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Abstract

This study is concerned with the stabilization analysis and controller design for networked

systems with stochastic sampling and two-channel deception attacks. First, we give a gen-

eral matrix decomposition approach which is applicable to scenarios where the system

matrix A contains complex-value eigenvalues. Then, a discrete stochastic framework is

established for a class of networked systems which considers the joint effects of sampling

errors and two-channel deception attacks. Utilizing the matrix decomposition approach

introduced in this study, it becomes feasible to decouple the expectation operations for

specific coupling matrices characterized by substantial nonlinearity and randomness. Based

on this, a stabilization controller is constructed that ensures the exponential mean-square

stability of the resulting discrete stochastic system. Finally, three simulation examples are

provided to validate the effectiveness of the proposed approach.

1 INTRODUCTION

In recent years, great interest has been aroused to the analysis

and synthesis problems of networked control systems (NCSs).

In NCSs, components (sensors, actuators and controllers) are

connected in a closed control loop and exchange data through a

communication network. The introduction of cyberspace allows

for the avoidance of unnecessary point-to-point wiring in clas-

sical systems, simplifying the physical structure of NCSs and

facilitating maintenance and updates. Accordingly, NCSs have

been widely employed in various engineering domains, ranging

from aerospace to industrial automation [1–4]. On the flip side,

considering the openness of network, NCSs stands a higher

chance of being exposed to malicious attacks [5–8]. Specifi-

Abbreviation: NCSs, networked control systems.
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cally, deception attack is a kind of network attack that intends

to compromise the integrity and trustworthiness of transmitted

data by inserting some falsified data information into the origi-

nal data packet while remaining undetected by detectors [9–11].

Since the unexpected data can induce systems of worse stabil-

ity, great significance has been placed on stabilization analysis

and controller design for NCSs with deception attacks [12–17].

For example, a sliding-mode control problem was addressed in

[13] for a class of Markovian jump cyber-physical systems under

the situation of randomly occurring injection attack. In [14],

a Bernoulli binary distributed is used to characterize random

occurring deception attacks, and an innovative dynamic-output-

feedback robust model predictive control approach is proposed

to ensure system security under such conditions. In [15], with

the aid of a dynamic event-triggered mechanism, an observer-

based PID controller was designed for systems with deception

IET Control Theory Appl. 2024;1–10. wileyonlinelibrary.com/iet-cth 1
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attacks. Considering that in control loops sensors and actuators

are important components among which the data is transmit-

ted through public network, it should be pointed out that both

sensor-to-controller channel and controller-to-actuator chan-

nel are susceptible to intruders that launch deceptive attacks in

NCSs. Some results about NCSs’ security under the situation

of two-channel attacks have been derived [18–20]. For example,

a distributed H∞ estimation was derived against two-channel

attacks in [19]. A security control problem was studied for fuzzy

NCSs with deception attacks at both ends in [20].

Moreover, time-triggered sampling is a widely used approach

for transforming the continuous signal to the discrete one when

signal is transmitted in networks [21–24]. For time-triggered

sampled-data system, the sampling intervals are usually assumed

to be an invariable constant. However, in real-world scenar-

ios, some unexpected physical constraints, for example, limited

bandwidth of communication channel, failure of the sampler,

and clock error drift, can bring deviation to ideal intervals

[25, 26]. Under these conditions, the practical sampling inter-

vals are subject to noisy fluctuations, leading to deviations

from the normal sampling period. Recently, some scholars

have investigated the control problems of NCSs subjected to

random sampling intervals [27–33]. For example, a confluent

Vandermonde matrix approach was proposed to investigate

quantized/saturated control problems in sampled-data systems

with random sampling intervals in [27]. For a class of Ito

stochastic NCSs subject to time-varying sampling and packet

dropouts, [28] discusses the modeling and control problem,

in which robustly exponentially mean-square stability of the

system with an ∞ performance is guaranteed. In [29], an

event-triggered communication control scheme, which requires

less communication bandwidth, was applied for stability analysis

in systems with aperiodically sampled data. A probability-

distribution-dependent controller was designed for complex

dynamical networks with random sampling intervals and succes-

sive packet losses where the categorical distribution is used to

characterize the sampling errors of random sampling intervals

in [30]. It needs to emphasis that a few results have analysed the

stabilization problem for NCSs under two-channel deception

attacks while taking random sampling intervals into consid-

eration at the same time. Thus, in this paper we discuss the

stabilization analysis and controller design for a class of NCSs

which are subject to random sampling intervals and two-channel

deception attacks.

