0.73 (2e-1) 
Recall 0.89 (2e-2) 0.76 (1e-1) 
F1-score 0.90 (1e-2) 0.71 (1e-1) 
AUROC 0.97 (4e-3) 0.76 (8e-2) 

Binary cross-entropy loss is the function used to penalize model inaccuracy 
during the training process. Accuracy is the proportion of correct predictions 
(true positives and true negatives divided by all predictions). Precision is 
equivalent to specificity (true positives divided by true positives plus false 
positives). Recall is equivalent to sensitivity (true positives divided by true 
positives plus false negatives). F1-score is the harmonic mean of precision and 
recall. AUROC: Area under the receiver operating characteristic curve. 
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To investigate which features from the final convolutional layer best 
differentiate between PwP and control, Supplementary Fig. S2 shows a 
violin plot of maximal feature activation over the entire training set. 
Features 17, 19, 12, 38, and 32 provided the strongest differentiation 
(largest difference in mean value between the PwP and control 
participants). 

In Fig. 2, we show class activation maps (saliency maps) for the five 
features that provide the strongest differentiation between patient and 
control participants. Frames 0, 8, and 16 are shown for two videos from 
the training set. These maps allow us to see the areas where the network 
is focusing its attention when making a prediction. 

In Fig. 3 we plot the maximal activation of each feature over the 
duration of the video clip. Solid lines correspond to the patient whilst 
dotted lines are for the control participant. The class activation maps 
show where each feature is focused (Fig. 2), whilst the activation pattern 
over time shows when it activates (Fig. 3). Supplementary Video 2 
provides an animated version of Fig. 2, showing the features over time 
(the attention over the tapping cycle). 

Combining these two figures allows us to determine the function of 
each feature as follows: (Feature 17) thumb movement (an apparent 
dropping movement in the patient group), (Feature 19) the number of 
opening and closing cycles, (Feature 12) the section of the image with 
the fastest movement, (Feature 38) the connection between thumb and 
wrist, and (Feature 32) a smoothed version of overall hand movement. 

4. Discussion 

Our results show that a deep learning neural network can be directly 
applied to smartphone video of finger tapping, without predefined rules 
or measures, to distinguish people with Parkinson's from control par
ticipants. Performance of this neural network was good, with test ac
curacy 0.69, precision 0.73, recall 0.76, and AUROC 0.76. In addition, 
we have demonstrated a visual representation of the network's attention 
within the video, showing what it ‘looks at’ in the video to classify as 

Parkinson's or control. 
These findings suggest a potential method to assist or augment the 

discrimination of Parkinson's from controls that does not require special 
equipment or patient motivation. The products of deep learning models 
can be run on standard smartphones (which are ubiquitous), and 
observation of the finger tapping test is already a standard part of 
routine clinical care. This contrasts with specialist apps that require a 
patient to tap the screen or keyboard, for example [60]. A video-based 
method is contactless, compatible with infection control and remote 
video consultations. Only a ten second clip was recorded. Furthermore, 
our novel method is not constrained by an attempt to predefine and 
therefore restrict the parameters for movement patterns prior to ma
chine learning. We did not begin with a one-dimensional time series 
such as finger-thumb distance, or tell the computer which features (such 
as speed or rhythm) to look for in finger tapping, or that people with 
Parkinson's have something called bradykinesia and how that is defined. 
This provides the opportunity to find new discriminating features of 
finger tapping movement that push beyond current definitions of bra
dykinesia, and may not have previously been considered or investigated. 
Could there be other novel features of finger tapping that we don't yet 
recognise ourselves? Or, that we unconsciously recognise as typical of 
Parkinson's without consciously naming them as a feature of 
bradykinesia? 

