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A B S T R A C T   

Objective: In polymyalgia rheumatica (PMR), glucocorticoids (GCs) relieve pain and stiffness, but fatigue may 
persist. We aimed to explore the effect of disease, GCs and PMR symptoms in the metabolite signatures of pe
ripheral blood from patients with PMR or the related disease, giant cell arteritis (GCA). 
Methods: Nuclear magnetic resonance spectroscopy was performed on serum from 40 patients with untreated 
PMR, 84 with new-onset confirmed GCA, and 53 with suspected GCA who later were clinically confirmed non- 
GCA, and 39 age-matched controls. Further samples from PMR patients were taken one and six months into 
glucocorticoid therapy to explore relationship of metabolites to persistent fatigue. 100 metabolites were iden
tified using Chenomx and statistical analysis performed in SIMCA-P to examine the relationship between 
metabolic profiles and, disease, GC treatment or symptoms. 
Results: The metabolite signature of patients with PMR and GCA differed from that of age-matched non-in
flammatory controls (R2 > 0.7). There was a smaller separation between patients with clinically confirmed GCA 
and those with suspected GCA who later were clinically confirmed non-GCA (R2 = 0.135). In PMR, metabolite 
signatures were further altered with glucocorticoid treatment (R2 

= 0.42) but did not return to that seen in 
controls. Metabolites correlated with CRP, pain, stiffness, and fatigue (R2 ≥ 0.39). CRP, pain, and stiffness 
declined with treatment and were associated with 3-hydroxybutyrate and acetoacetate, but fatigue did not. 
Metabolites differentiated patients with high and low fatigue both before and after treatment (R2 

> 0.9). Low 
serum glutamine was predictive of high fatigue at both time points (0.79-fold change). 
Conclusion: PMR and GCA alter the metabolite signature. In PMR, this is further altered by glucocorticoid 
therapy. Treatment-induced metabolite changes were linked to measures of inflammation (CRP, pain and stiff
ness), but not to fatigue. Furthermore, metabolite signatures distinguished patients with high or low fatigue.   

Abbreviations: ANCA, anti-neutrophil cytoplasmic antibody-associated vasculitis; CRP, C-reactive protein; GC, glucocorticoids; GCA, giant cell arteritis; NMR, 
nuclear magnetic resonance; NOESY, Nuclear Overhauser Effect spectroscopy; OPLS-DA, orthogonal partial least squares discriminant analysis; PCA, principal 
component analysis; PLS-R, partial least squares regression analysis; PMR, polymyalgia rheumatica; RA, rheumatoid arthritis; VIP, variable importance for 
prediction. 
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1. Introduction 

Polymyalgia rheumatica (PMR) and giant cell arteritis (GCA) are 
closely-related diseases occurring in older people [1]. Whilst the exact 
aetiology remains unclear, genetics, environmental factors and age all 
contribute to onset and disease progression [1]. In PMR, inflammation 
occurs at extracapsular musculoskeletal sites (synovium, tendons, 
muscle) [2,3], whereas in GCA inflammation occurs in the arterial wall 
[1]. Glucocorticoid (GC) treatment remains the mainstay of treatment 
for both diseases, effectively controlling inflammation but often result
ing in adverse effects [4]. Despite this, many patients with PMR and GCA 
continue to report levels of fatigue that affect their quality of life [5,6] - 
this is likely due to the complex, interacting impact of inflammatory 
disease and GC therapy. There is an urgent clinical need to understand 
the molecular mechanisms responsible for driving fatigue in patients 
with well-controlled inflammation to improve their clinical 
management. 

Metabolomics is an emerging technology to detect the physiological 
derangements of diseases and treatments [7]. This technology has 
identified various derangements of metabolites correlating with disease 
activity in rheumatoid arthritis (RA) [8,9], Takayasu arteritis [10], and 
anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis [11]. 
For example, inflammation was correlated with increased lactate and 
lipid levels [8], whilst fatigue scores correlated with decreased specific 
metabolites linked to in the urea cycle and fatty acid metabolism in RA 
patients [12]. Furthermore, GC therapy for rheumatic diseases has been 
described to cause various metabolomic alterations, including an in
crease in lysophospholipids in women with RA [13] and a fall in 
hydroxyacetone and 3-hydroxybutyrate levels in a mixed population of 
patients with PMR and RA [14]. Yet few studies have investigated the 
contribution of circulating metabolic profiles to patient symptoms in 
PMR and GCA and how these are altered upon treatment. 

