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Highlights 

- Functional connectivity differs between patients with DLB and healthy 

individuals 

- Connectivity in large-scale networks, alpha, and beta is consistently decreased  

- Attentional, visual, executive, and DMN networks show interconnectivity 

patterns 

- Some cognitive problems are linked with greater connectivity disturbances 

- Methodological approaches used may impact the directionality of connectivity 
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Abstract 

Previous studies suggest that there may be important links between functional 

connectivity, disease mechanisms underpinning the Dementia with Lewy Body (DLB) 

and the key clinical symptoms, but the exact relationship remains unclear. We 

performed a systematic literature review to address this gap by summarising the 

research findings while critically considering the impact of methodological differences 



on findings. The main methodological choices of fMRI articles included data-driven, 

seed-based or regions of interest approaches, or their combinations. Most studies 

focused on examining large-scale resting-state networks, which revealed a consistent 

decrease in connectivity and some associations with non-cognitive symptoms. 

Although the inter-network connectivity showed mixed results, the main finding is 

consistent with theories positing disconnection between visual and attentional areas 

of the brain implicated in the aetiology of psychotic symptoms in the DLB. The primary 

methodological choice of EEG studies was implementing the phase lag index and 

using graph theory. The EEG studies revealed a consistent decrease in connectivity 

on alpha and beta frequency bands. While the overall trend of findings showed 

decreased connectivity, more subtle changes in the directionality of connectivity were 

observed when using a hypothesis-driven approach. Problems with cognition were 

also linked with greater functional connectivity disturbances. In summary, connectivity 

measures can capture brain disturbances in the DLB and remain crucial in uncovering 

the causal relationship between the networks’ disorganisation and underlying 

mechanisms resulting in psychotic, motor, and cognitive symptoms of the DLB. 

1. Introduction 

Dementia with Lewy Bodies (DLB) is the second most prevalent form of 

neurodegenerative dementia accounting for approximately 15 to 25% of all cases (I. 

G. McKeith et al., 1996; Ian G. McKeith et al., 2017). DLB, similar to Parkinson’s 

Disease Dementia (PDD), results from an abnormal build-up of Lewy bodies (i.e., 

primarily composed of aggregated alpha-synuclein protein) in the limbic and 

neocortical areas and brain stem. Clinical symptoms can be divided into cognitive 

(e.g., cognitive and memory disturbances), psychotic (e.g., visual hallucinations), and 

motor manifestations (e.g., Parkinsonism). Visual hallucinations are an important 

clinical distinguishing criterion (Ian G. McKeith et al., 2017; Thomas et al., 2018)  as 

approximately 80% of DLB patients report experiencing them. The current clinical 

distinction between DLB and PDD is based on the timing of the onset of cognitive 

decline relative to motor symptoms (Gomperts, 2016) while neuroimaging biomarkers 

are used as a supplementary aid for diagnosis (McKeith et al., 2017). Possible 

mechanisms of psychiatric symptoms in DLB include impaired visual perception and 

attention (Collerton et al., 2005), neurotransmitter system dysfunction (Russo et al., 



2019), impairments in brain connectivity and networks dysregulation (van den Heuvel 

& Sporns, 2011), or their combination (Tsukada et al., 2015). 

More studies exploring brain connectivity and its relationship to the pathophysiology 

of symptoms in DLB have been emerging. There is some evidence from the research 

on Parkinson’s Disease (PD) that demonstrates the dysfunctional engagement of 

large-scale brain networks in the pathophysiology of hallucinations in PD (Shine et al., 

2015). A disruption in the top-down (i.e., memory intrusion and inhibition problems) 

and bottom-up processes (i.e., dysfunctional sensory processing) may contribute to 

the occurrence of hallucinations in neurodegenerative conditions (Spinosa et al., 

2022). Furthermore, further evidence suggests a potential relationship between 

connectivity dysfunction and other cognitive and motor symptoms in DLB and other 

alpha-synucleinopathies such as cognitive fluctuations (Matar et al., 2022; Peraza et 

al., 2014), memory-related problems (Aoki et al., 2019), and motor problems (Tang et 

al., 2022). 

Therefore, examination of functional connectivity in conditions like DLB is critical in our 

understanding of how the brain functions as a complex network of functionally related 

regions, how observed dysregulations relate to the underlying pathology and the 

instrumental role of this relationship in intricate cognitive processes. Connectivity is 

considered a potential disease biomarker in neurodegenerative conditions where the 

evidence base is greater, such as in Alzheimer’s Disease; however, its significance 

remains inconclusive in DLB (Hohenfeld et al., 2018). Hohenfeld and colleagues 

further suggested that methodological variety in relatively limited literature poses the 

main impediment to finding a valid and reliable resting-state fMRI biomarker across 

neurodegenerative conditions. Therefore, a lack of data and a wide range of 

methodological approaches can both influence the outcomes. 

This review aims to provide a detailed summary of the key findings in the literature 

while highlighting differences and linking them with the potential influence of the 

methodological differences of different studies. This extends recently published 

reviews of resting-state functional connectivity in patients with neurodegenerative 

disorders that experience visual hallucinations (Spinosa et al., 2022), structural and 

functional connectivity findings in DLB (Habich et al., 2023), and a meta-analysis of 

large-scale network dysfunction in alpha-synucleinopathy (Tang et al., 2022). While 



some articles here overlap with recently published reviews; the present systematic 

literature review fills the gap in our understanding of how different methodological 

choices might impact the directionality and veracity of findings in resting-state 

functional connectivity in the DLB and a potential association with underlying 

mechanisms and their clinical manifestation. 

2. Methods 

We performed a systematic literature review of studies on resting-state functional 

connectivity in DLB. Articles for this literature review were obtained through a 

systematic search of PubMed, Ovid (Medline and Embase), Web of Science, Scholar, 

and references from pertinent articles from January 2000 to November 2022. The 

study was conducted and reported following the Preferred Reporting Items for 

Systematic Reviews and Meta-Analysis (PRISMA; (Moher et al., 2009)). 

The search strategy was performed in October 2022 and included keywords 

“Dementia with Lewy Bodies”, “DLB”, and “alpha synucleinopathy” and their synonyms 

and acronyms. The further search consisted of functional neuroimaging keywords 

such as “functional magnetic resonance”, “electroencephalography”, and 

“magnetoencephalography” and their synonyms and acronyms. We additionally 

searched for common keywords related to network and connectivity analysis and 

methodologies such as “Independent Component Analysis”, “seed-based”, “network”, 

their synonyms and acronyms, and specific resting-state networks. All studies 

investigating functional connectivity in DLB were included as well as the studies with 

the mixed groups of DLB and PD/PDD. Studies on structural, dynamic, and metabolic 

connectivity were excluded from the search. Further exclusion criteria consisted of 

studies published in other languages than English, animal model studies, post-mortem 

studies, reviews and meta-analyses, case studies, and task-based studies. All 

abstracts were screened independently by two reviewers. 

3. Results 

The literature search resulted in a total of 194 articles. After removing the duplicates, 

this left 144 articles of which 30 were found relevant after the abstract screening 

process. After accessing full-text versions, an additional 10 articles were excluded due 

to either not having a direct between-group comparison between patients with DLB 

and healthy controls or focusing on dynamic connectivity. Other excluded articles used 



measures that can be used for assessing connectivity (e.g., coherence) but without 

directly concluding what their findings meant within the scope of connectivity.  A total 

of 20 articles were therefore included in the qualitative synthesis. The summary of 

these steps is in the PRISMA chart (Figure 1). 

 

Figure 1. PRISMA chart highlighting all the steps in the literature search and screening 

process with resulting numbers of articles at each step. 