The neural network, without any prior knowledge, found some fea
tures consistent with what we know about bradykinesia. Feature 19 and 
feature 12 appeared to be related to the speed of finger tapping. This 
suggests that the network is learning clinically valid features of tapping. 
However, in addition, one of the most discriminating features identified 
by the network is a movement feature not previously described. This was 
feature 17 – the mirrored movement of finger and thumb in Parkinson's 
tapping. In the Parkinson's group, the thumb and finger both moved 
apart from each other and then back towards each other, whereas in 
controls the thumb made an initial extension movement and then 
remained static so that it was the finger tapping against the thumb, 

Fig. 1. Activation of selected features on the three convolutional layers for three frames of finger tapping video from a PwP (‘patient’) and control participant. 
Features that the network has used to learn to discriminate Parkinson's and controls are represented by brighter pixels. 
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Fig. 2. Class Activation Maps for selected features on the third convolutional layer in three example video frames from a control (left) and patient (right). The 
brighter, yellow/green regions show where the network is focusing its attention when making a prediction. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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rather than with the thumb. It is unclear whether this thumb movement 
pattern would help discriminate PwP outside our specific participant 
group. We are not aware of clinicians previously noticing such a 
phenomenon. 

The results have limitations. The number of videos is small for a deep 
learning study, even when considering the division into 1 s segments to 
make 3148 clips. The large number of parameters of the network in 
comparison to the amount of data available amounts to a significant risk 
of overfitting. This refers to the tendency of a machine learning tech
nique to learn differences between two categories that are specific to the 
dataset it is trained on, rather than inherent to the categories in general. 
The drop in performance figures from training to test data is evidence of 
a degree of overfitting, meaning that the likely performance in a wider 
population is unclear at this stage. 

Nevertheless, the test data performance results (i.e. the lower figures 
in Table 2) are similar to, or better than, many other approaches based 
on hand-coded features mentioned in the introduction 
[13,15,16,22,28,30,34,37,39,61]. Furthermore, in a different study 
with a subset of the same participant population from the current study, 
21 human movement disorder expert clinician raters showed only 
moderate agreement for finger tapping MDS-UPDRS, with intraclass 
correlation coefficient of 0.53, and 24% of control participant videos 
were rated as bradykinesia by MBRS subscores [10]. When asked to 
guess Parkinson's or control status in the videos, the clinician raters were 
correct in 70% of videos - a strikingly similar figure to the test accuracy 
of our model [10]. That study suggests discriminating PwP from controls 
in finger tapping videos is not an easy task. 

The videos were split into 1 s segments before processing by the 
neural network, so that any patterns with a longer duration would not be 
learned. This would largely exclude the phenomenon of ‘decrement’: 
progressive decrease in amplitude or speed as tapping continues [62]. 
However, our results suggest that despite this there are movement fea
tures within 1 s time windows that differ between PwP and controls. 
Furthermore, all attempts to quantify decrement in the literature show 
overlap between PwP and control groups [12,20,23,63], often with no 
significant group difference [13,20,21,23,24], suggesting that decre
ment may not always be an important distinguishing feature. 

It is important to consider data storage with any video-based tech
nology; currently we need to store videos for training models, but in 
actual deployment once the models have been developed, it is possible 
to do the analysis on-device where videos can be deleted immediately 
afterwards. 

Another limitation of our study is that the only video data involved 
was finger tapping. Human diagnosis of Parkinson's is based on a much 
more comprehensive examination, together with details of the history of 
symptoms [3]. It is important to note that the current technology is 

insufficient to make a diagnosis, as that still relies on clinical assessment. 
However, there is potential for quantitative assessment of the movement 
to aid that clinical acumen – as an adjunct to diagnosis - and there is 
growing interest in technologies to aid earlier detection of neurode
generative disorders [64,65]. An additional limitation is that the Par
kinson's group mean age was higher than controls, and it is possible that 
some of the difference in tapping patterns relate to changes with aging 
rather than Parkinson's. The male:female ratio differed between the 
groups, another possible confounder. We did not have a large enough 
sample size to allow meaningful analysis of left and right hands in 
combination. Our participants did not have a broad range of skin colour 
and tone, limiting generalisability of the method to some extent. We did 
not record the proportion of hands with postural tremor, also a possible 
confounder. However, we would expect that only a minority of PwP had 
postural tremor, because a smaller subset of the same videos used in a 
previous study involved only 11 of 68 videos showing postural tremor 
[38]. Our visual representations of the network's attention during finger 
tapping do not suggest that it is using tremor movement to discriminate 
PwP from controls. 