Clinical variables are poor predictors of prognosis in PMR [15], but 
patient stratification is currently hampered by lack of biomarkers that 
correlate with outcomes of PMR and its treatment. Metabolomics has 
been suggested as a possible approach for early detection of GC-related 
adverse effects [16]. Here, we sought to identify metabolomic correlates 
of pain, stiffness, and fatigue in a longitudinal dataset of GC-treated 
patients with PMR. We revealed that PMR has a distinct metabolomic 
signature from non-inflamed controls. 

1.1. Methods 

A summary of the participants, sample collection and analysis are 
shown in Supplementary Fig. 1. 

Ethical approval 
All samples were obtained with written, informed consent and 

approval (UK GCA Consortium 05/Q1108/28, Leeds West Research 
Ethics Committee, Clinical trial identifier: NCT04102930; ADDRESS- 
PMR 13/LO/1094, NRES Committee London – Camberwell St Giles, 
Characterisation of genes/proteins in autoimmune/inflammatory dis
eases 04/Q1206/107, Leeds East Research Ethics Committee; TABUL 
09/H0505/132., Berkshire Research Ethics Committee; Clinical trial 
identifier NCT00974883), in compliance with the Declaration of Hel
sinki. Routine clinical and patient outcome measures were also 
obtained. 

1.1.1. Participants 
Forty patients with GC-naive PMR were recruited into the ADDRESS- 

PMR (The Diagnostic Accuracy of Ultrasound in Suspected PMR) study. 
All PMR patients had a confirmed clinical diagnosis of PMR, with 36/40 
fulfilling the ACR/EULAR classification criteria for PMR. Reasons for 
non-fulfilment were: absence of patient-reported bilateral shoulder 
aches (n = 2), normal inflammatory markers (n = 1), and insufficient 
points due to lack of patient-reported early morning stiffness (n = 1). 

Patients completed pain and stiffness numeric rating scores and the 
FACIT-F (Functional Assessment of Chronic Illness Therapy – Fatigue 
subscale) questionnaire [17]. C-reactive protein was measured in the 
routine diagnostic laboratory. For fatigue analysis to align with the pain 
and stiffness VAS, FACIT-F scores were reversed (i.e., 52 minus the 
FACIT-F score) so that those with high fatigue levels had higher fatigue 
scores. Patients were treated with prednisolone according to clinical 
guidelines for PMR [18] and attended follow-up at 4 and 26 weeks 
(visits 2 and 3) at which time points PMR was confirmed clinically. At 
each of these three visits, serum was stored for later analysis. 

As a comparator inflammatory disease, 137 patients with suspected 
GCA recruited into the multi-centre TABUL (The Temporal Artery Bi
opsy -v- Ultrasound in diagnosis of Giant Cell Arteritis) study [19] were 
included in the current study if biological samples had been collected 
within 7 days of high dose prednisolone treatment. Of these, 84 were 
later classified as GCA (confirmed GCA) and 53 suspected GCA who 
were subsequently clinically confirmed with alternative diagnoses 
(clinically confirmed non-GCA). Patient recruitment pre-dated the 
ACR/EULAR 2022 classification criteria for GCA, with biopsy negative 
patients being clinical diagnosed by an expert panel based on review of 
symptoms and signs. Thirty-nine age-matched controls with no acute 
inflammatory or infective illness or underlying autoimmune or inflam
matory disease were recruited from members of staff at the University of 
Leeds or at a cataract pre-assessment clinic. All samples were obtained 
with written, informed consent and approval (UK GCA Consortium 
05/Q1108/28, Leeds West Research Ethics Committee, Clinical trial 
identifier: NCT04102930; ADDRESS-PMR 13/LO/1094, NRES Com
mittee London – Camberwell St Giles, Characterisation of gene
s/proteins in autoimmune/inflammatory diseases 04/Q1206/107 Leeds 
East Research Ethics Committee; TABUL 09/H0505/132., Berkshire 
Research Ethics Committee; Clinical trial identifier NCT00974883), in 
compliance with the Declaration of Helsinki. Characteristics of patients 
and age and sex-matched controls are given in Supplementary Table 1. 