3.1. Demographics and patients’ characteristics 

The summary of study demographics can be found in Table 1. All included studies 

compared their findings between the DLB group and healthy controls. On top of that, 

multiple studies compared their results with those of patients with PDD (Babiloni et al., 

2018; Mehraram et al., 2020; Peraza et al., 2018; Peraza, Colloby, et al., 2015), 

patients with PD (Seibert et al., 2012) and patients with Alzheimer’s Disease (Babiloni 

et al., 2018; Chabran et al., 2018, 2020; Dauwan et al., 2016; Franciotti et al., 2013; 

Galvin et al., 2011; Kenny et al., 2012, 2013; Lowther et al., 2014; Ma et al., 2022; 

Peraza, Taylor, et al., 2015; Peraza et al., 2018; van Dellen et al., 2015). The 

demographic information provided by Chabran et al. (Chabran et al., 2020) did not 

match the final number of included participants, likely due to exclusions.  

The sample size of patients with DLB ranged from 15 to 79 in the fMRI studies and 25 

to 66 in the EEG studies, with the median values of 18 and 38 respectively. The sample 



size of healthy controls ranged from 15 to 40 in the fMRI and 17 to 80 in the EEG 

studies, with the median values of 21 and 53 respectively. Two fMRI studies had a 

mixed sample of patients with Lewy Body Dementia (LBD; (Schumacher et al., 2021)) 

and PD-related dementia (Seibert et al., 2012). Some cohorts seemed to overlap 

(Peraza, Colloby, et al., 2015; Peraza, Taylor, et al., 2015); (Kenny et al., 2012, 2013; 

Lowther et al., 2014); (Dauwan et al., 2016; van Dellen et al., 2015); (Mehraram et al., 

2020; Peraza et al., 2018).  

The age of the participants and the gender balance were reported in all studies. All 

ages were rounded to one decimal place. Where information was only provided in %, 

the male-to-female ratio was additionally calculated for consistency of reporting. The 

mean age of patients with DLB ranged from 65.5±9 to 80.6±6 in fMRI studies and from 

70±9 to 78.2±7 in the EEG studies. On average, 39.2% of the patients’ sample were 

female in the fMRI and 31.1% in the EEG studies, while 47.7% of the healthy controls 

were female in the fMRI studies and 31.0% in the EEG studies. 57.9% of all the studies 

consisted of less than 10 female patients, with as few as two (Seibert et al., 2012) or 

three female patient participants (Peraza et al., 2014). Other characteristics such as 

the level of educational attainment, the ethnic background of the participants and the 

nature of the disorder (i.e., probable vs possible) were not consistently reported in the 

studies. 

Patients’ performance on various cognitive scales and scales assessing the symptoms 

of DLB was also reported across studies. All studies reported patients’ performance 

on the Mini-Mental State Examination (MMSE). Cambridge Cognitive Battery Test 

(CAMCOG) and Clinical Dementia Rating (CDR) were also used frequently while other 

cognitive tests varied from one study to another. To examine patients’ neuropsychiatric 

symptoms, the hallucinations subscale of the Neuropsychiatric Inventory (NPI) and 

Clinical Assessment of Fluctuations (CAF) were frequently used. Four studies (Aoki et 

al., 2019; Chabran et al., 2018, 2020; Seibert et al., 2012) did not specify whether 

patients with DLB were taking any form of medication for their symptoms. The rest of 

the studies specified that patients were taking cholinergic, acetylcholinergic, or 

dopaminergic medication, or their combination. 

3.2. Neuroimaging pre-processing characteristics 



All studies utilised a resting-state paradigm, thus not being confounded by task-

dependent differences in brain function. However, Chabran and colleagues (Chabran 

et al., 2018) used an inter-task resting-state sequence of a visuoperceptual task. Four 

fMRI studies (Franciotti et al., 2013; Kenny et al., 2012, 2013; Ma et al., 2022) and six 

EEG studies (Aoki et al., 2019; Babiloni et al., 2018; Dauwan et al., 2016; Mehraram 

et al., 2020; Peraza et al., 2018; van Dellen et al., 2015) reported that participants 

were instructed to keep their eyes closed during the scanning period. In other fMRI 

studies, participants were instructed to keep their eyes open (Peraza, Colloby, et al., 

2015; Peraza, Taylor, et al., 2015; Seibert et al., 2012).  

The image acquisition and pre-processing steps varied among the fMRI studies 

considerably. All studies used a 3T scanner with an exception of two (Franciotti et al., 

2013; Seibert et al., 2012) that used a 1.5T scanner. While Peraza and colleagues 

(Peraza, Taylor, et al., 2015) did not mention the scanner type in the article, the 

authors confirmed they used a 3T scanner. All studies performed a motion correction 

step, yet by using various techniques. The majority of studies used spatial smoothing 

of a 6-8mm kernel, while one study did not provide the information (Galvin et al., 2011). 

Space normalisation was done in the two most common spaces, either in the MNI 

space (Chabran et al., 2018, 2020; Lowther et al., 2014; Ma et al., 2022; Peraza et al., 

2014; Peraza, Colloby, et al., 2015; Peraza, Taylor, et al., 2015; Schumacher et al., 

2018, 2021; Seibert et al., 2012) or in the Talairach space (Franciotti et al., 2013), or 

their combination (Kenny et al., 2012, 2013). Galvin and colleagues (Galvin et al., 

2011) did not specify the atlas space used. The inclusion of other steps such as 

frequency filtering or slice-timing correction differed largely among the studies. 

As for the EEG studies, the electrodes were either positioned in a 10-20 setup with a 

sampling frequency of 500 Hz (Aoki et al., 2019; Dauwan et al., 2016; van Dellen et 

al., 2015) or a 10-5 setup with a sampling frequency of 1024 Hz (Mehraram et al., 

2020; Peraza et al., 2018). Babiloni and colleagues (Babiloni et al., 2019) positioned 

the electrodes in a 10-20 setup with a sampling frequency of 128 Hz. All studies filtered 

out the frequencies (i.e., >30Hz; (Babiloni et al., 2019; Dauwan et al., 2016; Peraza et 

al., 2018; van Dellen et al., 2015)) and/or the components (Aoki et al., 2019; Mehraram 

et al., 2020) that were particularly affected by muscle artefacts, eye movements and 

microsaccades. Two studies (Aoki et al., 2019; Dauwan et al., 2016) did not report 

using the Fourier transform on the data. Data were filtered with a consistent range of 



8-13Hz and 13-30Hz (Aoki et al., 2019; Dauwan et al., 2016; Peraza et al., 2018; van 

Dellen et al., 2015), or 8-13.5Hz and 14-20.5Hz (Mehraram et al., 2020) on the alpha 

and beta bands respectively. On the theta band, data were filtered with a frequency 

range of 4-8Hz (Aoki et al., 2019; Dauwan et al., 2016; van Dellen et al., 2015), or 4-

7.5Hz (Mehraram et al., 2020), or 4-5.5Hz (Peraza et al., 2018). Babiloni and 

colleagues (Babiloni et al., 2019) used a more complex experimental setup by 

additionally exploring transition frequencies and individual alpha frequency peaks.  

Delta and gamma bands were not reported consistently or filtered out in the pre-

processing steps. 

3.3. Analytical approaches and methodological choices 

3.3.1. Connectivity methodological choices 

A thorough summary of resting-state functional connectivity and methodological 

approaches used to investigate between-group differences in dementia-related 

research can be found in our previously published review (Kucikova et al., 2021). 

