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A B S T R A C T   

Acoustic sensing system deployed on an autonomous platform (also referred to as robot) for 
accurate condition monitoring and fault detection in pipes requires the knowledge of wave 
scattering from various in-pipe faults or the robot itself. Existing solutions to estimate wave 
scattering tend to either be constrained to the plane wave regime or be computationally expensive 
outside this range. There has been a lack of work to apply analytical modal coupling methods to 
study wave scattering from a non-symmetric cross-sectional change in a pipe beyond the plane 
wave regime. This paper proposes an efficient three-dimensional (3D) modal coupling method to 
predict wave scattering from a cross-sectional change in a pipe in the frequency range beyond the 
plane wave regime. The trapped modes induced by a 3D axisymmetric or non-axisymmetric cross- 
sectional change in an air-filled pipe are estimated using modal coupling analysis. The derived 
analytical model is validated against numerical simulations and measurements. It agrees with a 
finite element simulation with Comsol Multiphysics in the 0.01<kR<4 frequency range (k being 
the wavenumber and R being the pipe radius) within 15 %, but it is approximately 600 times 
faster than the Comsol simulation making it attractive for the deployment on sensors with limited 
computer power that can be used for autonomous inspection of buried pipes.   

1. Introduction 

The introduction of pipe inspection robots marks a significant milestone in the monitoring of sewage and water distribution 
networks, facilitating the pre-emptive identification of imperfections and reducing the likelihood of severe breakdowns and envi-
ronmental pollution. Autonomous robots can carry sensors to work in buried pipes for acoustic condition monitoring and fault 
detection. These inspection robots offer the opportunity to capitalise on recent advances in acoustic and ultrasonic sensing techniques 
[1,2]. Acoustic methods have been investigated for blockage detection and condition assessment in sewage pipes in the past decades 
[3]. Compared with traditional visual closed-circuit television (CCTV) inspection methods, acoustic methods are very attractive 
because they have much further detection range, less power consumption, and less computation cost. Acoustically reflective artefacts 
including blockages can be localised remotely with respect to the robot position using the time delay of acoustic echoes measured with 
a microphone [4]. Recently, Yu et al. [5,6] proposed to use a microphone array on a robotic platform to detect, localise and classify the 
blockage or lateral connection with the sparse representation and support vector machine methods. Understanding acoustic wave 
scattering from blockages and other artifacts typically found in sewer pipes is important to support the development of robust 
localisation and classification algorithm that can be deployed on autonomous robots. Usually, finite element methods (FEM) are 
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adopted to predict the acoustic scattering by an arbitrarily shaped artefact in a pipe [5,7]. However, this approach is too computa-
tionally expensive to deploy on an autonomous robot with limiting computing resources and power where robust computationally 
efficient methods are needed to support blockage localisation and classification. This paper proposes a new analytical approach to 
predict acoustic wave scattering from a cross-sectional change in an air-filled pipe that is computationally efficient to work on a robot 
with a limited computer power. This work also helps training new machine learning methods to detect faults in a pipe with acoustic 
data. 

In the previous study [5], simulations on the acoustic wave scattering from blockage/lateral connections were implemented using 
finite element method in Comsol Multiphysics, which is computationally expensive (more than 10 h for the frequency range 100–5000 
Hz in a 150 mm diameter pipe with 20 Hz steps). This work also demonstrates that a considerable library of acoustical signatures for 
many types of in-pipe artefacts (e.g. greater than 1000) were required to train machine learning models. It is unlikely to be practical to 
generate enough training samples using the FEM because of the massive computational time and power required (more than 104 h). In 
response to this a computationally efficient analytical model is proposed. 

Another problem with acoustic methods is that a robot in a pipe occupies a finite volume and represents itself an acoustic scatterer 
to result in Bound State in the Continuum (BIC) [8]. In this case acoustic waves remain localised in the form of the so-called acoustic 
“trap modes” [9] even though they coexist with a continuous spectrum of radiating waves that can carry energy away [8]. An acoustic 
source mounted on the robot can be affected by these trapped modes so that its emission will depend on the robot shape and proximity 
of the robot to any imperfections in the pipe geometry. 