1.1.2. Sample collection, preparation and metabolomic analysis 
Full methodology can be found in the Supplementary Methods 

Document. Blood was collected and processed for metabolomic analysis 
as previously described [8,20]. Samples were analysed at 300K using a 
standard 1D-1H-Nuclear Overhauser Effect spectroscopy (NOESY) pulse 
sequence with water saturation using pre-sat in a Bruker on Bruker 
AVANCE II 600 MHz NMR spectrometer (Bruker Corp., USA). Spectra 
were read and processed with Metabolab software (Version 2018.x; 
Birmingham, UK) [21] and phased, aligned and binned as previously 
described [8,22,23]. Metabolites were identified in Chemonx (Version 
8.1; Chenomx Inc., Edmonton, Canada) [24]. 

1.1.3. Statistical analysis 
Data were initially subject to principal component analysis (PCA) to 

access the variability and identify any outliers. Supervised analyses were 
then performed to assess variation in the data with regards to a Y vari
able (e.g. case vs control or CRP) using orthogonal partial least squares 
discriminant analysis (OPLS-DA) or partial least squares regression 
analysis (PLS-R). 

OPLS-DA was used to compare between groups of interest (i.e. case 
vs control, or PMR patients at different treatment points). This assessed 
the fold change between the groups of interest and gives each metabolite 
a variable importance for prediction (VIP) score which indicates how 
much that metabolite contributes to the model (higher number = higher 
contribution): a cut-off of 0.9 was used to take metabolites forward in 
the models. 

PLS-R is a form of regression analysis that identifies which metabo
lites predict a given variable. Here, we used measured levels of C-reac
tive protein (CRP), pain, stiffness, and fatigue. Similarly, to the OPLS-DA 
models, metabolites are given a VIP score to indicate their contribution 
to the model, and 0.9 was used as a cut-off. 

In both the OPLS-DA and PLS-R model, qualities were assessed using 

J.E. Manning et al.                                                                                                                                                                                                                             



Journal of Autoimmunity 147 (2024) 103260

3

R2 (goodness of fit), Q2 (goodness of prediction) and cross-validated 
ANOVA (CV-ANOVA) to determine significance levels. An R2 > 0.25, 
with the difference between R2 and Q2 < 0.2, and P < 0.05 was deemed 
to be a well modelled and significant: the higher the R2 the better the fit. 

All statistical analysis was performed in SIMCA-P, version 16 [25] 
(Umetrics, Sweden), with the exception of metabolites of interest where 
Kruskal-Wallis with Dunn’s post-test was performed on the metabolite 
concentrations in GraphPad version 8.0.0. 

Fig. 1. Metabolite concentrations reveal distinct metabolite profiles exist in polymyalgia rheumatica patients and are sensitive to glucocorticoid 
treatment. One-dimensional 1H nuclear magnetic resonance (NMR) spectra were obtained from the serum of 39 age and sex-matched controls with no infection or 
underlying autoimmune and inflammatory disease (non-inflammatory control; green) and 40 patients with polymyalgia rheumatica (PMR) at 3 visits: (i) baseline pre- 
steroids with active inflammation (blue), at (ii) 4 weeks (red) and (iii) 26 weeks (yellow) of glucocorticoid (GC) treatment. Metabolite concentrations were 
determined from the spectra with Chenomx and analysed in SIMCA. Samples were subjected to orthogonal partial least squares discriminant analysis (OPLS-DA), then 
metabolites with a variable importance score of >1 were taken forward and subjected to OPLS-DA. (A) Comparison of metabolite profile in PMR vs controls, R2 

=

0.74, Q2 = 0.64, P = 2.22e− 15. (B) Effect of GC treatment on the metabolomic profile of PMR patients, R2 = 0.40, Q2 = 0.25, P = 5.24e− 9 (C-D) Comparison of 
metabolite profile in GC treated PMR patients at (C) 26 weeks (, R2 = 0.66, Q2 = 0.54, P = 1.55e− 11) or (D) 4 weeks (, R2 = 0.76, Q2 = 0.73, P = 6.58e− 20) to non- 
inflammatory controls. Axis expressed as the proportion of variance captured by the latent variables (t and to). P values were determined using cross- 
validated ANOVA. 
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1.1.4. Pathway analysis 
Metabolites with a variable importance score (VIP) score of >0.9 in 

the PLS-R for CRP, pain, stiffness and fatigue were selected for pathway 
analysis in MetaboAnalyst [26]. Importance and relevance of pathways 
are indicated by the impact factor (X axis) and –log(P value) (Y axis). 