Briefly, the two most common approaches include a so-called hypothesis-driven 

approach and a data-driven approach. Both, the hypothesis-driven and data-driven 

approaches should contain a scientific hypothesis; however, that of hypothesis-driven 

studies often focuses on specific brain regions while not considering others. When 

implementing a hypothesis-driven approach, a series of Regions of Interest (ROI; i.e., 

different brain areas) is chosen a priori to the analysis, followed by the assessment of 

the connectivity between them, typically on a voxel-by-voxel basis. Alternatively, the 

connectivity between specific seeds in the brain and the rest of the brain might be 

assessed. Seeds might represent any collection of brain voxels. In a data-driven 

approach, the activity in the brain is parcellated into the networks of synchronous brain 

activity (i.e., resting-state networks). The connectivity within or between those 

networks is then assessed by using methods such as Independent Component 

Analysis (ICA). Further approaches can be implemented to obtain a more detailed 

overview of the connectivity properties (e.g., graph theory). While data-drive 

approaches are typically explorative, hypothesis-drive approaches are typically 

confirmatory in nature. Nevertheless, both approaches are complementary. The 

summary of the methodological choices and related findings is provided in Table 2 

and Table 3. 



Six articles used EEG to investigate functional connectivity, while 14 articles used 

fMRI. The main methodological choices of the fMRI studies included implementing ICA 

(Lowther et al., 2014; Peraza et al., 2014; Schumacher et al., 2018), using a seed-

based or ROI approach (Chabran et al., 2020; Galvin et al., 2011; Kenny et al., 2012, 

2013; Peraza, Colloby, et al., 2015; Schumacher et al., 2021; Seibert et al., 2012), 

graph theory (Peraza, Colloby, et al., 2015; Peraza, Taylor, et al., 2015), or their 

combination (Chabran et al., 2018; Franciotti et al., 2013). The main methodological 

choice of the EEG studies was graph theory and implementation of the phase lag index 

(PLI; i.e., a synchronisation estimate between time series) (Babiloni et al., 2019; 

Dauwan et al., 2016; Mehraram et al., 2020; Peraza et al., 2018; van Dellen et al., 

2015).  

3.3.2. Statistical analytical approaches 

For between-group statistical analysis, fMRI studies used dual regression (Lowther et 

al., 2014; Peraza et al., 2014), analysis of variance (ANOVA) (Franciotti et al., 2013; 

Peraza, Taylor, et al., 2015), non-parametric permutations (Peraza, Colloby, et al., 

2015; Schumacher et al., 2018, 2021), two-sample t-test (Seibert et al., 2012), general 

linear model (Chabran et al., 2020), random effects analysis (Galvin et al., 2011), 

partial correlation analysis (Ma et al., 2022), and voxel-by-voxel analysis followed by 

cluster analysis (Chabran et al., 2018; Kenny et al., 2012, 2013). 

The statistical choices of the EEG studies mainly included ANOVA, while two studies 

used its non-parametric form (i.e., the Kruskal-Wallis test) (Dauwan et al., 2016; 

Mehraram et al., 2020). Peraza and colleagues (Peraza et al., 2018) used parametric 

ANOVA and log-transformed all EEG scores of variability and standard deviation to 

approximate their distribution to a Gaussian. Alternative methods included a 

multivariate general linear model (GLM) (Babiloni et al., 2019; Dauwan et al., 2016; 

Mehraram et al., 2020; Peraza et al., 2018; van Dellen et al., 2015) and the Student's 

t-test (Aoki et al., 2019).  

The majority of EEG studies performed a post-hoc analysis to control the Family-Wise 

Error Rate (FWER; i.e., the probability of obtaining at least one false positive in a group 

of tests) using methods such as Bonferroni correction (Aoki et al., 2019; Babiloni et 

al., 2018; Peraza et al., 2018; van Dellen et al., 2015) and Holm-Bonferroni correction 



(Mehraram et al., 2020); however, one study used the False Discovery Rate approach 

(FDR; the proportion of false positive among all rejected tests) (Dauwan et al., 2016). 

In fMRI studies, several articles controlled FWER using Bonferroni correction 

(Franciotti et al., 2013; Ma et al., 2022; Peraza, Taylor, et al., 2015). Alternatively, 

some used a permutation approach with the threshold-free cluster enhancement 

method (TFCE) (Lowther et al., 2014; Peraza et al., 2014; Peraza, Colloby, et al., 

2015; Schumacher et al., 2018, 2021) and two studies used an FDR approach 

(Chabran et al., 2020; Seibert et al., 2012).  

To investigate the association between connectivity and cognition and/or clinical 

measures, the majority of EEG studies used a non-parametric test, Spearman's rank 

correlation coefficient (Aoki et al., 2019; Babiloni et al., 2018; Dauwan et al., 2016; 

Mehraram et al., 2020; van Dellen et al., 2015), while only one study used the 

parametric Pearson’s correlation (Peraza et al., 2018). In the fMRI studies, four studies 

used Spearman’s rank correlation (Chabran et al., 2018; Peraza et al., 2014; 

Schumacher et al., 2018, 2021), four studies used the Pearson’s correlation (Chabran 

et al., 2020; Franciotti et al., 2013; Peraza, Taylor, et al., 2015; Seibert et al., 2012) 

and one study used partial correlation analysis (Ma et al., 2022). Unlike Pearson’s 

correlation, Spearman’s method makes no assumptions about the distribution from 

which the sample observations are drawn. However, Spearman’s correlation is based 

on the assumption that variables have a monotonic relationship. Of the four studies 

that used Spearman’s correlation in fMRI, three reported that they did not find any 

significant relationship (Chabran et al., 2018; Schumacher et al., 2018, 2021) and one 

reported an uncorrected significant relationship (Peraza et al., 2014).  



 

Table 1. The summary of demographic characteristics across the studies.  

Note: DLB = Dementia with Lewy Body, PD = Parkinson’s Disease, PDD = Parkinson’s Disease Dementia, PDR = 
Parkinson’s-related Dementia, LBD = Lewy Body Dementia, HC = healthy control, AD = Alzheimer’s Disease 

  Patients (DLB) Healthy controls 

Reference 
Patients' 

group 
Sample 

size 
Age (±SD) 

Gender 
(M/F) 

Sample 
size 

Age (±SD) 
Gender 
(M/F) 

Modality 

Aoki et al. (2019) DLB vs HC 41 78.2±6.7 22/19 80 44.2±20 57/23 EEG 

Babiloni et al. 
(2018) 

DLB vs HC 
vs AD vs 

PDD 
34 75.1±1.1 11/23 40 72.9±1.1 16/24 EEG 

Chabran et al. 
(2018) 

DLB vs HC 
vs AD 

26 65.5±9 12/14 22 65±9 10/12 fMRI 

Chabran et al. 
(2020) 

DLB vs HC 
vs AD 

92 70.1±9.4 39/40 22 66.5±7.8 11/11 fMRI 

Dauwan et al. 
(2016) 

DLB vs HC 
vs AD 

66 70±9 52/14 66 70±7 52/14 EEG 

Franciotti et al. 
(2013) 

DLB vs HC 
vs AD 

18 75±1 9/9 15 74±2 5/10 fMRI 



Galvin et al. 
(2011) 

DLB vs HC 
vs AD 

15 71.7±9.1 11/4 38 73.9±6.6 12/26 fMRI 

Kenny et al. 
(2012) 

DLB vs HC 
vs AD 

15 80.6±6 9/6 16 76.3±8.3 9/7 fMRI 

Kenny et al. 
(2013) 

DLB vs HC 
vs AD 

15 80.6±6 9/6 16 76.3±8.3 9/7 fMRI 

Lowther et al. 
(2014) 