Motivated by the previous discussion, this study advanced a

general matrix decomposition approach which can be applied

to address the stabilization challenges encountered by NCSs

subject to random sampling intervals and two-channel decep-

tion attacks. The main contributions of this research can be

summarized as follows: (1) A mathematical model for NCSs

comprising the situations of sampling errors and two-channel

deception attacks is established by discrete-time method. Based

on this model, a new stabilization problem is investigated. (2)

A general matrix decomposition approach is presented, which

can deal with the situation that the system matrix A contains

complex-value eigenvalues. Finally, two mathematical simula-

tion examples and a practical example are provided to verify the

effectiveness of the proposed method, where (i) all the eigenval-

ues of system matrix A are real-values, and (ii) some eigenvalues

of matrix A are complex-values.

2 THE GENERAL MATRIX
DECOMPOSITION APPROACH

In this section, two lemmas are presented in this part to

introduce the general matrix decomposition approach.

Lemma 1 [32]. Denote 𝜆1, 𝜆2, … , 𝜆h as the eigenvalues of the matrix

G ∈ ℝmg×mg . Let l j be the multiplicity of 𝜆 j as a root of the minimal

polynomial for G and l1 + l2 +⋯ + lh = m̄g, where m̄g is the degree of

the minimal polynomial of the matrix G. Then, for matrix G ∈ ℝmg×mg

and a scalar 𝛿, one has

eG𝛿
=

(
(𝜋(𝛿)V −1

G
)⊗ I

)
Ḡ , (1)

where 𝜋(𝛿) =
[
𝜋1(𝛿) 𝜋2(𝛿) ⋯ 𝜋h(𝛿)

]
with 𝜋 j (𝛿) =[

e𝜆 j𝛿 𝛿e𝜆 j𝛿 ⋯ 𝛿l j−1e𝜆 j𝛿
]
, VG =

[
Λ1 Λ2 ⋯ Λh

]
is

the reduced-order confluent Vandermonde matrix of G with

Λ j =

⎡
⎢⎢⎢⎢⎢⎣

1 0 ⋯ 0

𝜆 j 1 ⋯ 0

⋮ ⋮ ⋮

𝜆
m̄g−1

j
(m̄g − 1)𝜆

m̄g−2

j
⋯

(m̄g−1)!

(m̄g−l j )!
𝜆

m̄g−l j

j

⎤
⎥⎥⎥⎥⎥⎦

,

and Ḡ =

[
I G T ⋯ G (m̄g−1)T

]T

.

Lemma 2. Denoting the probability function of the random variable

𝛿 as f (𝛿), for 𝜋(𝛿) defined in Lemma 1, one has a matrix Ug such

that

𝔼
{
𝜋H (𝛿)𝜋(𝛿)

}
= U H

g Ug. (2)

Proof. 1) When eigenvalues of matrix G are exclusively of

real-value, the 𝜋(𝛿) in (1) is a real matrix. Therefore, for the

matrix 𝔼
{
𝜋H (𝛿)𝜋(𝛿)

}
, there exists a real matrix Ug which sat-

isfies 𝔼
{
𝜋H (𝛿)𝜋(𝛿)

}
= 𝔼

{
𝜋T (𝛿)𝜋(𝛿)

}
= U T

g Ug = U H
g Ug,

that is, 𝔼
{
𝜋H (𝛿)𝜋(𝛿)

}
= U H

g Ug; 2) When matrix G con-

tains complex-value eigenvalues, the 𝜋(𝛿) is a complex

matrix. In this case, we let U = 𝜋H (𝛿)𝜋(𝛿), then the

Hermitian complex matrix U is positive semi-definite.

Therefore, for any nonzero complex vector v, one has

vH𝜋H (𝛿)𝜋(𝛿)v ≥ 0. With f (𝛿) ≥ 0, we further have

that vH𝔼
{
𝜋H (𝛿)𝜋(𝛿)

}
v = ∫ +∞

−∞
vH𝜋H (𝛿)𝜋(𝛿)v f (𝛿)d𝛿 ≥ 0.

Considering that 𝔼
{
𝜋H (𝛿)𝜋(𝛿)

}
is a Hermitian matrix, thus

𝔼
{
𝜋H (𝛿)𝜋(𝛿)

}
is a positive semi-definite matrix. So we

have a matrix Ug so that (2) holds. Therefore, no matter if all

the eigenvalues of matrix G are real-value or matrix G has

complex-value eigenvalues, there exists a matrix Ug so that

𝔼
{
𝜋H (𝛿)𝜋(𝛿)

}
= U H

g Ug. The proof is complete. □
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LI ET AL. 3

Remark 2.1. In this study, we first transform the matrix

exponential eG𝛿 into a comprehensive matrix formulation

as expressed in (1). Subsequently, the operation of expecta-

tion concerning 𝜋(𝛿) can be independently addressed in (2).