1.1.5. Patient and public involvement 
Patients were involved in the design of the ADDRESS-PMR study and 

in the TABUL study. The TABUL study had a patient representative on 
the steering committee. Patients and the public were not directly 
involved in the metabolomic laboratory studies. 

1.2. Results 

1.2.1. Circulating metabolome changes with polymyalgia rheumatica and is 
sensitive to glucocorticoid treatment 

Firstly, the baseline metabolome of treatment-naïve PMR patients 
was compared to the matched non-inflammatory controls using OPLS- 
DA of NMR spectra (Supplementary Figs. 2A and B) and metabolite 
concentrations (Fig. 1A), which revealed clear separation between the 
two groups. Subsequently OPLS-DA was used to compare PMR patient 
serum spectra (Supplementary Figs. 2C–H) and metabolite concentra
tions (Fig. 1B) at 3 time points: (i) baseline prior to steroid therapy, and 
at (ii) 4 weeks and (iii) 26 weeks of GC treatment. We observed a sig
nificant difference between the 3 groups (Supplementary Fig. 2C –H and 
Fig. 1B) where, using metabolite concentrations, separation between 
treatment-naïve and treated patients was largely dependent on latent 
variable t[1], whilst latent variable t[2] revealed further separation 
between the GC treatment duration (4 or 26 weeks). Finally, there was a 
persistent separation between PMR at 4 and 26 weeks and controls, 
despite GC therapy (Supplementary Figs. 2I and J, and Fig. 1C and D). 

Metabolites that contributed to separation of groups in the OPLS-DAs 
(Fig. 1) were identified. The fold changes and variable importance of 
prediction (VIP) scores of these are given in Supplementary Table 2, and 
concentrations of selected metabolite were plotted (Supplementary 
Fig. 3). Of these, the concentration of glycerol (Supplementary Fig. 3A) 
was higher, and methanol (Supplementary Fig. 3B) was lower in PMR 
patients compared to controls. Pyruvate, lactate and ornithine concen
trations tended to be higher in PMR patients compared to controls 
(albeit not statistically significant). These metabolites were further and 
significantly increased upon GC treatment (Supplementary Figs. 3C–E). 
On the other hand, acetone was increased in PMR patients following 4 
weeks GC treatment but then subsequently decreased with longer (26 
weeks) use (Supplementary Fig. 3F). Taken together, these results 

demonstrate the serum metabolome is altered by disease (PMR), then 
further altered by GC treatment, but does not return to the same state as 
in non-inflamed controls despite 26 weeks of GC treatment. 

1.2.2. Separation of metabolome in patients with suspected GCA according 
to final diagnosis 

Given that PMR is closely related to GCA [1], we next evaluated the 
metabolomic profile in NMR spectra from patients with a confirmed 
diagnosis of GCA in the TABUL study, compared to two other groups: 
Firstly, we compared patients with GCA with age-matched controls 
without infections, autoimmune and inflammatory disease (Fig. 2A, 
Supplementary Fig. 4A). Secondly, using samples only from the TABUL 
study, we compared patients with clinically confirmed GCA to those 
who’s suspected GCA diagnosis was clinically confirmed as not GCA 
(non-GCA) (Fig. 2B, Supplementary Fig. 4B). OPLS-DA revealed a sep
aration between patients with GCA and age-matched controls (Fig. 2A, 
Supplementary Fig. 4A). Within the TABUL study, however, there was a 
much smaller separation between the confirmed patients with GCA and 
those diagnosed as non-GCA (Fig. 2B, Supplementary Fig. 4B). Many of 
the non-GCA patients had an elevated CRP due to other inflammatory 
conditions (Supplementary Table 1) and thus it was possible that the 
changes we observed were correlating with inflammation rather than 
mechanisms specific to GCA. Removing the inflammation-associated 
metabolites according to their variable importance for prediction 
(VIP) scores marginally increased the separation between the confirmed 
GCA and confirmed non-GCA cases (Supplementary Fig. 5), albeit the R2 

was still very low (0.18), suggestive of poor modelling and separation 
between the groups. 