DLB vs HC 
vs AD 

15 80.6±6 9/6 40 77.8±4.5 20/20 fMRI 

Ma et al. (2022) 
DLB vs HC 

vs AD 
30 67.4 ±5.3 17/13 33 64.9 ±9.3 15/18 fMRI 

Mehraram et al. 
(2019) 

DLB vs HC 
vs AD vs 

PDD 
25 76.2±6.2 20/5 18 76.3±5.5 11/7 EEG 

Peraza et al. 
(2014) 

DLB vs HC 16 76.2±5.7 13/3 17 77.3±4.7 14/3 fMRI 

Peraza et al. 
(2015)a 

DLB vs HC vs 
PDD 

18 77.2±6.1 13/5 17 76.9±5.8 14/3 fMRI 

Peraza et al. 
(2015)b 

DLB vs HC vs 
AD 

18 77.2±6.1 13/5 17 76.9±5.8 14/3 fMRI 

Peraza et al. 
(2018) 

DLB vs HC 
vs AD vs 

PDD 
25 75.8±6.5 20/5 17 76.2±5.6 10/7 EEG 



Schumacher et 
al. (2017) 

DLB vs HC 31 78.1±6.7 19/12 31 76.4±7.2 22/9 fMRI 

Schumacher et 
al. (2021) 

LBD vs HC 46* 75.9±6.9 34/12 31 HC 76.4±7.2 22/9 fMRI 

Seibert et al. 
(2012) 

PD vs PRD 
vs HC 

18* 72±7 16/2 19 76±9 8/11 fMRI 

van Dellen et al. 
(2015) 

DLB vs HC 
vs AD 

66 70±9 52/14 66 70±7 52/14 EEG 

 

 

 

 

Table 2.  The summary of the methodological choices and related findings in fMRI studies. 

Note: DLB = Dementia with Lewy Body, PD = Parkinson’s Disease, PDD = Parkinson’s Disease Dementia, PDR = Parkinson’s-

related Dementia, LBD = Lewy Body Dementia, HC = healthy control, AD = Alzheimer’s Disease, ICA = Independent Component 

Analysis, NBM = Nucleus Basalis of Meynert, PCC = Posterior Cingulate Cortex, PVC = primary visual cortex 

Reference Patients’ groups Analytical approach Brain areas of interest Connectivity in DLB vs HC 

Chabran et al. (2018) DLB vs HC vs AD ICA + seed-based networks decreased 

Chabran et al. (2020) DLB vs HC vs AD seed-based networks decreased 



Franciotti et al. (2013) DLB vs HC vs AD ICA + graph theory networks decreased 

Galvin et al. (2011) DLB vs HC vs AD seed-based networks mixed 

Kenny et al. (2012) DLB vs HC vs AD seed-based 
hippocampus, PCC, precuneus, 

PVC 
increased 

Kenny et al. (2013) DLB vs HC vs AD seed-based caudate, putamen, thalamus increased 

Lowther et al. (2014) DLB vs HC vs AD ICA networks mixed 

Ma et al. (2022) DLB vs HC vs AD graph theory networks mixed 

Peraza et al. (2014) DLB vs HC ICA networks decreased 

Peraza et al. (2015)a DLB vs HC vs PDD seed-based networks decreased 

Peraza et al. (2015)b DLB vs HC vs AD graph theory networks mixed 

Schumacher et al. (2017) DLB vs HC ICA networks decreased 

Schumacher et al. (2021) LBD vs HC seed-based NBM increased 

Seibert et al. (2012) PD vs PRD vs HC seed-based caudate, isthmus cingulate decreased 

 

 

 

 



 

Table 3. The summary of the methodological choices and related findings in EEG studies. 

Note: DLB = Dementia with Lewy Body, PD = Parkinson’s Disease, PDD = Parkinson’s Disease Dementia, HC = healthy control, 

AD = Alzheimer’s Disease, ICA = Independent Component Analysis, ROI = Region of Interest, PLI = Phase Lag Index 

Reference Groups 
Analytical 

approach 

Connectivity 

measure 

Brain areas of 

interest 

Specific brain areas with 

significant differences 

Connectivity in 

DLB vs HC 

Aoki et al. 

(2019) 
DLB vs HC ICA network activity networks N/A decreased 

Babiloni et al. 

(2018) 

DLB vs HC vs 

AD vs PDD 
ROI PLI 

whole-brain - 

frequency bands 

central, frontal, parietal, 

occipital, temporal regions 
decreased 

Dauwan et al. 

(2016) 

DLB vs HC vs 

AD 
graph theory PLI 

whole brain - 

frequency bands 
posterior regions decreased 

Mehraram et al. 

(2019) 

DLB vs HC vs 

AD vs PDD 
graph theory PLI networks N/A decreased 

Peraza et al. 

(2018) 

DLB vs HC vs 

AD vs PDD 
graph theory PLI 

networks - 

frequency bands 
N/A decreased 

van Dellen et al. 

(2015) 

DLB vs HC vs 

AD 
graph theory PLI 

networks -

frequency bands 
N/A decreased 



 

3.4. Main connectivity results 

Ten fMRI studies (Chabran et al., 2018, 2020; Franciotti et al., 2013; Galvin et al., 

2011; Lowther et al., 2014; Ma et al., 2022; Peraza et al., 2014; Peraza, Colloby, et 

al., 2015; Peraza, Taylor, et al., 2015; Schumacher et al., 2018) and two EEG studies 

(Aoki et al., 2019; Mehraram et al., 2020) investigated large-scale resting-state 

networks. Four other EEG studies investigated the connectivity on the frequency band 

levels (Babiloni et al., 2018; Dauwan et al., 2016; Peraza et al., 2018; van Dellen et 

al., 2015). The Default Mode Network (DMN) was the most examined network 

(Chabran et al., 2018, 2020; Franciotti et al., 2013; Galvin et al., 2011; Lowther et al., 

2014; Ma et al., 2022; Peraza et al., 2014; Peraza, Colloby, et al., 2015; Schumacher 

et al., 2018). Other networks of interest included the executive, executive control, or 

frontoparietal networks (Chabran et al., 2018, 2020; Lowther et al., 2014; Ma et al., 

2022; Peraza et al., 2014; Peraza, Colloby, et al., 2015; Schumacher et al., 2018), the 

attentional network (Chabran et al., 2018, 2020; Galvin et al., 2011; Ma et al., 2022; 

Schumacher et al., 2018), the salience network (Chabran et al., 2020; Lowther et al., 

2014; Ma et al., 2022), the visual or visual processing networks (Chabran et al., 2018; 

Galvin et al., 2011; Ma et al., 2022; Schumacher et al., 2018), the sensorimotor or 

motor networks (Aoki et al., 2019; Ma et al., 2022; Peraza et al., 2014; Peraza, Colloby, 

et al., 2015; Schumacher et al., 2018), the temporal network (Peraza et al., 2014; 

Schumacher et al., 2018), and the basal ganglia networks (Lowther et al., 2014; 

Schumacher et al., 2018). 

Most studies reported an overall decrease in functional connectivity in the DLB group. 

Yet, there were several studies with mixed results (Galvin et al., 2011; Lowther et al., 

2014; Peraza, Taylor, et al., 2015) or an overall increase in functional connectivity 

(Kenny et al., 2012, 2013; Schumacher et al., 2021). Importantly, studies that found 

the overall increase in functional connectivity examined specific brain areas rather 

than networks. The directionality of the main conclusions is visually summarised in 

Figure 2.  