These computational operations set the groundwork for the

subsequent design of the controller. Comparable operations

are also conducted in some existing literature, for exam-

ple, [34]. Nevertheless, there is no real matrix that fulfills

the equation (8) within Lemma 3 of [34], in the case that

the matrix G =

[
A B

0 0

]
encompasses complex-value eigenval-

ues. In contrast to [34], the matrix decomposition approach

presented in Lemma 2 is general and can be extended to

scenarios that encompass matrix G with complex-value eigen-

values. Note that the complex-value eigenvalues of matrix

A remain consistent with those of G in cases where G =[
A B

0 0

]
, that is, in contrast to the matrix decomposition

approach in [34], the matrix decomposition approach pre-

sented in this study is amenable to situations in which the

system matrix A in equation (3) contains complex-value

eigenvalues.

3 APPLICATION TO STABILITY
ANALYSIS AND SYNTHESIS FOR NCSS
WITH STOCHASTIC SAMPLING AND
TWO-CHANNEL DECEPTION ATTACKS

In this section, the exponentially mean-square stabilization

problem is considered for NCSs under stochastic sampling

and two-channel deception attacks with the general matrix

decomposition approach.

Consider a continuous-time linear system subject to stochas-

tic sampling and two-channel deception attacks:

ẋ(t ) = Ax(t ) + Bû(t ), (3)

where x(t ) ∈ ℝn is the state vector, û(t ) ∈ ℝm is the control

input. A is the system matrix and B is the input matrix.

Normally, the system’s state is periodically sampled with a

fixed interval which is denoted as T . This paper focuses on

the scenario where actual sampling interval is influenced by

noisy perturbation. Suppose that the actual sampling period 𝛼k

composed of a constant T and a random variable 𝜌k, that is,

𝛼k = T + 𝜌k > 0. T is the ideal sampling interval and 𝜌k stands

for the sampling error. The probability function of 𝜌k is denoted

as f (𝜌).

We consider that the deception attacks happen in both

sensor-to-controller channel and controller-to-actuator chan-

nel. Two stochastic variables which obey Bernoulli distribution

are used to characterize the occurrence of two-channel decep-

tion attacks. In sensor-to-controller channel, we describe the

data x̂(tk ) received by the controller as

x̂(tk ) = x(tk ) + 𝜚(tk )(−x(tk ) + 𝜑(tk )),

where 𝜚(tk ) satisfies 𝒫{𝜚(tk ) = 1} = 𝜍 and 𝒫{𝜚(tk ) = 0} = 1 −

𝜍. 𝜑(tk ) stands for the signal injected by attackers. Then, the con-

troller output u(tk ) is expressed as u(tk ) = K x̂(tk ) = K (x(tk ) +

𝜚(tk )(−x(tk ) + 𝜑(tk ))), where K is a gain matrix to be designed.

In controller-to-actuator channel, the control input û(t ) with

a zero-order hold can be represented as follows

û(t ) = û(tk ) = u(tk ) +𝜛(tk )(−u(tk ) + 𝜓(tk ))

= (1 −𝜛(tk ))K ((1 − 𝜚(tk ))x(tk ) + 𝜚(tk )𝜑(tk ))

+ 𝜛(tk )𝜓(tk ), tk ≤ t < tk+1,

where 𝜛(tk ) is used to characterize the deception attack occur-

ring in controller-to-actuator channel with 𝒫{𝜛(tk ) = 1} = 𝜃
and 𝒫{𝜛(tk ) = 0} = 1 − 𝜃, 𝜓(tk ) stands for the injected signal

by the attacker in controller-to-actuator channel.

Besides, due to the energy limit, 𝜑(tk ) and 𝜓(tk ) are assumed

to satisfy

‖𝜑(tk )‖ ≤ ‖F1x(tk )‖, ‖𝜓(tk )‖ ≤ ‖F2x(tk )‖, (4)

where F1 and F2 are constant matrices with appropriate

dimensions.

Remark 3.1. From the aspect of defenders, the attacks hap-

pen in a random way. Considering that defense mechanisms

are widely used to protect systems from deception attacks (e.g.

residue detector, detection filters, voting schemes, hypothesis

testing etc.), some injected information could be identified.

Unavoidable constrains in NCSs also influence the deception

attacks. For example, a multi-path routing protocol mentioned

in [35] could result in the attacks occurring randomly. Besides,

from the aspect of adversaries, considering factors, for exam-

ple, the detectability of deception attacks, limitations in access

and resources and so on prompt attackers to make stochas-

tic decisions to launch an attack or to sleep in order to save

energy or elude defenses [36, 37]. For these reasons, the attack

phenomenon can be described as a random event. Referring to

[38], it makes sense to define resources available to the defender

based on the information obtained from the interaction with

attackers in order to calculate the outcome for the control loop

in a variety of possible scenarios. Bernoulli distribution is used in

this paper to describe such a statistic phenomenon of deception

attacks [39].