1.2.3. Inflammation and patient reported outcomes are associated with 
metabolomic profile 

Metabolomic studies in RA have demonstrated an association be
tween metabolomic profile and CRP [8,27]. To access this in the PMR 
and GCA patients, PLS-R was performed using the metabolite concen
trations (Fig. 3) and NMR spectral bins (Supplementary Fig. 6). This 
gave moderate R2 and Q2 values indicating an association between the 
metabolite concentrations and systemic inflammation. Pathway analysis 
of metabolites revealed that the synthesis and degradation of ketone bodies 
pathway, in particular 3-hydroxybutyrate and acetoacetate, signifi
cantly contributed to the CRP prediction in patients with both PMR and 
GCA (Fig. 3, Supplementary Figs. 6A–B). Collectively, this suggests that 
concentrations of multiple metabolites, especially ketone bodies, 
correlate with systemic inflammation, as reflected by CRP. 

Using PLS-R, we then examined whether metabolite concentrations 

Fig. 2. Metabolite concentrations in sera distinguishes giant cell arteritis patients from non-inflammatory controls and suspected giant cell arteritis. One- 
dimensional 1H nuclear magnetic resonance (NMR) spectra were obtained from the serum of 84 giant cell arteritis (confirmed GCA) patients (purple), 39 age and sex- 
matched controls with no inflammation, control (non-inflammatory control, green) and 53 patients with suspected, but not confirmed giant cell arteritis (confirmed 
non-GCA) and analysed in SIMCA. In SIMCA, samples were subjected to orthogonal partial least squares discriminant analysis (OPLS-DA). Metabolites with a variable 
importance score of >1 were then re-subjected OPLS-DA and analysed. Comparison of GCA with (A) non-inflammatory control R2 = 0.78, Q2 = 0.73, P = 1.20e− 31 

and (B) confirmed non-GCA R2 = 0.15, Q2 = 0.06, P = 0.02. Axis values indicate the proportion of variance captured by the latent variables. P values determined 
with cross-validated ANOVA. 
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could predict pain, stiffness, and fatigue in PMR patients (see Supple
mentary Fig. 7 for changes in scores over time). Baseline median scores 
were 8 (IQR 7–9) for both pain and stiffness VAS, and 25 (IQR 17–32) for 
fatigue (52 - FACIT-F score). A significant association was found be
tween metabolites and pain, stiffness, or fatigue with moderate levels of 
prediction (Fig. 4). Using colour to visualise the samples according to the 
date of patient visit (0, 4 or 26 weeks treatment) shows that pain and 
stiffness decreased with treatment (Fig. 4A and B, Supplementary 
Figs. 6C and D) as expected, whereas some patients had persistent fa
tigue after 26 weeks of GC treatment (Fig. 4C, Supplementary Fig. 6E). 
Importantly, these patterns were predicted by the metabolites, with R2 

≥ 0.39 for pain, stiffness, and fatigue. Correlation was also observed 
when PLS-R was performed at each time point separately (Supplemen
tary Fig. 7). Like the CRP prediction, pathway analysis revealed that 
synthesis and degradation of ketone bodies significantly contributed to the 
pain and stiffness prediction (Fig. 4D and E), whilst no relationship with 
this metabolic pathway was seen with fatigue. These data indicate that 
pain and stiffness, but not fatigue, are associated with inflammation in 
PMR. 

To investigate this further we removed the metabolites predictive of 

CRP (VIP>1) and used the remaining metabolites in PLS-R analysis of 
fatigue (Fig. 5A). These remaining metabolites significantly correlated 
with fatigue, suggesting an inflammation-independent distinct metab
olite profile underpinning fatigue (Fig. 5A). Using all metabolites, we 
further divided patients into those with “high” and “low” fatigue scores 
at baseline and after 26 weeks GC treatment to identify metabolites 
associated with fatigue. Groups were determined by selecting the pa
tients still suffering from fatigue (FACIT-F < 20 [28]) after 26 weeks GC 
treatment, of which there were 9, then selecting the 9 patients with 
lowest levels of fatigue at 26 weeks (Fig. 5B), and then the 9 patients 
with highest and lowest fatigue at baseline (Fig. 5C). OPLS-DA revealed 
a separation between the “high” and “low” fatigue groups at both time 
points, Fig. 5D and E, with the metabolites that drive the separation in 
low and high fatigue scores described in Supplementary Table 3. Of 
particular interest was the significantly lower glutamine concentration 
and higher histidine and 2-hydroxyisobutyrate concentrations at both 
timepoints. This suggests that circulating metabolite concentrations 
correlate with fatigue in patients with PMR. 