 

Figure 2. Main conclusions of the directionality of connectivity differences across the 

studies either in resting-state networks or between specific brain areas. The results 

are presented in the DLB group relative to healthy controls. The size of each point 

corresponds with the sample size of patients with the DLB in each study.  Studies 

which used mixed samples of patients with DLB and patients with other forms of 

dementia are marked by an asterisk. The extended version of this figure annotated 

with the corresponding studies is provided in the Supplementary Materials. 

3.4.1. Networks 

Five studies showed decreased connectivity in the patients’ group relative to healthy 

controls within the DMN (Chabran et al., 2018; Franciotti et al., 2013; Galvin et al., 

2011; Lowther et al., 2014; Peraza, Colloby, et al., 2015), while two studies showed 

no between-group differences (Peraza et al., 2014; Schumacher et al., 2018). Several 

other studies reported no significant between-group differences in multiple other 

resting-state networks. The visual summary of within-network connectivity findings can 

be found in Figure 3.  

Functional connectivity in patients with DLB exhibited a consistent decrease within 

multiple other resting-state networks. This included the salience network (Chabran et 

al., 2020; Lowther et al., 2014), the temporal network (Peraza et al., 2014; 

Schumacher et al., 2018), the sensorimotor or motor networks (Aoki et al., 2019; Ma 



et al., 2022; Peraza, Colloby, et al., 2015; Schumacher et al., 2018), and visual 

networks (Aoki et al., 2019; Chabran et al., 2018). 

Attentional networks and executive networks exhibited mixed within-network findings. 

Schumacher and colleagues (Schumacher et al., 2018) and Ma and colleagues (Ma 

et al., 2022) observed increased within-network connectivity in the attentional network 

and executive network respectively. On the contrary, others found decreased 

connectivity within the attentional network (Chabran et al., 2020) and executive 

networks (Lowther et al., 2014; Peraza et al., 2014; Peraza, Colloby, et al., 2015).  

Similarly, between-networks connectivity of the DMN, executive networks, attentional 

networks, and visual networks exhibited mixed directionality. While the connectivity 

between the executive networks and the DMN increased in the DLB group (Chabran 

et al., 2020), the connectivity between the executive networks and the attentional 

network decreased (Chabran et al., 2018). There was also an increase between the 

attentional network and the DMN (Galvin et al., 2011) and the executive network and 

the DMN (Chabran et al., 2020). The connectivity between the visual networks and the 

DMN decreased (Galvin et al., 2011). 

 

Figure 3. The occurrence of significant and non-significant group differences in large-

scale network connectivity across the studies. The size of each point corresponds with 

the sample size of patients with the DLB in a given study. The extended version of this 



figure annotated with the corresponding studies is provided in the Supplementary 

Materials.  

Note: AN = attentional network, EN: executive network, SMN: sensorimotor network, TN: thalamic 

network, SN: salience network, DMN: default mode network, VN: visual network, * - includes executive 

network, executive control network, or frontoparietal network. 

 

 

No other networks exhibited significant between-group differences in between-

network connectivity. Between- and within- connectivity of the large-scale functional 

networks is visualised in Figure 4. 

 

Figure 4. The connectogram of within- and between-networks connectivity of large-

scale resting-state networks (EEG and fMRI).  

Note: AN = attentional network, EN: executive network, SMN: sensorimotor network, TN: thalamic 

network, SN: salience network, DMN: default mode network, VN: visual network, * - includes executive 

network, executive control network, or frontoparietal network. 

 

3.4.2. Seed-based and ROI 



In total, 28% of fMRI studies used a hypothesis-driven approach (i.e., a seed-based 

or ROI) with specific brain regions of interest. Both, seed-based and ROI connectivity 

analyses permit a direct comparison of functional connectivity differences between a 

brain region and the rest of the brain or between multiple brain regions, respectively. 

Three studies observed a general increase in brain connectivity in the DLB group in 

comparison with healthy controls (Kenny et al., 2012, 2013; Schumacher et al., 2021), 

while one study observed a decrease (Seibert et al., 2012). 

Brain areas used as seeds in the analyses included caudate (Kenny et al., 2013; 

Seibert et al., 2012), isthmus cingulate (Seibert et al., 2012), nucleus basalis of 

Meynert (Schumacher et al., 2021), putamen and thalamus (Kenny et al., 2013), and 

hippocampus, PCC, and PVC (Kenny et al., 2012). There was increased connectivity 

between the posterior cingulate culmen, anterior cingulate, globus pallidus, and the 

cerebellar tonsil in the DLB group (Kenny et al., 2012), and between the nucleus 

basalis of Meynert and occipital cortex in the LBD group (Schumacher et al., 2021). 

The caudate exhibited increased connectivity with multiple brain areas including the 

posterior cingulate, precuneus, and culmen (Kenny et al., 2013). On the contrary, 

decreased connectivity between the caudate and middle frontal regions was observed 

in the PDR group (Seibert et al., 2012). Notably, two studies (Schumacher et al., 2021; 

Seibert et al., 2012) had mixed groups of DLB and other types of dementia.  

3.4.3. Frequency bands 

EEG provides a higher temporal and a lower spatial resolution than fMRI, hence 

allowing for the exploration of connectivity on different frequencies. 

No study concluded an increase in connectivity in any of the frequency bands. Patients 

with DLB consistently exhibited widespread decreased connectivity in the alpha 

frequency band (Aoki et al., 2019; Babiloni et al., 2018; Dauwan et al., 2016; Mehraram 

et al., 2020; Peraza et al., 2018; van Dellen et al., 2015). Aoki and colleagues showed 

significantly decreased alpha activity in the occipital visual network, which supports 

the findings from Peraza and colleagues who found a significant decrease in 

connectivity in the occipital regions. Babiloni and colleagues demonstrated decreased 

alpha magnitude in the parietal, occipital, and temporal regions.  



Moreover, there is some evidence of a decrease in patients’ connectivity in the beta 

frequency band (Aoki et al., 2019; Dauwan et al., 2016; Mehraram et al., 2020) and a 

less-spread decrease in the theta frequency band which was limited to only several 

electrodes (Dauwan et al., 2016; Peraza et al., 2018). Decreased beta activity in 

postcentral regions together with a localised decrease in gamma band activity in the 

pre-supplementary motor area was observed within the sensory-motor network (Aoki 

et al., 2019). Importantly, the observed decrease in theta and gamma bands was 

localised to a small number of electrodes. No between-group differences were 

observed on the delta band. Figure 5 provides a visual summary of EEG findings 

across different frequency bands. 

 

Figure 5. Decrease in connectivity on each frequency band across the EEG studies. 

The results are presented in the DLB group relative to healthy controls. The size of 

each point corresponds with the sample size of patients with the DLB in a given study.  

Studies which used mixed samples of patients with DLB and patients with other forms 

of dementia are marked by an asterisk. The extended version of this figure annotated 

with the corresponding studies is provided in the Supplementary Materials. 

 

3.4.4. Graph theory 



Graph theory is a mathematical approach that can be applied to functional connectivity 

analyses to quantify complex measures of connectivity properties. In doing so, it 

outlines graphs (i.e., networks) that consist of nodes (i.e., brain regions) that are linked 

via edges (i.e., functional connections). Graph measures can be described on a global 

(i.e., whole network) or a local scale (i.e., regional). They refer to the information about 

network integration and segregation, as well as the more detailed information about 

the organisation of the network, network communication, or information flow. More 

technical details on graph theory and its application to network analysis can be found 

in Bullmore and Sporns (Bullmore & Sporns, 2009). 