Remark 3.2. In this paper, the injected signals 𝜑(tk ) and 𝜓(tk )

are characterized as bonded signals with prior known matrices

F1 and F2. In practice, the attacks are limited to some restrains

to avoid triggering the monitor’s alarm. For example, bad mea-

surement detection is mentioned in [40] by which the deception

attacks are easy to be detected if the difference between the vec-

tor of injected signals and the vector of original signals is of

a large amplitude. Besides, considering constrains of physical

devices such as network congestion and limited bandwidth of

communication channel, unbonded signal is hard to be injected

into the data packet successfully. Hence the malicious data is
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4 LI ET AL.

assumed as a bonded signal in this paper. The matrices F1 and

F2 are assumed to be a priori based on known knowledge of the

system model which ensures that attacks are of higher possibility

to happen [39].

Submitting (4) into (3), we can have by (3) that

ẋ(t ) =Ax(t ) + (1 −𝜛(tk ))(1 − 𝜚(tk ))BKx(tk )

+ (1 −𝜛(tk ))𝜚(tk )BK𝜑(tk ) +𝜛(tk )B𝜓(tk ),

tk ≤ t < tk+1 (5)

Denote x(tk ),𝜛(tk ), 𝜚(tk ), 𝜑(tk ), 𝜓(tk ) as xk,𝜛k, 𝜚k, 𝜑k, 𝜓k for

convenience. Integrating (5) from tk to tk+1, we have the fol-

lowing discrete-time system by noting that 𝛼k = tk+1 − tk:

xk+1 =

(
eA𝛼k + (1 −𝜛k )(1 − 𝜚k )∫

𝛼k

0

eAsdsBK

)
xk

+ (1 −𝜛k )𝜚k ∫
𝛼k

0

eAsdsBK𝜑k +𝜛k ∫
𝛼k

0

eAsdsB𝜓k

(6)

Define a square matrix G =

[
A B

0 0

]
, one has

eG𝛼k =

∞∑
j=0

G j𝛼
j

k

j !
=

[
eA𝛼k ∫ 𝛼k

0
eAsdsB

0 I

]
.

We further get

H1 ≜ eA𝛼k =

[
I 0

]
eG𝛼k

[
I 0

]T
,

H2 ≜ ∫
𝛼k

0

eAsdsBK =

[
I 0

]
eG𝛼k

[
0 K T

]T
,

H3 ≜ ∫
𝛼k

0

eAsdsB =

[
I 0

]
eG𝛼k

[
0 I

]T
.

Then, (6) can be equivalently expressed as:

xk+1 = (H1 + (1 −𝜛k )(1 − 𝜚k )H2 )xk + (1 −𝜛k )𝜚kH2𝜑k

+ 𝜛kH3𝜓k. (7)

Our goal is to design a controller which can ensure that the

stochastic system (7) is of exponential mean-square stability.

The detailed definition is as follows:

Definition 1. The system (7) is exponentially mean-square

stable if there exist 𝜔 > 0 and 𝜇 ∈ (0, 1) such that

𝔼
{
‖xk‖2

} ≤ 𝜔𝜇 j𝔼
{
‖x0‖2

}
,

holds for all x0 ∈ ℝ
n and j > 𝜅, where 𝜅 is a sufficiently large

positive integer.

Theorem 1. Given the positive parameters 𝜃, 𝜍, and matrices F1, F2,

the stochastic system (7) is exponentially mean-square stable if there exist

Q > 0 and R which satisfy the following inequality:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Q 0 0 Ξ̂1 Ξ̂2 Ξ̂3 QF T
1

QF T
2

∗ I − 2Q 0 0 Ξ̂4 0 0 0

∗ ∗ −I 0 0 Ξ̂5 0 0

∗ ∗ ∗ −I ⊗ Q 0 0 0 0

∗ ∗ ∗ ∗ −I ⊗ Q 0 0 0

∗ ∗ ∗ ∗ ∗ −I ⊗ Q 0 0

∗ ∗ ∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (8)

where

Ξ̂1 =

√
(1 − 𝜃)(1 − 𝜁)(Π̂1 + Π̂2 )T , Ξ̂2 =

√
(1 − 𝜃)𝜁Π̂T

1
,

Ξ̂3 =

√
𝜃Π̂T

1
, Ξ̂4 =

√
(1 − 𝜃)𝜁Π̂T

2
, Ξ̂5 =

√
𝜃ΠT

3

with

Π̂1 = (UgV
−1

G
⊗

[
I 0

]
)GeGT

[
Q 0

]T
,

Π̂2 = (UgV
−1

G
⊗

[
I 0

]
)GeGT

[
0 RT

]T
,

Π3 = ((UgV
−1

G
)⊗

[
I 0

]
)GeGT

[
0 I

]T
.

In addition, if (8) is feasible, we can obtain the desired controller gain

matrix by K = RQ−1.