Fig. 3. Metabolite concentrations in sera correlate with C-reactive protein. One-dimensional 1H nuclear magnetic resonance (NMR) spectra were obtained from 
the serum of patients and metabolite concentrations were determined from the spectra with Chenomx. Predicted values of patient reported outcomes were deter
mined from the metabolites using partial least squares regression analysis (PLS-R). Metabolites with variable importance for prediction (VIP) > 1 were taken forward 
and predicted values from these metabolites were compared to the CRP measured on the day the samples were taken, for (A) PMR patients before (blue) and after 
glucocorticoid treatment at 4 (red) and 26 weeks (yellow), P = 2.65e− 13, R2 = 0.60, Q2 = 0.42 and (B) GCA patients, P = 2.55e− 05 R2 = 0.61, Q2 = 0.38. (C-D) VIP 
>0.9 for individual metabolites were subsequently assessed for importance in metabolic pathways using Metaboanalyst for (C) PMR, (D) GCA patients, axis show the 
–log P values and the impact of metabolites on each pathway (0–1). In C and D, the circle size denotes amount of pathway enrichment (larger = more enriched), 
whilst colour indicates level of significance (red/darker = more significant) – where the most significantly contributing pathways appear in the top right corner of the 
plots. Statistical analysis was determined using cross validated ANOVA. 
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2. Discussion 

The molecular mechanisms underpinning PMR and GCA, and the 
effect of GC treatment on these, remains poorly understood. Moreover, it 
is currently unclear why a subset of PMR patients continue to suffer 
fatigue despite the control of the pain and stiffness with GC treatment. 
Here, we have demonstrated that the circulating metabolomic profile of 
patients with PMR and GCA is distinct from age and sex-matched con
trols, as seen in other chronic inflammatory diseases [8,10]. In PMR, this 
disease-specific profile is altered with GC treatment, but does not return 
to that seen in age-matched controls; these alterations are akin to those 
observed in other GC-treated inflammatory diseases [29]. Pain and 
stiffness, but not fatigue, appeared to be coupled with inflammation and 
shared similar predictive metabolites (acetoacetate, 3-hydroxybutyrate 
and methanol). Furthermore, metabolite profiles, particularly a low 
glutamine concentration, distinguished patients reporting high and low 
fatigue, and were predictive of fatigue both before and after treatment. 
We have shown for the first time that disease, GC treatment, and 
importantly fatigue, correlate with significant changes in the circulating 
metabolic profile of PMR and GCA patients. Our data highlights the 

possibility of using glutamine as a biomarker to predict and monitor 
fatigue in these patient groups. Furthermore, investigations into the role 
of glutamine in fatigue may pave the way to develop novel therapeutics 
to significantly reduce fatigue across a range of inflammatory diseases. 

Elevated levels of ketone bodies, glycerol, lactate, and pyruvate are 
often reported in patients with inflammatory diseases; we observed 
similar increases in these metabolites in PMR and GCA. Collectively 
these data strongly indicate these metabolites are a hallmark of 
inflammation, rather than being a disease-specific metabolic response 
[8]. Indeed, the elevated ketone bodies (3-hydroxybutyrate and ace
toacetate) and glycerol levels observed here and in RA [8] are consistent 
with inflammation driving lipolysis [30]. Of note it is common for PMR 
and GCA to present with weight loss alongside raised laboratory markers 
of inflammation [31]. 

Both acetoacetate and 3-hydroxybutyrate were also predictive for 
pain and stiffness levels in our PMR cohort. Given several reports 
highlighting the close relationship between pain, stiffness and inflam
mation in PMR e.g. Ref. [32], it is unsurprising that some of these 
inflammation-associated metabolites also predicted pain and stiffness. It 
must be noted, however, that at baseline, patients with PMR had fasted, 