14% of fMRI (Ma et al., 2022; Peraza, Taylor, et al., 2015) and 66.6% of EEG studies 

(Dauwan et al., 2016; Mehraram et al., 2020; Peraza et al., 2018; van Dellen et al., 

2015) applied graph theory to their analyses, while Franciotti and colleagues 

(Franciotti et al., 2013) applied Granger causality. By using Granger causality, some 

information comparable to that obtained from graph theory can be computed (e.g., 

information flow). 

Patients with DLB displayed consistent network disorganisation. Specifically, that was 

shown in networks’ rich clubs (Ma et al., 2022), network efficiency (Dauwan et al., 

2016), minimum spanning tree (Peraza et al., 2018), clustering coefficient, 

characteristic path length, network modularity, and node degree (Mehraram et al., 

2020), small worldness (Peraza, Taylor, et al., 2015), and information flow (Dauwan 

et al., 2016; Franciotti et al., 2013). 

In other words, the networks of patients with DLB exhibited higher network segregation 

(Mehraram et al., 2020; van Dellen et al., 2015), particularly in the theta band 

(Mehraram et al., 2020). Regionally, functional network reorganisation affected the 

hierarchical structure of the brain from the sensorimotor cortex to the frontoparietal 

network (Ma et al., 2022). Reduced information flow between the frontoparietal and 

parietal areas (Franciotti et al., 2013) and between the posterior to anterior areas 

(Dauwan et al., 2016) was also observed. Further evidence points to the additional 

disorganisation within the occipital regions (Mehraram et al., 2020; Peraza et al., 2018; 

Peraza, Taylor, et al., 2015). 

3.4.5. Cognition and clinical measures 



Multiple studies performed additional analyses to investigate the relationship between 

functional connectivity and some cognitive functions in DLB. Overall, worse 

performance on the cognitive, psychological, and clinical tests was linked with greater 

disturbance in functional connectivity. 

57.1% of fMRI (Chabran et al., 2018, 2020; Franciotti et al., 2013; Lowther et al., 2014; 

Peraza et al., 2014; Peraza, Colloby, et al., 2015; Schumacher et al., 2018, 2021) and 

50% of EEG studies (Aoki et al., 2019; Mehraram et al., 2020; Peraza et al., 2018) 

examined the relationship between functional connectivity and visual hallucinations 

and/or cognitive fluctuations. Multiple studies found significant negative associations 

between functional connectivity and visual hallucinations assessed by the NPI scale 

in both the alpha and beta ranges (Mehraram et al., 2020), and the theta range (Peraza 

et al., 2018). Additionally, enhanced memory perception network activity correlated 

with increased hallucinations (Aoki et al., 2019). Patients also showed a relationship 

between cognitive fluctuations and connectivity dysfunctions in the right hemisphere 

(Franciotti et al., 2013), left frontoparietal networks (Peraza et al., 2014), and within 

and between the salience, the DMN, and the frontoparietal networks (Chabran et al., 

2020). A positive correlation was observed between the cognitive fluctuations and 

connectivity between several brain regions within salience and attentional networks 

(Chabran et al., 2020) and within basal ganglia and limbic networks (Lowther et al., 

2014).  

Furthermore, patients who performed better on the Trail Making Test (i.e., a measure 

for attention/cognitive flexibility) showed stronger EEG activity in the beta band in the 

posterior brain regions (Dauwan et al., 2016). The occipital alpha activity was also 

positively correlated with attention measures on the revised Wechsler Memory Scale 

(Aoki et al., 2019). Working memory and attention correlated negatively with functional 

connectivity strength between non-rich club nodes and positively with functional 

connectivity strength between rich club nodes and non-rich club nodes (Ma et al., 

2022). Rich club organisation is crucial in the global integration of neural information 

and is considered critical topological property of healthy brains (van den Heuvel & 

Sporns, 2011). 

As for global clinical and cognitive measures, lower MMSE (i.e., a measure of a global 

cognitive impairment) (Babiloni et al., 2019; Dauwan et al., 2016; Peraza, Taylor, et 



al., 2015; van Dellen et al., 2015) and the Visual Association Test scores (i.e., a 

measure of episodic memory) (van Dellen et al., 2015) correlated with more 

disturbances in functional connectivity in the DLB group. The activity in the visual 

perception network correlated negatively with both the scores on the depression and 

anxiety subscales of the NPI test (Aoki et al., 2019). 

Despite analysing the relationship between resting-state connectivity and cognition 

and/or clinical measures, three studies did not find any significant relationship 

(Chabran et al., 2018; Schumacher et al., 2018, 2021). Interestingly, Chabran and 

colleagues reported a significant negative correlation between the posterior DMN 

synchronisation with the task-paradigm time course and cognitive fluctuations. 

3.4.6. Comparisons with other forms of dementia 

Multiple studies compared their findings with other neurodegenerative disorders. 64% 

of fMRI and 83.3% of studies compared DLB with AD, while 14% of fMRI and 66.6% 

of EEG studies compared DLB with PD/PDD. 

In brief, functional connectivity in DLB decreased in comparison with AD in the DMN, 

salience, and executive networks (Lowther et al., 2014). However, posterior cingulate 

cortex activity (Franciotti et al., 2013) and putamen activity (Kenny et al., 2013) were 

increased in patients with DLB in comparison with patients with AD. While some 

findings were mixed (Babiloni et al., 2019; Galvin et al., 2011), others did not conclude 

any significant between-group differences between DLB groups and AD groups 

(Chabran et al., 2018, 2020; Kenny et al., 2012) and DLB groups and PDD groups 

(Peraza, Taylor, et al., 2015). 

Notably, the directionality of connectivity results in graph-theoretical studies relates to 

network organisation and disorganisation rather than the strength of functional 

connectivity. Therefore, studies reporting their findings only from graph theoretical 

analyses (Dauwan et al., 2016; Ma et al., 2022; Mehraram et al., 2020; Peraza et al., 

2018; Peraza, Colloby, et al., 2015) were excluded from the overall comparisons of 

directionality to ensure the comparability. In comparison with AD, DLB patients 

showed more randomised minimum spanning tree in high theta and alpha bands 

(Peraza et al., 2018) and greater network segregation within the theta band (Mehraram 

et al., 2020). There were mixed differences between DLB and AD in multiple other 

graph theoretical properties (Dauwan et al., 2016; Peraza, Colloby, et al., 2015). In 



comparison with PDD, DLB patients did not show any significant differences 

(Mehraram et al., 2020; Peraza, Taylor, et al., 2015). The connectivity strength seems 

to be the most important discriminatory variable between the disorders (Mehraram et 

al., 2020; Peraza et al., 2018).  

4. Discussion 

4.1. Findings 

The present systematic literature review demonstrates disruptions in functional 

connectivity in patients with DLB. In gestalt, this includes 1.) an overall decrease in 

connectivity in large-scale networks, 2.) disruptions in graph-theoretical properties, 3.) 

a decrease in connectivity in alpha and beta EEG bands, and 4.) worse cognitive 

performance linked with more disruptions in connectivity. However, there were several 

inconclusive differences in connectivity between specific brain areas. Nevertheless, 

and despite the use of various methodologies, the authors established the key 

connectivity changes in the areas that overlap with the regions of the DMN, attentional, 

executive, and visual networks. This implies the widespread damage to the areas that 

are involved in cognitive, attentional, and emotional processing. 

4.2. Demographic and clinical factors 

The sample size is an important consideration in neuroimaging research. On one 

hand, a sufficient sample size is necessary to obtain reliable results; on the other hand, 

it is challenging to find participants and acquire their brain scans, especially in the later 

stages of neurodegeneration.  On average, the sample size of fMRI studies was 

smaller than that of EEG studies with as few as 15 (Kenny et al., 2012, 2013; Lowther 

et al., 2014) and 25 patients with DLB (Mehraram et al., 2020; Peraza et al., 2018), 

respectively. Studies with a smaller sample size often recognised it as a limitation. 