Proof of Theorem 1. Consider the following Lyapunov function:

V (xk ) = xT
k

Pxk, (9)

where P > 0 and define the difference of (9) as

ΔV (xk ) = 𝔼{V (xk+1 )|xk} −V (xk ). With the application

of the general matrix decomposition approach presented

in this paper, the expectation operation of the matrix

eG T 𝛼k

([
I

0

]
P
[
I 0

])
eG𝛼k can be calculated as follows:

 1
7

5
1

8
6

5
2

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ietresearch
.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

4
9

/cth
2

.1
2

6
7

6
 b

y
 T

est, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [1
4

/0
6

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



LI ET AL. 5

𝔼{eG T 𝛼k

([
I

0

]
P
[
I 0

])
eG𝛼k }

= eG T T 𝔼

{
G

T

((𝜋(𝜌k )V −1
G

)⊗ I )T

×

([
I

0

]
P
[
I 0

])
((𝜋(𝜌k )V −1

G
)⊗ I )G

}
eGT

= eG T T G
T

𝔼

{
(VG

−H𝜋H (𝜌k )𝜋(𝜌k )VG
−1

)

⊗

([
I

0

]
P
[
I 0

])}
GeGT

= eG T T G
T

𝔼

{
(VG

−H
U H

g UgVG
−1

)⊗

([
I

0

]
P
[
I 0

])}
GeGT

= eG T T G
T
(

(UgV
−1

G
)T ⊗

[
I

0

])
(I ⊗ P )((UgV

−1
G

)⊗
[
I 0

]
)GeGT

= ΠT (I ⊗ P )Π, (10)

where Π = ((UgV
−1

G
)⊗

[
I 0

]
)GeGT and Ug is specific in

Lemma 2.

Remark 3.3. Note that 𝜋(𝛿)V −1
G

in (1) is a real matrix regardless

of whether the matrix G contains complex-value eigenvalues or

not. Accordingly, UgV
−1

G
is a real matrix. In this case, one has

V −H
G

U H
g = V −T

G
U T

g in (10).

Accordingly, we can also calculate the following mathematical

expectation:

𝔼{H1
T

PH1}

=

[
I 0

]
𝔼{eG T 𝛼k

([
I

0

]
P
[
I 0

])
eG𝛼k }

[
I

0

]

=

[
I 0

]
ΠT (I ⊗ P )Π

[
I

0

]

= ΠT
1

(I ⊗ P )Π1, (11)

whereΠ1 = Π
[
I 0

]T
= ((UgV

−1
G

)⊗
[
I 0

]
)GeGT

[
I 0

]T
.

Similarly, we have

𝔼{H T
2

PH2} = Π
T
2

(I ⊗ P )Π2, 𝔼{H
T
3

PH3} = Π
T
3

(I ⊗ P )Π3,

𝔼{H T
1

PH2} = Π1
T (I ⊗ P )Π2, 𝔼{H

T
1

PH3} = Π
T
1

(I ⊗ P )Π3,

𝔼{(H1 + H2 )T P (H1 + H2 )} = (Π1 +Π2 )T (I ⊗ P ) (Π1 +Π2 )

with Π2 = Π
[
0 K T

]T
and Π3 = Π

[
0 I

]T
.

Then, by (7) and (11), one has

𝔼{�V (xk )}

= 𝔼{xT
k+1

Pxk+1 − xT
k

Pxk}

= 𝔼{xT
k

((1 − 𝜃)(1 − 𝜍)(�1 + �2 )
T

(I ⊗ P )(�1 + �2 )

+ (1 − (1 − 𝜃)(1 − 𝜍))�T
1 (I ⊗ P )�1 − P )xk

+ 2(1 − 𝜃)𝜍xT
k
�

T
1 (I ⊗ P ) × �2𝜑k + 2𝜃xT

k
�

T
1 (I ⊗ P )�3𝜓k

+ (1 − 𝜃)𝜍𝜑T
k
�

T
2 (I ⊗ P )�2𝜑k + 𝜃𝜓

T
k
�

T
3 (I ⊗ P )�3𝜓k}

≤ 𝔼�V (xk ) + ‖F1xk‖2
+ ‖F2xk‖2

− ‖𝜑k‖2
− ‖𝜓k‖2

= 𝔼{xT
k

((1 − 𝜃)(1 − 𝜍)(�1 + �2 )
T

(I ⊗ P )(�1 + �2 )

+ (1 − (1 − 𝜃)(1 − 𝜍))�T
1 (I ⊗ P )�1 + F T

1 F1

+ F T
2 F2 − P )xk + 2(1 − 𝜃) × 𝜍xT

k
�

T
1 (I ⊗ P )�2𝜑k

+ 2𝜃xT
k
�

T
1 (I ⊗ P )�3𝜓k + 𝜑

T
k

((1 − 𝜃)𝜍�T
2 (I ⊗ P )�2 − I )𝜑k

+ 𝜓T
k

(𝜃�T
3 (I ⊗ P )�3 − I )𝜓k}

= 𝔼{𝜀T
k

M𝜀k},

where 𝜖k =

⎡⎢⎢⎣

xk

𝜑k

𝜓k

⎤⎥⎥⎦
and M =

⎡⎢⎢⎣

M11 M12 M13

∗ M22 M23

∗ ∗ M33

⎤⎥⎥⎦
with

M11 = (1 − 𝜃) (1 − 𝜍) (Π1 +Π2 )T (I ⊗ P ) (Π1 +Π2 )

