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Abstract: For some chalcogenide glasses, the temperature dependence of the activation energy E(T)

of viscous flow in the glass transition region was calculated using the Williams–Landel–Ferry (WLF)

equation. A method for determining the activation energy of viscous flow as a function of temperature

is proposed using the Taylor expansion of the function E(T) using the example of chalcogenide glasses

As-Se, Ge-Se, Sb-Ge-Se, P-Se, and AsSe-TlSe. The calculation results showed that the temperature

dependence of the activation energy for the Ge-Se, As-Se, P-Se, AsSe-TlSe, and AsSe systems is

satisfactorily described by a polynomial of the second degree, and for Sb-Ge-Se glass by a polynomial

of the third degree. The purpose of this work is to compare the values of the coefficients obtained

from the Taylor series expansion of E(T) with the characteristics of the E(T) versus (T − Tg) curves

obtained directly from the experimental temperature dependence of viscosity. The nature of the

dependence E(T) is briefly discussed.

Keywords: glass transition; viscosity; activation energy; WLF equation; chalcogenide glasses

1. Introduction

Viscosity arises because of a transfer of momentum between material layers moving
at different velocities and quantifies the resistance of the material to flow with the Frenkel
equation commonly used for the temperature dependence of viscosity [1–5]:

η = η0 exp

(

E

RT

)

, (1)

where η0 is the pre-exponential coefficient, E is the activation energy of viscous flow, T is
the temperature, and R is the universal gas constant. For glass-forming melts, the activation
energy of viscosity is a well-defined constant only asymptotically at high temperatures at
which the viscosities are low, i.e., log(η/Poise) < 3 and E = EL = 80–300 kJ/mol [2], whereas
the pre-exponential coefficient η0 was shown to be the high-temperature viscosity limit
within logarithmic approximation [4]. In the glass transition range of temperatures T~Tg,
where Tg is the glass transition temperature, the activation energy of the viscous flow
of glass-forming melts has a strong temperature dependence E = E(T) increasing on the
decrease in temperature from its lowest value EL in the melts (T >> Tg) to its highest value
in the glassy state (T < Tg) EH = 400–800 kJ/mol [2]. Following [3–6], we observe that the
viscous flow in glass-forming melts exhibits three temperature ranges, as illustrated by
Figure 1.
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Figure 1. The viscosity regimes of chalcogenide glasses and melts [6].

Namely, the temperature regimes of viscosity are as follows:

1. Low temperatures T < Tg: isostructural Arrhenius-type law viscosity of the glass (E = EH);
2. Intermediate temperatures Tg < T < TA: non-Arrhenius-type law formally expressed

with an exponent E with variable activation energy of viscosity E = E(T);
3. High temperatures T > TA: Arrhenius-type law viscosity (E = EL).

The crossover temperature TA is assumed to be close to the liquidus temperature Tliq,
at which the material is completely melted [5]. It was recently shown [7] that regardless
of the type of glass-forming liquid, the crossover temperature is given by the universal
Equation (2):

TA = kTm, (2)

where Tm is the melting temperature and k = 1.1 ± 0.15 (see for details Figure 3b of
reference [7]). In addition, the TA of certain glass families, such as float and nuclear waste
glasses, can be defined using a fixed viscosity value which is independent of composition [8].
Figure 1 also provides the universal viscosity equation [3], which is valid at all temperatures
although it requires at least four parameters to be fitted to experimental data–the so-called
Douglas–Doremus–Ojovan (DDO) double-exponential model (see Chapter 8 of Ref. [8]).

This work is devoted to estimating the temperature dependence of the activation
energy of viscous flow for several chalcogenide compositions within the temperature range
(2): Tg < T < TA. Chalcogenide vitreous materials are used in the development of nonvolatile
memory techniques both for selectors and storing data in memory cells. Various composi-
tions are used in infrared and fiber optics, sensors and devices utilizing the properties of
these glasses. Research of such materials has great prospects in electronics and optics. We
have selected chalcogenide glasses as the main objects of the study because for these mate-
rials there are experimental data on viscosity available in a wide temperature range. For
them, the expansion of the activation energy function E(T) into a Taylor series is acceptable.
The method proposed can be expanded to include other glass-forming compositions.