There are several previous computer vision reports involving stan
dard video of finger tapping in Parkinson's. These have started with 
specific, human-defined measurements to be extracted from the video, 
followed by analysis of researcher-chosen features from that one- 
dimensional signal. A 2014 study used index finger tip coordinates 
[37] and a support vector machine (SVM) method to combine tapping 
features chosen by the researchers. They reported an accuracy of 95%, 
AUROC 90%, for discrimination between healthy controls and PwP, but 
participant numbers were very small (13 PwP, 6 controls), suggesting 
overfitting. Another study used a measure of overall hand movement 
(pixel optical flow) and machine learning such including SVM, to 
distinguish Parkinson's from controls, with 0.63 test accuracy [39]. A 
third study converted four video measures of upper limb parkinsonism 
into a 1D time series of frequency, and with SVM classification, they 
reported precision accuracy of 0.82 for discrimination of PwP from 
controls [46]. This is higher than our precision figure of 0.73, perhaps 
because other upper limb tests were included and their PwP cohort had 
longer mean disease durations of (8.7 and 6.4 years, compared with our 
median of 4 years). A 2021 paper reduced webcam video data to a 1D 
time series of finger to thumb distance. Researcher-selected features 
with several machine learning techniques to distinguish PwP from 
control showed sensitivity and specificity ranging from 41% to 73% and 
23% to 81%, respectively, depending on the feature [47]. 

These methods are fundamentally different from ours – they do not 
apply deep learning to video, instead using simpler machine learning 
techniques (not deep learning) on a 1D time series of a researcher- 
selected feature. One published method is similar to our approach. Yin 

Fig. 3. Maximal activation of the identified features over a 1 s video segment for a PwP (solid lines) and control participant (dotted lines). Class Activation Maps for 
the same features, participants and 1 s segment are shown in Fig. 2 and Supplementary Video 2. 
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et al applied a deep learning neural network directly to 2D video data 
[49]. However, this was to disintiguish two grades of bradykinesia (0 
and 1, rather than the 5 grades in the standard rating scale) [50]. The 
study did not feature control participants, and did not apply deep 
learning to the differences between controls and PwP. So whilst deep 
learning was applied directly to video, it was for a fundamentally 
different classification task. Nor did their study provide a visual repre
sentation of the network's attention within the video. 

Six other video-based studies measured relative finger-thumb dis
tance during tapping, to grade bradykinesia severity and correlate that 
with clinician ratings, but they did not attempt machine learning clas
sification of videos into PwP versus controls [40–42,44,45,66]. 

There is a body of literature reporting the measurement of finger 
tapping in Parkinson's using wearable equipment such as gyroscopes 
[5], electromagnetic sensors [28,67], and infrared camera markers [22], 
or tapping on a smartphone screen [32]. Single measures recorded with 
such devices, such as tapping frequency, opening velocity or the coef
ficient of variation of tapping peaks, show overlapping patient and 
control group scores that cannot alone discriminate Parkinson's from 
health [11–14,23,24,29,30,32,34,35]. This is despite many studies 
using a protocol in which medication is withheld prior to some or all of 
the recordings, artificially exaggerating parkinsonism 
[5,20,21,23,27,29,61]. When single measures are combined with ma
chine learning techniques, the results are comparable with ours. For 
example, the application of evolutionary algorithms to data from elec
tromagnetic sensors measuring finger to thumb distance could 
discriminate early-stage Parkinson's from normal controls, with area 
under the receiver operating characteristic curve of 0.899 [68]. Such 
approaches require specific equipment, limiting widespread use. 

There are several potential future extensions to the work described 
here: (1) collection of a large dataset to validate and refine the neural 
network, (2) application of the same method to other clinical signs, and 
(3) the use of traditional statistical methods to test sensitivity and 
specificity of tapping features identified by the model, such as feature 
17, thumb movement. 

In conclusion, a deep learning neural network can be applied directly 
to standard video of finger tapping, to distinguish Parkinson's from 
controls, without a requirement to extract a one-dimensional measures 
or pre-define tapping features. The location and timing of what the 
neural network's ‘sees’ in the video, to learn to distinguish Parkinson's 
tapping from controls, can be visualised. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jns.2024.123089. 
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