+ (1 − (1 − 𝜃) (1 − 𝜍))ΠT
1

(I ⊗ P )Π1 + F T
1

F1

+F T
2

F2 − P ,M12 = (1 − 𝜃)𝜍ΠT
1

(I ⊗ P )Π2,

M13 = 𝜃ΠT
1

(I ⊗ P )Π3,M22 = (1 − 𝜃)𝜍ΠT
2

(I ⊗ P )Π2 − I ,

M23 = 0,M33 = 𝜃ΠT
3

(I ⊗ P )Π3 − I .

If M < 0, we can conclude that

𝔼{ΔV (xk )} ≤ 𝔼{𝜖T
k

M𝜖k} ≤ −𝜆min(−M )𝔼{xT
k

xk} < −𝜎𝔼{‖xk‖2
},

(12)

with 0 < 𝜎 < min{𝜆min(−M ), 𝜆max (P )}. Then, we can get that

𝔼{ΔV (xk )} < −𝜎𝔼{‖xk‖2
} ≤ −

𝜎

𝜆max (P )
𝔼{V (xk )}. Considering

the Lyapunov function in (9), the following inequality is

satisfied.

𝜆min(P )‖xk‖2 ≤ V (xk ) ≤ 𝜆max (P )‖xk‖2
. (13)

Referring to the lemma 1 in [41], by (12) and (13) we have

that

𝔼
{
‖xk‖2

} ≤ 𝜔𝜇 j𝔼
{
‖x0‖2

}
,

where 𝜔 =
𝜆max (P )

𝜆min (P )
and 𝜇 = 1 −

𝜎

𝜆max (P )
∈ (0, 1). Therefore,

the closed-loop system is of exponentially mean-square

stable.

To design the stability controller, M < 0 can be rewritten as

follows by Schur complement.

 1
7

5
1

8
6

5
2

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ietresearch
.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

4
9

/cth
2

.1
2

6
7

6
 b

y
 T

est, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [1
4

/0
6

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



6 LI ET AL.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P 0 0 Ξ1 Ξ2 Ξ3 F T
1

F T
2

∗ −I 0 0 Ξ4 0 0 0

∗ ∗ −I 0 0 Ξ̂5 0 0

∗ ∗ ∗ −I ⊗ P−1 0 0 0 0

∗ ∗ ∗ ∗ −I ⊗ P−1 0 0 0

∗ ∗ ∗ ∗ ∗ −I ⊗ P−1 0 0

∗ ∗ ∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (14)

where

Ξ1 =

√
(1 − 𝜃)(1 − 𝜁)(Π1 +Π2 )T , Ξ2 =

√
(1 − 𝜃)𝜁ΠT

1
,

Ξ3 =

√
𝜃ΠT

1
, Ξ4 =

√
(1 − 𝜃)𝜁ΠT

2
, Ξ̂5 =

√
𝜃ΠT

3
.

Apply a congruence transformation to (8) with diag

{Q−1,Q−1, I , I , I , I , I , I }. Let P = Q−1, K = RP . We can get

the inequality (14) with −I ≤ P2
− 2P . Then, the exponentially

mean-square stability of system (3) is guaranteed. We complete

the proof. □

4 SIMULATION EXAMPLES

In order to verify the effectiveness of the controller design algo-

rithm, two cases are considered in this section, one is that all

the eigenvalues of matrix G are real-value, another is that some

eigenvalues of matrix G are complex-value.

Case 1. All the eigenvalues of matrix G are real-value.

i) In this case, the geometric multiplicity of G is equal to the

algebraic multiplicity of G . Consider a system described by

the following parameter matrices:

A =

⎡
⎢⎢⎣

−2.1 1.2 0.4
0 −2.1 0.63

0 0 0.06

⎤
⎥⎥⎦
,B =

⎡
⎢⎢⎣

0.2
0.1
−0.3

⎤
⎥⎥⎦
.

Then, the roots of the minimal polynomial of G are

𝜆1 = −2.1, 𝜆2 = 0.06, and 𝜆3 = 0, with multiplicities l1 =

2, l2 = 1 and l3 = 1. By (1), the corresponding confluent

Vandermonde matrix VG is obtained as

VG =

⎡
⎢⎢⎢⎣

1.0000 1.000 0.0000 1.0000

0.0600 −2.1000 1.0000 0.0000

0.0036 4.4100 −4.2000 0.0000

0.0002 −9.2610 13.2300 0.0000

⎤
⎥⎥⎥⎦
.