Hein et al. [9] used numerical method to analyse acoustic resonances and trapped modes in waveguides with sphere or cylinder as 
an acoustic scatterer inside. The numerical solution obtained in [9] is in close agreement with the analytical solution derived by Linton 
and McIver [10]. However, the work by Linton and McIver [10] assumes the acoustic pressure is zero at infinite distance for the 
analysis of the eigenmode problem to obtain the trapped modes only, whereas the propagating modes are neglected. This limits the 
application of the analytical model derived in [10] so that our study addresses the problem of acoustic wave for remote pipe inspection 
and defects detection in which both the propagating modes and trapped modes should be considered. This study builds up on some 
related work, e.g. an analytical method developed for the two-dimensional (2D) axisymmetric modal coupling analysis [11–13]. It 
makes use of the concept of non-Hermitian Hamiltonian to estimate the trapped modes of acoustic resonator with an expanded cavity. 
A three-dimensional non-axisymmetric waveguide case study was also investigated by Lyapina et al. [14] for a cylindrical resonator in 
the form of an expanded cavity connecting two uniform waveguides. However, to the best of authors’ knowledge, there has been no 
work to propose a computationally efficient analytical method to predict acoustic wave scattering, particularly in application to 
reflection/transmission from an axisymmetric/non-axisymmetric 2D/3D blockage (shrunk cavity) in an acoustic waveguide beyond 
the plane wave regime. In response to that, we propose an application of the modal coupling to analytically resolve acoustic wave 
scattering from a cross-sectional reduction in a cylindrical pipe caused by a 3D axisymmetric or non-axisymmetric blockage. This 
approach is also expanded to characterise the acoustic response due to a point source excitation at the BIC regime which is applicable 
and important for the quantification of the robot body impact in the pipe on the quality of acoustic sensing. 

The structure of this paper is organised as follows. Section 2 discusses the theory of mode coupling between the cavity and the 
infinite waveguide. The derivative of trapped modes, acoustic response corresponding to point source excitation, reflection/trans-
mission coefficient are also discussed in Section 2 subsequently. The simulation results of analytical and numerical solution of the 
trapped modes induced by the axisymmetric/non-axisymmetric blockage/robot are presented in Section 3.1 and Section 3.2, where 
acoustic response corresponding to the point source excitation is also discussed. In Section 3.3, the analytical solution of reflection/ 
transmission coefficient of non-axisymmetric blockage is validated against a numerical simulation and experimental data. 

2. Theory 

In a practical pipe environment, a blockage or robot’s body (an artefact) can be of random shape making it difficult to define 
theoretically the acoustic coupling between the artefact’s shape and the waveguide. Numerical methodologies, such as the Finite 
Element Method (FEM) [5], or semi-analytical approaches [15], may be employed to address this issue but with expensive compu-
tational costs. Therefore, blockages are usually simplified with specific shapes, e.g. “half-moon” at the bottom of the pipe [16]. This 
approximation facilitates an accurate theoretical representation of the artefact’s impact on the acoustic field, especially at lower 
frequencies where the wavelength significantly exceeds the dimensions of the blockage/robot artefact (more than 10 times) rendering 
such simplifications valid for practical calculations. It is common to deploy sensors for fault detection and condition monitoring in the 
pipe on a robotic system that is usually located at the centre (e.g. [17]) of the pipe cross-section or at the bottom (e.g. [2,5]) of the pipe. 
Therefore, the effect of the shape of the robot can also be modelled as an axisymmetric body in the middle of the pipe’s cross-section. 
Both artefacts are characteristic for a 3D cylindrical pipe used in this paper (as shown in Fig. 1). 

A blockage with a relatively large cross-section (e.g. above 0.5 area ratio between the blockage and pipe cross-sectional areas) has a 
strong sound reflection that is relatively straightforward to detect and localise compared to a relatively small blockage [3]. The 
detection of a smaller blockage is more challenging but important because it enables the water utility to remove it at a relatively low 
cost and before it will have developed into a larger blockage causing the pipe to lose most of its hydraulic capacity. The autonomous 
robot carrying the sensor for pipe inspection should also be relatively small with respect to the pipe diameter for its effective, scalable, 
and versatile operation underground [2,5]. Therefore, in this paper, the analytical model is mainly focused on in-pipe artefacts with a 
relatively small area ratio that is less than 0.3. 

The acoustic impedance of a blockage is another parameter that can affect acoustic scattering. In this paper, blockage/robot is 
assumed as rigid (the normal derivative of the acoustic pressure at a boundary is zero) so that the effect of the acoustic impedance is 
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ignored. This assumption can be justified by the fact that a majority of blockages in real sewer pipes are either fats or porous media 
saturated by water. The characteristic impedance of these substances is at least an order of magnitude greater than that of air filling the 
pipe above the flow of water. 