2. Modeling the Viscosity

Many useful models of the viscosity of amorphous materials have been proposed for
the temperature range (2) (see the overviews [1–5]), among which we can note the two
most developed and frequently used models, namely the Vogel–Fulcher–Tammann (VFT)
equation [9–11], and the Williams–Landel–Ferry (WLF) equation [12,13]:

η = η0 exp

(

B0

T − T0

)

, (3)
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log aT = −C1
T − Tr

T − Tr + C2
, (4)

where η0 and B0 are temperature-independent constants and material-dependent param-
eters, aT is the relative viscosity aT = η(T)/η

(

Tg

)

, C1 and C2 are empirical temperature-
independent constants, Tr is the reference temperature typically taken as the glass transition
temperature Tr = Tg. The validity of these equations has been demonstrated in many works
for various glass-forming systems, e.g., see Refs. [1–5,14–20]. We note that the activa-
tion energy of viscous flow starts to decrease exactly at temperatures exceeding Tg, see
e.g., Figure 1 of Ref. [5] and Figures 1, 2, and 4 of Ref. [19]. The WLF equation is known to
correctly describe the molecular kinetic processes in the glass transition region and provide
fairly exact temperature dependence of relaxation time τ(T) and the viscosity η(T) within
the glass transition range of temperatures for amorphous materials of various natures such
as polymers, organic, and inorganic glasses, and metallic amorphous alloys [14–20]. It is
known that the WLF equation can be derived in [16] without specifying the functional de-
pendence η(T) based on the series expansion of function ln(η(T)) near the Tg with respect to
the small dimensionless parameter λ = (T − Tg)/Tg << 1. This led to following Equation (5)
in terms of natural logarithms (ln) rather than decimal (log) logarithms while assuming
Tr = Tg:

ln aT = −

(

A2

B

)

T − Tg

T − Tg +
(

A
B Tg

) , where A = −
∂ln η

∂
(

T/Tg

)

∣

∣

∣

∣

∣

T=Tg

, B =
1

2

∂2ln η

∂
(

T/Tg

)2

∣

∣

∣

∣

∣

T=Tg

(5)

From here, the WLF equation constants C1 and C2 acquire a physical meaning, expressed
through the derivative parameters A and B:

C1 =
A2

B
, and C2 =

A

B
Tg, (6)

Additionally, we observe that the VFT and WLF equations are equivalent if we suppose that:

Either B0 = C1C2ln10 in (4) or B0 = C1C2 in (5), and T0 = Tg − C2 (7)

Equating Formulas (1) and (3) and taking into account that η0 = const, we obtain the
following expression for determining the activation energy of viscous flow on temperature:

E(T) =
B0RT

T − T0
(8)

Accounting for (7) we can rewrite it using (5) as:

E(T) =
C1C2RT

T − Tg + C2
(9)

We conclude from (9) that in order to calculate the variable activation energy of viscous
flow within the temperature range (2) it is necessary to know the values of three parameters:
C1, C2, and Tg. From Equation (9) it follows the following expression for determining the
activation energy at the liquid-glass transition Eg = E(Tg):

Eg = C1RTg. (10)

The validity and usefulness of Equations (9) and (10) were checked for several chalcogenide
materials, as described below.

The resulting Equations (9) and (10) can be effectively used to predict Eg. The calcu-
lation results show a good agreement with data obtained using relaxation spectrometry
methods. For example, it was found that the activation energy at the glass transition
temperature of silicate glass is 241 kJ/mol according to Formula (10), and Eg = 242 kJ/mol
according to relaxation spectroscopy data [21].
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3. Materials and Methods

We have analyzed the activation energies of the viscous flow within the temperature
range (2) for the following three families of glasses: As-Se, Sb-Ge-Se, and Ge-Se. Figures 2–4
show the temperature dependence of the activation energy E(T). Theoretical dependences
were calculated using Equation (9), whereas the points in the plots represent experimental
data taken from [20–25].

15

35

55

75

95

300 340 380 420 T, K

E(T), kJ/mol

χ2= 1.22

χ

Figure 2. Temperature dependence of the activation energy of viscous flow E(T) of As-Se molten

glass. The content of As is 3 mol.%, Se—97 mol.%. Points and experimental data from [20], curve

calculation using Formula (9), Tg = 316 K.
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Figure 3. Temperature dependence of the activation energy of viscous flow E(T) for Sb-Ge-Se molten

glass. Sb content—20 mol.%, Ge—10 mol.%, Se—70 mol.%. Points and experimental data from [24],

curve calculation using Formula (9), Tg = 424 K.