The initial system state is assumed as x0 =[
−1 0.5 −0.3

]T
. Suppose that the ideal time

interval T = 0.8 and the sampling error follows uni-

form distribution 𝜌k ∼ U (−0.4, 0.4). Considering that

𝔼
{
𝜋H (𝛿)𝜋(𝛿)

}
= ∫ +∞

−∞
𝜋H (𝛿)𝜋(𝛿) f (𝛿)d𝛿, Ug can be

calculated by (2) as follows

Ug =

⎡⎢⎢⎢⎣

−1.0000 −0.0001 −0.0257 0.0009

0.0000 0.2309 0.0004 0.0040

0.0006 0.0000 −0.0226 0.0012

0.0000 0.0000 0.0001 0.0019

⎤⎥⎥⎥⎦
.

We assume that the deception attacks rates of S-C channel

and C-A channel are 𝜍 = 0.3, 𝜃 = 0.3, respectively. Figures 1

and 2 depict the sampling intervals and the moments when

deception attacks happen. The attacks satisfy ‖𝜑(tk )‖ ≤
‖F1x(tk )‖ and ‖𝜓(tk )‖ ≤ ‖F2x(tk )‖, where F1 and F2 are given

as

F1 =

⎡
⎢⎢⎣

−0.5 1 0

0 0.2 −0.6
0.8 0 −0.3

⎤
⎥⎥⎦
,F2 =

[
0 −0.3 0.21

]
.

FIGURE 1 Moments of deception attack.

FIGURE 2 Noisy sampling intervals with 𝜌k ∼ U (−0.4, 0.4).
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LI ET AL. 7

FIGURE 3 State trajectories of systems with control input.

Then, we can obtain Q, R and designed controller K as

follows

Q =

⎡
⎢⎢⎣

1.4382 0.6409 0.3466

0.6409 1.0988 0.2712

0.3466 0.2712 0.7617

⎤
⎥⎥⎦
,

R =

[
1.2906 1.0692 2.0113

]
,

K =

[
0.1904 0.2538 2.4636

]
.

Figure 3 shows the state trajectories of systems with control

input in which the effectiveness of the proposed approach is

verified.

ii) In this case, the geometric multiplicity of G is less than the

algebraic multiplicity of G . Consider a system described by

the following parameter matrices.

A =

⎡⎢⎢⎣

−1 0.1 0.2
0 −1 0.5
0 0 0.2

⎤⎥⎥⎦
,B =

⎡⎢⎢⎣

0.13 0.00

−0.60 0.20

0.30 0.55

⎤⎥⎥⎦
.

The roots of the minimal polynomial of G are 𝜆1 = −1,

𝜆2 = 0, and 𝜆3 = 0.2 with multiplicities l1 = 2, l2 = 1 and

l3 = 1. mg = 5 > m̄g = 4. By (1), the reduced-order confluent

Vandermonde matrix VG is obtained as

VG =

⎡
⎢⎢⎢⎣

1.0000 1.0000 0.0000 1.0000

0.2000 −1.0000 1.0000 0.0000

0.0400 1.0000 −2.0000 0.0000

0.0080 −1.0000 3.0000 0.0000

⎤
⎥⎥⎥⎦
.

The initial system state is assumed as x(0) =[
1 0.5 −0.3

]T
. Suppose that the ideal time interval

T = 0.8 and the sampling error 𝜌k obeys uniform distribution

between -0.4 and 0.4. Considering that 𝔼
{
𝜋H (𝛿)𝜋(𝛿)

}
=

FIGURE 4 Moments of deception attack.

FIGURE 5 Noisy sampling intervals with 𝜌k ∼ U (−0.4, 0.4).

∫ +∞

−∞
𝜋H (𝛿)𝜋(𝛿) f (𝛿)d𝛿, Ug can be calculated by (2) as follows

Ug =

⎡⎢⎢⎢⎣

−1.0000 0.0000 −0.0266 0.0004

0.0000 0.2309 0.0000 0.0038

0.0006 0.0000 −0.0237 0.0005

0.0000 0.0000 0.0000 0.0017

⎤⎥⎥⎥⎦
.

We assume that the deception attacks rates of S-C channel

and C-A channel are 𝜍 = 0.3, 𝜃 = 0.3, respectively. F1 and F2

are given as

F1 =

⎡⎢⎢⎣

−0.1200 0.1600 0.0000

0.0000 0.0180 −0.0020

0.0800 −0.0300 0.0000

⎤⎥⎥⎦
,

F2 =

[
0.0000 −0.3000 0.2100

−0.1200 0.1600 0.0180

]
.

Figures 4 and 5 depict the sampling intervals and the moments

when deception attack happens.

We can obtain Q, R and the designed controller K as

follows

Q =

⎡⎢⎢⎣

1.0290 0.0106 0.0170

0.0106 1.0359 0.0513

0.0170 0.0513 0.9922

⎤⎥⎥⎦
,

R =

[
−0.1615 0.8221 −0.2426

−0.0404 −0.5613 −1.7498

]
,

K =

[
−0.1606 0.8093 −0.2836

−0.0057 −0.4557 −1.7398

]
.