Multiple studies also emerged from the limited number of centres. Undoubtedly, the 

use of functional neuroimaging is informative in psychiatric research, but both lack of 

power and possible selection bias need to be recognised as the major weaknesses 

(Marek et al., 2022) and should be cautiously considered in the notion of the present 

review and resulting generalisability to a wider population of patients with DLB. 

While studies reported age, gender, and education consistently and some of them 

specified using them as covariates in the analyses, no study investigated their direct 

effect on functional connectivity. Many fMRI studies lacked gender balance with fewer 



women in their samples. The ethnic background of participants was rarely reported. 

Previous research showed that some demographic factors might affect functional 

connectivity in other disorders (Misiura et al., 2020; Schoonheim et al., 2012) as well 

as the general predictive accuracy of neuroimaging (Benkarim et al., 2022). For 

example, the level of education seems to have a protective role on some aspects of 

cognition (Le Carret et al., 2003) and shows a positive relationship with frontal-

temporal-parietal connectivity in healthy elders (Arenaza-Urquijo et al., 2013). 

Previous evidence suggests that medication commonly introduced to patients with 

DLB might alter functional connectivity. For instance, the cholinergic treatment 

enhances functional network connectivity in mild cognitive impairment (Pa et al., 

2013), while some antipsychotic medication can alter connectivity in the DMN 

(Sambataro et al., 2010) or other resting-state networks (Kraguljac et al., 2016). 

Matching groups based on their medication treatment or brief medication withdrawal 

may be challenging due to the wide range of prescribed medication in the DLB. 

However, controlling for the effect of medication intake in the analysis might eliminate 

a potential confounding effect. The reviewed studies established a link between 

psychotic symptoms, problems with attention, and connectivity, but findings from wider 

cognition are limited.  

4.3. Methodological and analytical considerations 

4.3.1. Connectivity analytical method and consistency of results 

The overall trend of connectivity findings showed a decrease, yet more subtle changes 

in the directionality of connectivity were observed when using a hypothesis-driven 

approach. Connectivity within the DMN, executive, and sensorimotor networks was 

consistently decreased in the DLB relative to healthy controls. This finding was 

inconsistent with findings from studies investigating functional connectivity between 

specific brain regions by using seeds of interest or ROI approaches. Speculatively, the 

increase in connectivity between specific brain areas might reflect a compensatory 

mechanism for the disruptions in the overall large-scale networks. This could be 

related to findings from graph theoretical analyses that observed widespread network 

disorganisation in multiple graph properties. For instance, observed redistribution of 

the information flow serves as a protective mechanism for some aspects of cognition 

(Ma et al., 2022). EEG studies showed a consistent decrease in connectivity on alpha 



and beta bands and further disorganisation in graph-theoretical properties in regions 

overlapping with findings from large-scale networks. 

The information about functional connectivity can be also inferred from the studies that 

use regional homogeneity as their methodological choice. For instance, Peraza and 

colleagues (Peraza et al., 2016) found decreased regional homogeneity in sensory-

motor areas, which is in line with several studies (Aoki et al., 2019; Ma et al., 2022; 

Peraza, Colloby, et al., 2015; Schumacher et al., 2018). The authors linked these 

findings to motor problems found on the Lewy body disease spectrum. Reduced 

regional homogeneity in posterior regions in the DLB patients also distinguished them 

from patients with PDD (Borroni et al., 2015). Interestingly, Dauwan and colleagues 

(Dauwan et al., 2016) demonstrated disturbances in EEG connectivity flow from 

posterior to anterior regions by using dynamic connectivity measures. Notably, 

patients show no reversal in the pattern of directed connectivity, which points out to 

underlying abnormalities in the posterior areas of the brain.  

Taken together, the above findings suggest that changes in functional connectivity are 

observed regardless of the methodologies implemented. The directionality of those 

changes, however, might be influenced by the methodology used. Importantly, no 

standardised imaging pre-processing and analytical pipeline in resting-state research 

confounds direct comparisons and should be taken into account when interpreting the 

findings. 

4.3.2. Statistical methods and consistency of results 

Similar statistical methods used across different studies led to some consistent 

outcomes; however, some outcomes were consistent irrespective of the statistical 

approach. For example, for the main connectivity results, the studies that found an 

overall increase in brain connectivity in the DLB group in comparison with healthy 

controls (Kenny et al., 2012, 2013; Schumacher et al., 2021), all used a clustering 

approach in their analysis. Whereas despite implementing different statistical 

methods, five studies consistently reported a decreased within-network connectivity in 

the patients’ group compared to healthy controls within the DMN (Chabran et al., 2018; 

Franciotti et al., 2013; Galvin et al., 2011; Lowther et al., 2014; Peraza, Colloby, et al., 

2015).  However, only two studies that implemented dual regression both found 



decreased connectivity within the executive networks (Lowther et al., 2014; Peraza et 

al., 2014).  

From the results of connectivity within frequency bands, all EEG studies reported a 

decrease in alpha connectivity in the DLB group compared to controls irrespective of 

statistical methods. However, the two studies that used the Kruskal-Wallis test, both 

found a decrease in beta connectivity in patients (Dauwan et al., 2016s; Mehraram et 

al., 2020). Connectivity strength was reported as the most important discriminatory 

variable between disorders despite using different classifiers – a random forest 

(Mehraram et al., 2020) and logistic regression (Peraza et al., 2018). 

The studies that used the non-parametric Kruskal-Wallis test are likely to have done 

so on the basis that assumptions for parametric ANOVA have not been met. However, 

in many cases, a logarithmic transformation of variables would normalise the errors, 

leading to an over-use of methods such as the Kruskal-Wallis and ultimately loss of 

power. Given that the studies that used the Kruskal-Wallis test, both found a decrease 

in beta connectivity (Dauwan et al., 2016; Mehraram et al., 2020), it may be worth 

examining the impact on beta connectivity with a transformation approach along with 

ANOVA. 

Covariate adjustment is most effective when the covariates are strongly predictive of 

an outcome. Some studies reported mixed results for the overall connectivity 

differences between patients and controls (Galvin et al., 2011; Lowther et al., 2014; 

Peraza, Taylor, et al., 2015); it is notable that they all did not mention any accounting 

for covariates in their analysis, and speculatively this may have contributed to their 

inconclusive outcomes. Some other considerations include accounting for multiple 

comparisons that differed among studies. For instance, the FWER correction may be 

too conservative given the spatial correlations of neighbouring voxels that typically 

display similar response patterns within functionally defined brain regions. 

4.4. Potential underlying mechanisms and their clinical manifestations 

4.4.1. Neurotransmitters and neuropathology 

The observable symptoms in DLB may result from an exceptionally complex faulty 

interaction on multiple levels including neurotransmitter dysfunction, faulty visual 



attention processing, and connectivity disturbances. Multiple studies discussed their 

findings in relation to defective neurotransmitter systems (Aoki et al., 2019; Babiloni et 

al., 2018; Chabran et al., 2020; Kenny et al., 2012, 2013; Peraza et al., 2014, 2018; 

Peraza, Taylor, et al., 2015; Schumacher et al., 2021; van Dellen et al., 2015). 