The dots in these figures indicate the values obtained from the logarithms of viscosity
log(η(T)) according to reference [19] and using the equation:

E(T) = ln10 × RT[log (η(T))− log (η0)]. (11)

Figures 2–4 reveal that the experimental points practically coincide with those calcu-
lated, which is confirmed by the low values of the Pearson chi-square divergence criterion.
This confirms the good applicability of the WLF equation. Table 1 presents data for two
empirical coefficients of the WLF equation and the glass transition temperature for the
analyzed compositions, as well as the activation energy of the liquid-glass transition at Tg,
calculated using Formula (10). The viscosity of the chalcogenide systems under consider-
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ation at various temperatures was measured by the penetration method with error on a
logarithmic scale ± 0.05 [20–25].

η 𝐸 𝑇 𝑙𝑛  𝑅𝑇ሾ𝑙𝑜𝑔 𝜂 𝑇 − 𝑙𝑜𝑔 𝜂 ሿ

№ К К

40

60

80

100

120

350 400 450 500T, K

E(T), kJ/mol

χ2= 0.42

Figure 4. Temperature dependence of the activation energy of viscous flow E(T) for Ge-Se molten

glass. Ge content—92 mol.%, Se—8 mol.%. Points and experimental data from [22], curve calculation

using Formula (9), Tg = 352 K.

Table 1. Parameters of WLF Equation (4) and activation energy of the glass transition process at

T = Tg (data from Refs. [20–25] were used).

№

Composition, mol.%
Tg, K C1 C2, K Eg, kJ/mol

As Se

1. 3 97 316 11.5 39.0 30.1
2. 5 95 320 12.3 45.9 32.8
3. 10 90 331 15.4 87.1 42.6
4. 25 75 364 17.5 152.3 53.0
5. 50 50 440 15.1 130.5 55.2

Ge Se

1. 8 92 352 14.1 82.9 41.2
2. 10 90 356 23.0 237.3 68.2
3. 15 85 396 18.3 209.6 60.2
4. 17 83 411 17.5 224.0 60.0
5. 20 80 430 20.6 327.7 73.7

Sb Ge Se

1. 5 10 85 370 20.5 206.4 63.2
2. 10 10 80 391 15.3 122.3 49.8
3. 5 15 80 408 14.2 140.9 48.3
4. 15 10 75 403 14.7 130.3 49.3
5. 10 15 75 422 21.1 233.5 74.0
6. 20 10 70 424 12.3 87.6 43.5
7. 15 15 70 445 13.6 118.0 50.3
8. 10 20 70 480 10.6 85.4 42.6
9. 20 15 65 489 10.8 66.1 43.9

4. Theoretical

Let us expand the temperature-dependent activation energy of viscous flow E(T) near
the Tg into a Taylor series in terms of a small temperature increment with a small parameter
available in the system λ = (T − Tg)/Tg << 1, limiting the expansion to the first three terms
of the series [24]:
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E = Eg − D1

(

T − Tg

)

+ D2(T − Tg)
2 where D1 = −

(

∂E

∂T

)

Tg

, D2 =
1

2

(

∂2E

∂T2

)

Tg

. (12)

The small parameter in expansion (12) is the dimensionless quantity λ, but Tg to the
first and second powers is hidden in the coefficients D1 and D2. From Equation (1), it
follows that:

−
∂ln η

∂
(

T/Tg

) = −
Tg

R

[

1

T

(

∂E

∂T

)

−
E

T2

]

(13)

According to Equation (5), for parameter A, we obtain the relation:

A = −
∂ln η

∂
(

T/Tg

)

∣

∣

∣

∣

∣

T=Tg

= −
1

R

[

(

∂E

∂T

)

Tg

−
Eg

Tg

]

=
D1

R
+

Eg

RTg
, (14)

where we accounted for the definition of D1 from (12). The parameter A is given in
Equations (5) and (6) by:

A =
C1

C2
Tg (15)