 1
7

5
1

8
6

5
2

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ietresearch
.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

4
9

/cth
2

.1
2

6
7

6
 b

y
 T

est, W
iley

 O
n

lin
e L

ib
rary

 o
n

 [1
4

/0
6

/2
0

2
4

]. S
ee th

e T
erm

s an
d

 C
o

n
d

itio
n

s (h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/term

s-an
d

-co
n

d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



8 LI ET AL.

FIGURE 6 State trajectories of systems with control input.

Figure 6 shows the state trajectories of systems with control

input in which the effectiveness of the approach is also verified.

Case 2. Some eigenvalues of matrix G are complex-value.

Consider the following mass spring system [42].

{
ẋ1(t ) = x2(t )

ẋ2(t ) = −
k

m
x1(t ) −

c

m
x2(t ) +

1

m
u(t )
, (15)

where m = 1, k = c = 2. By xT (t ) =
[
xT

1
(t ) xT

2
(t )
]
, the sys-

tem (15) can be described as

ẋ(t ) =

[
0 1

−2 −2

]
x(t ) +

[
0

1

]
u(t ).

The roots of the minimal polynomial of G are 𝜆1 = −1 +

i, 𝜆2 = −1 − i, and 𝜆3 = 0, with multiplicities l1 = 1, l2 = 1

and l3 = 1. By (1), the corresponding confluent Vandermonde

matrix VG is obtained as

VG =

⎡
⎢⎢⎣

1.0000 1.0000 1.0000

−1.0000 + 1.0000i −1.0000 − 1.0000i 0.0000

−2.0000i 2.0000i 0.0000

⎤
⎥⎥⎦
.

It is assumed that the normal time interval T = 0.8 and the

sampling error 𝜌k obeys uniform distribution between −0.4 and

0.4. By 𝔼
{
𝜋H (𝛿)𝜋(𝛿)

}
= ∫ +∞

−∞
𝜋H (𝛿)𝜋(𝛿) f (𝛿)d𝛿, we have

𝔼
{
𝜋H (𝛿)𝜋(𝛿)

}
=

⎡
⎢⎢⎣

1.1101 0.9864 + 0.2129i 0.9991 + 0.0533i

0.9864 − 0.2129i 1.1101 0.9991 − 0.0533i

0.9991 − 0.0533i 0.9991 + 0.0533i 1.0000

⎤
⎥⎥⎦
.

FIGURE 7 Moments of deception attack.

FIGURE 8 Noisy sampling intervals with 𝜌k ∼ U (−0.4, 0.4).

Then, with (2) and VG , we derive that

Ug =

⎡⎢⎢⎣

0.0125 + 0.0113i 0.0125 − 0.0113i −0.0238

0.0569 − 0.2311i 0.0569 + 0.2311i −0.1607

1.0222 − 0.0914i 1.0222 + 0.0914i 0.9867

⎤⎥⎥⎦
,

UgV
−1

G
=

⎡
⎢⎢⎣

−0.0238 −0.0362 −0.0238

−0.1607 −0.2177 0.0067

0.9867 −0.0355 0.0280

⎤
⎥⎥⎦
.

The deception attacks rates of S-C channel and C-A channel

are assumed to be 𝜍 = 0.3, 𝜃 = 0.3 respectively. F1 and F2 are

given as

F1 =

[
0.0000 −0.0200

0.3000 0.0000

]
,F2 =

[
0.0000 0.1500

]
.

The sampling intervals and deception attack moments are also

depicted in Figures 7 and 8.

Solving the inequality (8), we can obtain Q, R and the

designed controller K as follows

Q =

[
0.9482 −0.0257

−0.0257 1.0468

]
, R =

[
0.4187 −0.3584

]
,

K =

[
0.4326 −0.3317

]
.
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FIGURE 9 State trajectories of systems with control input.

The simulation results are presented in Figure 9 with the ini-

tial value x(0) =
[
−1 0.5

]T
. It verifies the effectiveness of the

proposed approach.

5 CONCLUSIONS

The stabilization analysis and controller design problems for

networked systems with stochastic sampling and two-channel

deception attacks have been investigated in this paper. First,

a general matrix decomposition approach has been presented

which is applicable in scenarios where the system matrix A

contains complex-value eigenvalues. Subsequently, we have

established a discrete stochastic framework for networked sys-

tem which considers the joint effects of sampling errors and

two-channel deception attacks. By the general matrix decom-

position approach, the expectation operations for coupling

matrices with high nonlinearity and randomness have been

decoupled. Then, a stabilization controller has been con-

structed to ensure the exponential mean-square stability of the

resulting discrete stochastic system. Finally, the effectiveness

of the proposed approach has been validated through three

simulation examples.
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