For example, decreased alpha activity in the occipital regions (Aoki et al., 2019; 

Peraza et al., 2018) may be related to the cholinergic deficit, hypoperfusion, and 

hypometabolism shown in other studies (Mukaetova-Ladinska et al., 2013). Further 

differences in connectivity to the early visual areas were observed in the nucleus 

basalis of Meynert which is the major source of cholinergic innervation to the cortex 

(Schumacher et al., 2021). The alteration in alpha activity may therefore relate to 

deficits in visual attention and perception (discussed in section 4.4.2.) due to the flow 

of information from the occipital cortex to higher cognitive areas contingent on 

cholinergic function. 

While some studies provide more evidence that functional alterations could have the 

potential to bridge the gap between cholinergic deficits and cognitive impairment in the 

DLB (Chabran et al., 2020; van Dellen et al., 2015), others highlight the importance of 

considering coexisting AD neuropathology (Babiloni et al., 2018; Schumacher et al., 

2021).  

Studies that investigated dynamic connectivity supported the relationship between 

network dysfunctions and cognitive fluctuations (Matar et al., 2022; Schumacher et al., 

2019; Sourty et al., 2016). Such a relationship was further linked to noradrenergic and 

cholinergic receptors across the cerebral cortex (Matar et al., 2022) and the striatal 

dopamine transporter availability (Rieckmann et al., 2015). Impairments in multiple 

neurotransmitter systems, their role in visual hallucinations, and their link to the 

disinhibition hypotheses are reviewed in more detail elsewhere (Onofrj et al., 2013; 

Russo et al., 2019). 

4.4.2. Attention and perception 

Several reviewed studies link their findings with the existing theories about deficits in 

visual processing and in attention and perception (Aoki et al., 2019; Babiloni et al., 

2018; Chabran et al., 2018, 2020; Dauwan et al., 2016; Franciotti et al., 2013; Kenny 

et al., 2012; Lowther et al., 2014; Ma et al., 2022; Mehraram et al., 2020; Peraza et 



al., 2014; Peraza, Colloby, et al., 2015; Peraza, Taylor, et al., 2015; Schumacher et 

al., 2018, 2021).  

The Perception and Attention Deficit Model (Collerton et al., 2005) proposes that visual 

hallucinations occur as a result of the failure in the integration of sensory information 

(bottom-up) and prior expectations (top-down). Rather than deficits in the dorsal visual 

stream (i.e., originating in the early visual cortex and passing through parietal lobes), 

this theory suggests that the problem occurs later in the information-integration 

process and could involve the cholinergic dysfunction that affects the ventral visual 

stream. Other theories extended this relationship by incorporating the network 

disconnection problem (Tsukada et al., 2013, 2015). 

Notably, the mixed inter-network connectivity between the DMN, visual network, 

attentional network, and executive network is in line with these theories. While the 

connectivity within those networks was largely decreased in patients with DLB, their 

between-network connectivity showed an interesting interaction. The connectivity 

between the DMN and attentional network was increased, as was the connectivity 

between the DMN and executive network. However, the connectivity between 

attentional and executive networks was decreased. Furthermore, the DMN and visual 

network displayed decreased inter-network connectivity. This complex relationship 

was further supported by network segregation and reduced information flow between 

the areas that overlap with these large-scale networks observed in graph-theoretical 

studies. 

Further evidence supports a differential role of functional connectivity between 

hallucinating and non-hallucinating patients (Mehraram et al., 2022). Specifically, 

connectivity between the DMN and the (ventral) attentional network was decreased, 

while the occipital lobe was the most disconnected region. This offers additional 

evidence of an association between cholinergic system dysfunction and functional 

connectivity abnormalities in patients with visual hallucinations. However, there is a 

lack of exploration of other potentially key neurotransmitter systems (e.g., 5HT, 

dopamine) and their influence on functional connectivity in the DLB.  

4.5. Limitations and future directions 

The current literature primarily offers cross-sectional study designs that do not allow 

for direct longitudinal comparisons. Similarly, we noticed an imbalance or lack of 



information about multiple demographic characteristics such as gender, disease 

duration, ethnicity, and age. The major limitation of most studies was a sample size. 

Although challenging to conduct in neurodegenerative disorders, a longitudinal study 

set-up with a more diverse population could help to reduce these limitations. Some of 

the related changes might appear in the prodromal stages of the disorder, so focusing 

the research on identifying early biomarkers may yield important results. 

The next steps should include working towards an optimal analytical setup. Present 

studies are too heterogenous in their set-up to allow for direct comparisons. This is 

mostly an issue in fMRI studies that lack a standardised pre-processing and analytical 

pipeline. Implementing a common platform or pipeline for analysis or more efforts 

towards data sharing might resolve some of these issues in the future. There is still a 

relative lack of evidence from EEG studies, so the heterogeneity between the pre-

processing and analysis is currently not too concerning but may lead to problems in 

the future. Implementing other approaches of dynamic EEG analysis, such as the 

analysis of microstates, might capture and characterise the more complex and 

dynamic organisation of the brain on a temporal level. For instance, Schumacher and 

colleagues (Schumacher et al., 2019) showed a slowing of microstates in the DLB 

group in comparison with AD, which suggests the differential diagnostic potential of 

this type of analysis. 

Alternatively, a combination of modalities or implementing less-utilised modalities 

(e.g., MEG) may improve our understanding of the contribution of resting-state 

connectivity changes in the DLB to the overall mechanisms of observable clinical 

symptoms, as well as providing solutions to overcome the issues arising from 

unstandardised analytical pipelines. Moreover, neuroimaging data can be used as 

real-life parameters in mechanistic models of neurodegenerative disorders as 

proposed in our recent work (Kucikova et al., 2022). 

In combination with fast-developing machine learning and artificial intelligence models, 

functional connectivity might inform future research in DLB by enabling identification 

of distinct neural network patterns that differentiate DLB from other neurodegenerative 

disorders. For example, implementing deep learning to early detection and automated 

classification has gained significant attention in AD. The best classification 

performance was obtained based on the combination of multimodal neuroimaging data 



with fluid biomarkers (Jo et al., 2019). The recent systematic review (Warren & 

Moustafa, 2023) concluded the potential of combining functional neuroimaging 

including network analysis with deep learning approaches as the state-of-the-art tool 

for the AD detection, with the emphasis on its use in early identification. Other 

conclusions that agree with our suggestions include the need for larger sample sizes 

and more focus on data sharing, data augmentation, and implementing multiple 

databases. 

Distinguishing between disorders by using connectivity measures is promising. For 

instance, EEG seems to be a powerful tool to highlight widespread visual system and 

information processing dysfunction across different disorders prone to experiencing 

hallucinations (daSilva Morgan et al., 2018). The recent systematic literature reviews 

concluded the high potential of EEG applications in DLB research, mostly for 

diagnostic purposes (Chatzikonstantinou et al., 2021; Law et al., 2020). Although the 

differential diagnosis between DLB and other forms of dementia based on functional 

connectivity was not the primary focus of this review, studies showed potential for 

using functional connectivity as a differential biomarker. Most studies, however, 

focused on the comparisons between DLB and AD groups, consistently reporting more 

disorganised networks and more decreased functional connectivity in DLB in 

comparison with AD in the DMN network. Other findings were, however, mixed.  

Consequently, further research focusing on the comparison between PD/PDD and 

DLB would be highly beneficial, as understanding both similarities and differences 

between these disorders that largely overlap in their symptomatology is crucial in 

understanding the underlying mechanistic differences. 

5. Conclusions 

The overall trend of functional connectivity shows differences between patients with 

DLB and healthy individuals. These differences mostly point to the decrease in 

connectivity of large-scale networks and alpha and beta frequency bands. Some 

differences in the directionality of connectivity were found when using a hypothesis-

driven approach. These results might extend other functional and structural 

neuroimaging findings and offer insight into pathophysiological mechanisms 

underlying DLB.  
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