Equations (14) and (15) in turn give the following equality:

D1 =
C1RTg

C2
−

Eg

Tg
, (16)

which considering Eg = C1RTg transforms into the following equation:

D1 = C1R

(

Tg

C2
− 1

)

(17)

We find the formula for coefficient D2 from the calculations as follows:

1

2

∂2ln η

∂
(

T/Tg

)2
=

T2
g

2

∂

∂T

(

∂ln η

∂T

)

=
Tg

2

2R

∂

∂T

[

1

T

∂E

∂T
−

E

T2

]

=
Tg

2

2R

{

1

T

(

∂2E

∂T2

)

−
1

T2

(

∂E

∂T

)

−
1

T2

(

∂E

∂T

)

+
2E

T3

}

(18)

The coefficient B is given accordingly by:

B =
1

2

∂2ln η

∂
(

T/Tg

)2

∣

∣

∣

∣

∣

T=Tg

=
Tg

R

{

D2 +
D1

Tg
+

Eg

Tg
2

}

(19)

Further, in this relation for D1, we consider expression (16), resulting in:

B =
Tg

R

{

D2 +
1

Tg

(

C1

C2
RTg −

Eg

Tg

)

+
Eg

Tg
2

}

=
Tg

R

{

D2 +
C1R

C2

}

(20)

From (6) and (15), we have equality B = C1(Tg/C2)2, which, on substitution into (20), finally
gives D2:

D2 =
C1

C2
R

(

Tg

C2
− 1

)

(21)

If we go a slightly different route and use a joint transformation of expressions (12) and (1)
with the concomitant finding of differentials A and B, then we can obtain equivalent data.
Thus, the activation energy of viscous flow is represented in the form of a Taylor series in
the temperature range (2) in the form:
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E = Eg

[

1 −
(

1
C2

−
1

Tg

)

(

T − Tg

)

+ 1
C2

(

1
C2

−
1

Tg

)

(

T − Tg

)2
]

= Eg

{

1 −
(

1
C2

−
1

Tg

)

(

T − Tg

)

(

1 − 1
C2

)

(

T − Tg

)

} (22)

The following assumption holds: in a given series, it is possible to limit ourselves to only
the linear term if it is much larger than the next one. This is possible if the following
condition is met:

(

T − Tg

)

<< C2 (23)

Thus, based on three known quantities (C1, C2, and Tg), and using Equations (12), (18),
and (22), it is possible to calculate the dependence of the activation energy of viscous flow
on the temperature in the temperature range (2). Table 2 contains the coefficients D1 and
D2 for the chalcogenide glasses analyzed, which are compared with the characteristics of
the activation energy E(T) versus (T − Tg) plots obtained directly from the experimentally
known temperature dependence of viscosity [20–25].

Table 2. Parameters of Equations (17) and (21). Data for viscosities used are from Refs. [20–25].

№

Composition, mol.%
Calculated Using (17) and (21) Polynomial of 2nd Degree Polynomial of 3rd Degree

D1 D2 D1 D2 R2 D1 D2 R2

Sb Ge Se

1. 5 10 85 0.135 0.0007 0.446 0.0013 0.995 0.261 0.0030 0.998
2. 10 10 80 0.280 0.0023 0.372 0.0050 0.998 0.293 0.0019 0.995
3. 5 15 80 0.225 0.0016 0.361 0.0010 0.998 0.316 0.0052 0.995
4. 15 10 75 0.256 0.0020 0.554 0.0022 0.995 0.399 0.0012 0.999
5. 10 15 75 0.141 0.0006 0.310 0.0018 0.998 0.213 0.0024 0.999
6. 20 10 70 0.394 0.0045 0.529 0.0021 0.998 0.524 0.0003 0.999
7. 15 15 70 0.313 0.0027 0.447 0.0013 0.995 0.324 0.0017 0.999
8. 10 20 70 0.409 0.0048 0.326 0.0070 0.998 0.291 0.0001 0.993
9. 20 15 65 0.575 0.0087 0.482 0.0014 0.991 0.358 0.0031 0.997