Fig. 4. Metabolite concentrations in sera correlate with patient reported outcome measures. One-dimensional 1H nuclear magnetic resonance (NMR) spectra 
were obtained from the serum of 40 patients with polymyalgia rheumatica at baseline (blue) and following glucocorticoid (GC) treatment for 4 (red) and 26 weeks 
(yellow). Metabolite concentrations were determined from the spectra with Chenomx and analysed in SIMCA. Predicted values of patient reported outcomes were 
determined from the metabolites using partial least squares regression analysis (PLS-R). Metabolites with variable importance for prediction (VIP >1) were taken 
forward and predicted values from these metabolites were compared to patient reported outcome measures for (A) pain, P = 5.05e− 10, R2 = 0.41, Q2 = 0.31, (B) 
stiffness P = 4.36− 05, R2 = 0.39, Q2 = 0.25 and (C) fatigue, P = 8.10e− 05, R2 = 0.41, Q2 = 0.19, where P values determined with cross-validated ANOVA. (D-F) VIP 
>0.9 for individual metabolites were subsequently assessed for importance in metabolic pathways using Metaboanalyst for (D) pain, (E) stiffness and (F) fatigue, axis 
show the –log P values and the impact of metabolites on each pathway (0–1). In D-F, the circle size denotes amount of pathway enrichment (larger = more enriched), 
whilst colour indicates level of significance (red/darker = more significant) – where the most significantly contributing pathways appear in the top right corner of 
the plots. 
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whilst at 4 and 26 weeks they had not. This may have contributed to the 
observed association as ketosis and the generation of ketone bodies is 
related to fasting [33]. Furthermore, loss of appetite and reduced food 
intake are common in inflammatory states and could also have affected 
metabolite levels. 

By contrast, lactate and pyruvate increased with inflammation, but 
did not predict pain, stiffness, or fatigue, most likely due to the GC- 
associated changes described below. An inflammation-induced hypox
ic environment, combined with increased energy demands of prolifer
ating immune cells and proteolysis, results in a switch to aerobic 
glycolysis and gluconeogenesis, leading to lactate accumulation and 
pyruvate synthesis [8]. Other studies have also found elevated lactate 
levels in PMR [34]. Lactate derivatives can inhibit the motility of T-cells 

resulting in their accumulation in tissue, as well as inducing Th17 for
mation and reducing the cytolytic function of CD8+ T-cells [35], raising 
the question of whether lactate is involved in PMR and GCA pathogen
esis via these mechanisms. Therefore, the changes observed in lactate 
and 3-hydroxybutyrate could indicate not only alterations in energy 
metabolism, but also of T-cell signalling and thus warrant further 
investigation to fully dissect their role in the pathogenesis of PMR and 
GCA. 

GC treatment is the gold standard for patients with PMR and GCA, 
but it had divergent effects on the inflammation-associated metabolites: 
while some metabolites were reduced following therapy (ketone bodies 
and glycerol), others were increased (lactate and pyruvate). The 
decreased ketone body (3-hydroxybutyrate and acetoacetate) levels 

Fig. 5. Non-inflammatory metabolites correlate with fatigue and metabolites can distinguish between patients with high and low fatigue in polymyalgia 
rheumatica patients. One-dimensional 1H nuclear magnetic resonance (NMR spectra were obtained from the serum of 40 patients with polymyalgia rheumatica 
(PMR) at 3 visits; baseline (blue) and following glucocorticoid (GC treatment for 4 (red) and 26 weeks (yellow). Metabolite concentrations were determined from the 
spectra with Chenomx then analysed in SIMCA. (A) Firstly, partial least squares regression (PLS-R) identified metabolites predictive of CRP (with a variable 
importance of prediction, VIP>1). These were removed and PLS-R of fatigue performed on the remaining metabolites. Metabolites with a VIP >1 were re-subjected to 
PLS-R and predicted vs measured fatigue, P = 0, R2 = 0.26, Q2 = 0.14. P value determined with cross-validated ANOVA. (B-E) Using all metabolites, predicted values 
of fatigue were determined with PLS-R separately on patients at (B) 26 weeks and (C) baseline. The 9 highest and lowest scoring patients (circled) for the predicted 
and measured fatigue were separated into groups and subjected to orthogonal partial least squares – discriminant analysis (OPLS-DA), for (D) PMR patients 26 weeks 
into GC treatment, P = 4.18e− 05, R2 = 0.97, Q2 = 0.84 and (E) Baseline PMR patients, P = 0.03, R2 = 0.99, Q2 = 0.81. 
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suggest a reduction in lipolysis, similar to that observed in healthy males 
following continuous treatment with 7.5 mg or 30 mg prednisolone over 
2 weeks [36]. In contrast, increased lipolysis was reported in healthy 
males following a single low dose (4 mg) of dexamethasone [16]. Thus, 
acute and prolonged GC treatments appear to exert differential effects 
on systemic metabolism [16,37], which may account for reduced levels 
of ketone bodies seen in PMR following 4 and 6 months of GC therapy. 
The elevated levels of lactate and pyruvate we report here are a typical 
response following short-term GC treatment [16]; elevated lactate levels 
are a feature of insulin resistance [38] and might be potentially an early 
biomarker of patients at risk of steroid-induced hyperglycaemia, as 
elevated lactate predicts incident diabetes in the general population 
[39]. GCs inhibit pyruvate conversion to acetyl-CoA [40]. Pyruvate 
levels are well-known to increase with adiposity and obesity [41,42]. In 
PMR, a previous study showed elevated muscle interstitial lactate and 
pyruvate concentrations, that rose further with GC treatment [43]. 