Ge Se

1. 8 92 0.380 0.0046 0.514 0.0001 0.988 0.779 0.0063 0.998
2. 10 90 0.496 0.0004 0.547 0.0015 0.998 0.651 0.0029 0.999
3. 15 85 0.135 0.0006 0.342 0.0006 0.998 0.398 0.0012 0.999
4. 17 83 0.122 0.0005 0.308 0.0005 0.998 0.385 0.0012 0.998
5. 20 80 0.153 0.0002 0.272 0.0003 0.998 0.250 0.002 0.998

As Se

1. 3 97 0.677 0.0173 0.682 0.0028 0.980 1.027 0.0107 0.993
2. 5 95 0.611 0.0133 0.756 0.0033 0.987 1.074 0.0108 0.997
3. 10 90 0.360 0.0041 0.773 0.0031 0.988 1.076 0.0092 0.996
4. 25 75 0.203 0.0013 0.488 0.0009 0.997 0.403 0.0003 0.998
5. 50 50 0.298 0.0023 0.486 0.0011 0.987 0.742 0.0047 0.998

P Se

1. 10 90 0.180 0.0004 0.272 0.0003 0.998 0.289 0.0030 0.998
2. 20 80 0.124 0.0002 0.524 0.0008 0.998 0.459 0.0007 0.998
3. 28.57 71.43 0.100 0.0004 0.236 0.0002 0.999 0.215 0.0018 0.999
4. 40 60 0.064 0.0001 0.019 0.0003 0.998 0.096 0.0001 0.999

AsSe TlSe

1. 66.6 33.4 0.441 0.0053 0.440 0.0017 0.999 0.457 0.0057 0.999

AsSe

1. 100 0.131 0.0005 0.151 0.0005 0.999 0.146 0.0030 0.989

Note. The dimensions of coefficients are as follows: [D1] = [kJ/mol·K]; [D2] = [kJ/mol·K2].
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The parameters of the function E(T) versus (T − Tg) expressed as a polynomial of the
second degree were calculated using the Microsoft Excel spreadsheet software, with results
shown in Figures 5–7, where the dots indicate the dependence of the activation energy on
the temperature difference, obtained according to Formula (1) using experimental data
from [20–25].

∙ ∙

−

y = 0.0028x2 - 0.6824x + 64.035

R² = 0.9804

y = -5⋅10-5x3 + 0.0107x2 - 1.0275x + 66.683

R² = 0.9939

0

20

40

60

80

0 40 80 120T – Tg, K

E(T) , kJ/mol

Figure 5. Results of processing the temperature dependence of the activation energy of viscous flow

for As-Se molten glass. The content of As is 3 mol.%, Se—97 mol.%. Points and experimental data

taken from [20], curve polynomials.

∙ ∙

−

y = 0.0016x2 - 0.5148x + 88.974

R² = 0.9885

y = -2⋅10-5x3 + 0.0064x2 - 0.7799x + 91.861

R² = 0.9987

0

20

40

60

80

100

0 40 80 120 160T - Tg, K

E(T) , kJ/mol

Figure 6. Results of processing the temperature dependence of the activation energy of viscous flow

for Ge-Se molten glass. The content of Ge is 8 mol.%, Se—92 mol.%. Points and experimental data

from [22], curve polynomials.

In a sufficiently large temperature range, however, the contribution of the third-degree
term in the Taylor series may increase, which affects the estimate of the effective value of
D2. In this regard, in the calculations of the required energy, a polynomial was used to the
appropriate extent. Nevertheless, taking into account the application of this assumption,
the data obtained turned out to conform well with the experiment.

Thus, we conclude that the temperature dependence of the activation energy in a wide
temperature range for chalcogenide glasses Ge-Se, As-Se, P-Se, As-Se-Tl-Se, and As-Se
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is satisfactorily described by a second-degree polynomial, and for Sb-Ge-Se glass by a
third-degree polynomial dependence.

𝐸 𝑇 𝐸ஶ 𝐸௦ 𝑇

y = 0.0023x2 - 0.608x + 97.403

R² = 0.9989

y = 10-5x3 + 0.0005x2 - 0.5332x + 96.721

R² = 0.9994

0

40

80

0 40 80

E(T), kJ/mol

T - Tg, K

Figure 7. Results of processing the temperature dependence of the activation energy of viscous flow

for Sb-Ge-Se molten glass. The content of Sb is 20 mol.%, Ge—10 mol.%, Se—70 mol.%. Points and

experimental data from [24], curve polynomials.