Surprisingly, methanol sharply increased in patients after GC treat
ment indicative of alterations to its synthesis or degradation. Methanol 
and its oxidised product, formaldehyde, are often present in blood due to 
exogenous sources (fruit, vegetables, alcoholic beverages, or the artifi
cial sweetener aspartame), but can also be formed endogenously via gut 
bacteria fermentation or metabolic processes involving S-adenosyl 
methionine [44]. We did not have data on whether patients with PMR 
altered their diet following GC therapy and this would be an important 
consideration for future studies. 

Fatigue is a common symptom experienced by patients with chronic 
inflammatory diseases, especially those treated with GC, but as yet the 
underlying mechanisms responsible for fatigue have remained elusive. 
We have identified a fatigue-specific metabolic signature that distin
guishes between patients with PMR who have high or low fatigue levels, 
independent of disease duration or GC treatment timeline. Of particular 
interest is the possibility that the metabolite glutamine may act as a 
biomarker for fatigue, with markedly reduced levels of glutamine 
observed in highly fatigued patients both before and after treatment. 
Indeed, low sera glutamine has been reported to be associated with 
active disease in a GCA and PMR patients [45]. Glutamine is a key fuel 
source for rapidly dividing leukocytes, playing a pivotal role in the 
immune response, but also is required as a fuel for muscle during intense 
exercise [46]. Glutamine is normally produced by skeletal muscle; 
therefore, low serum glutamine concentrations occur in catabolic states 
such as high altitude-associated muscle wasting [47]. Recently, low 
glutamine levels were described in association with human obesity and 
insulin resistance, with animal studies indicating a possible beneficial 
effect of glutamine supplementation [48]. It should also be noted that 
glutamine levels were not prominently deranged in a metabolomic study 
of fatigue in rheumatoid arthritis [12] and our findings in PMR require 
replication. Low glutamine levels in treated PMR patients might reflect 
ongoing immune activation, PMR- or GC-related muscle changes, or a 
combination of both factors. Regardless, glutamine might be an addi
tional biomarker of poor prognosis in patients with PMR. 

GC-induced obesity is associated with reduced gut microbiome di
versity [49]; this reduced microbiome diversity has been suggested to 
play a role in the development of GC-related complications such as 
osteonecrosis [50]. Whether altered gut microbiota might play a role in 
the metabolomic alterations of GC therapy, and specifically whether 
interventions to improve gut microbiome diversity might be beneficial 
in alleviating adverse effects, remains unknown. 

Whilst this exploratory study provides a first look at the metabolite 
changes within PMR and GCA patients, there are limitations. Most 
significantly, the sample size is relatively small, especially once 
exploring patient subsets (i.e., those with fatigue following GC treat
ment), and validation of these findings would be required in separate 
cohorts. Moreover, the PMR patient group had notably fewer smokers, a 
known factor that affects the circulating metabolome [51]. Given the 
limited sample numbers we were unable to control or adjust for smoking 
within this study, but this would need to be taken into consideration in 

subsequent studies on larger cohorts. The data comparing GCA and 
non-GCA patients is hard to interpret since many of the non-GCA pa
tients had elevated CRP and/or were treated with similar doses of glu
cocorticoids to the GCA patient. This may have contributed to the 
non-significant result observed between the two patient groups and 
makes it difficult to identify disease-specific alterations. 

3. Conclusions 

Our data suggest that metabolomic derangement can be detected in 
PMR and GCA, and that GC therapy for these diseases is associated with 
further metabolomic changes. However, GC therapy does not return the 
metabolome back that seen in age-matched controls. CRP, pain, and 
stiffness all correlate with an “inflammatory” metabolome signature. By 
contrast, fatigue was associated with a different time course and 
different metabolomic fingerprint than pain and stiffness, suggesting a 
multifactorial aetiology for this symptom. Further validation is now 
urgently required to allow the definition of subsets of PMR at greater risk 
of fatigue or of GC-related adverse effects that might warrant early 
intervention to optimise long-term outcome. 
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