5. Discussion

As research shows, many substances with disordered structures and initially different
natures, such as different classes of glasses, polymers, metal alloys, etc., have similar
mechanisms of transitioning from a liquid to a glassy state. This fact is also justified by the
discovery in the region of the liquid-glass transition of general rules suitable for different
classes of substances [1–4,14–19,26–29]. A significant increase in the activation energy of
viscous flow with decreasing temperature is a consequence of a change in the configuration
of the structure of the melt, which passes into the glassy state [3,30,31].

It is known [3] that the activation energy of a viscous flow consists of a pair of
components due to the processes of breaking bonds (formation of defects according to
Mott [32]) and due to the movement of broken bonds, called configurons [33]. This division
of the above energy into a pair of components was first proposed by Ya. I. Frenkel [1]. It was
then further developed in the works of Duglas [34], Angell and Rao [28], Filipovich [30],
Nemilov [31], Doremus [35], and later by the Sheffield School of Glass [36], also known as
the DDO model [8]. In a more rigorous approach, E(T) should be understood as the free
energy of activation, as is customary in the classical works of Eyring [37].

The developed model of delocalized atoms [37–40] assumes that for melts transforming
into a glassy state, the activation energy E(T) in Equation (1) is also decomposed into
two components:

E(T) = E∞ + Es(T) (24)

where E∞ is the potential for the transition of a structural kinetic unit (atom, molecule) to
a new local position, and ES(T) is the potential for a configurational change of structure,
which is a function of temperature [28,38,39]:

Es(T) = RT

[

exp

(

∆εe

RT

)

− 1

]

(25)

Here ∆εe is the delocalization energy of the atom, characterizing the critical deviation of the
kinetic unit from the point with the minimum energy. Such a deviation of a kinetic unit is
possible with a spatial change in its immediate environment. This process can be considered
as a transformation of the structural configuration at the local level. The energy of change
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in the structure configuration ES(T) tends to zero in on the case of increasing temperature
when RT >> ∆εe. Then, expression (1), taking into account Equations (24) and (25), takes
the form of the Arrhenius equation with one potential E∞.

η = η0 exp

(

E∞

RT

)

(26)

Thus, the component E∞ can have the value of the activation energy of the viscous flow at
a temperature tending to infinity; in this case E∞ = EH.

When the temperature decreases to values around Tg, the energy begins to decrease
exponentially exp(−∆εe/kT) [27,38]. As a result of such a sharp decrease, ∆εe becomes
comparable to the energy of thermal vibrations of the lattice (~3 RT) and the relative number
of delocalized atoms (Ne/N). As a result of a sharp decrease in the delocalization energy,
the structure of the glassy substance (melt) begins to compact, and rearrangement of the
kinetic unit will require a local change in the configuration in its vicinity, which leads to
a sharp increase in the potential for changing the configuration of the structure ES(T). In
this way, we can explain the exponential increase in the activation energy of the melt in the
glass transition region. The model noted in the work explains how a change in the relative
position of the kinetic units of the structure affects the dynamics of the activation energy
values when the temperature changes in the range close to Tg.

6. Conclusions

The article describes the possibilities of determining the activation energy E(T) at
various temperatures for the chalcogenide glasses under study. To analyze the dependence
of E(T) at temperatures close to the glass transition temperature, the WLF equation can be
used as a first approximation with sufficient reliability. A method is shown for expanding
the above dependence into a Taylor series in the range near Tg. The calculation results
showed that the temperature dependence of the activation energy for the Ge-Se, As-Se,
P-Se, AsSe-TlSe, and AsSe systems is satisfactorily described by a polynomial of the second
degree, and for Sb-Ge-Se glass by a polynomial of the third degree. For Sb-Ge-Se systems,
the values of coefficients D1 and D2 at corresponding temperatures are in the range from
0.135 to 0.575 kJ/mol·K and from 0.0007 to 0.0087 kJ/mol·K2, respectively. For other studied
compositions, the values of D1 and D2 are approximately in the same ranges. Using the
model described in this article, it is shown that the exponential increase in activation energy
at Tg follows from an increase in the potential for restructuring the structure during the
transition from the liquid to the glassy state.
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