2.1. Modal coupling theory 

Assuming the time harmonic dependence in the form of exp(−iωt) throughout the paper, the sound pressure field is governed by the 
inhomogeneous Helmholtz equation [18]: 

(
∇

2 + k2
0
)p = −iρ0ωQs(ω)δ(rs, rr), (1)  

where δ denotes the Dirac function defining a point source excitation, rs is the coordinates of the point source, Qs(ω) a point source 
strength, ρ0 is the density of fluid in the pipe (air), ω is the radial frequency, ∇2 = 1

r
∂
∂r

(
r ∂

∂r

)
+ 1

r2
∂2

∂θ2 + ∂2
∂z2 is the Laplace operator and rr =

(r,θ,z), is the coordinate of the receiver point. In the above equations k0 = ω/c0 is the wavenumber in a free field where c0 is sound 
velocity in air. 

In the semi-infinite domain D1 (see Fig. 1), the acoustic pressure is given by: 
p1 = p1i + p1r =

∑

m,n

(ai,mneiγmnz + ar,mne−iγmnz)
Ψmn(r, θ), (2)  

where ai,mn, ar,mn denote the amplitude of (m,n)th (where m = 0, 1, 2…M-1; n = 0, 1, 2…N-1) mode of the incident and reflected wave, 
respectively, Ψmn(r, θ) is the mode shape function of the cross-section of the pipe, kmn is the modal wavenumber which can be obtained 
from the zero velocities boundary condition imposed on a rigid wall of the pipe [18] yielding: 

Jʹ
m(kmnr)|r=R =0 (3)  

where Jm( ⋅ ) is the mth order of Bessel function of the first kind. In Eq. (3) ́  denotes partial derivative with respect to r with Jḿ(x) =
Jm−1(x)− m

xJm(x). Note that an assumption of an air-filled pipe with rigid (zero normal particle velocity at the wall surface) and smooth 
wall is used here [19,20]. The assumption of rigid walls is justified by almost 4 orders of magnitude mismatch between the charac-
teristic acoustic impedances of air 1.29 kg/m3 × 343 m/s, and a uPVC pipe 1330 kg/m3 × 2400 m/s. It is also noted that in Eq. (2) 

Fig. 1. An illustration of a 3D cylindrical pipe with a blockage: (a) cross-section of the axisymmetric blockage area; (b) side view of the 3D cy-
lindrical axisymmetric pipe; (c) cross-section of the non-axisymmetric blockage area; (d) side view of the 3D cylindrical non-axisymmetric pipe. 
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z-axis wavenumber γmn is given by [18]: 

γmn =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k2

0 − k2
mn

√
. (4) 

Eq. (4) predicts the wavenumber for different modes at different frequencies, which means that the phase velocity is frequency and 
mode number dependent. When the free field wavenumber k0 greater than the modal wavenumber kmn, or the frequency is above the 
corresponding eigenfrequency fmn, the (m, n) acoustic mode can propagate along the pipe. Otherwise, this mode is evanescent. This 
phenomenon is usually characterised with a dispersion relationship between the wavenumber γmn and frequency f. In this work, the 
dimensionless frequency kR will be used to generalise the proposed method for any pipe diameter. 

The acoustic pressure in semi-infinite domain D3 (see Fig. 1) is defined by the outgoing acoustic waves only yielding: 

p3 = 1̅̅̅̅̅̅2π
√

∑

m,n
ct,mneiγmn(z−L)

Ψmn(r, θ), (5)  

where ct,mn denotes the amplitude of the transmission sound. 
In the domain D2 (see Fig. 1) the pressure field in the blockage area is assumed to be represented by closed cavity modes [11–14], 

which can be written as: 
p2 =

∑

μ,l
bμlΦμl(r, θ, z), (6)  

where bμl denotes the amplitude of each mode shape function of Φμl(r, θ, z). The mode shape function Φμl(r, θ, z) in the domain D2 
satisfies: 

(
∇

2 + k2
μl
)

Φμl(r, θ, z) = 0. (7) 

In the above equation kμl is the eigenvalue of the domain D2 (i.e. cavity) given by: 

k2
μl = k2

μ +
(lπ

L
)2

, (8)  

where kμ is the eigenvalue of the cross-section mode μ = (m̂, n̂) in domain D2, m̂=0, 1, 2…M̂-1; n̂=0, 1, 2…N̂-1. Due to the assumption 
of Neumann boundary condition for which ∂Φμl/∂n on the walls of the closed cavity, Φμl(x, y, z) can be expressed as: 

Φμl(r, θ, z) =
[1

ϕ
φμ(r, θ)

][ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅2 − δl0
L

√
cos

(lπ
L z

)]
, (9)  

where l = 0, 1, 2, 3…LN-1, φμ(r, θ) is the mode shape of the cross-section of domain D2, and ϕ is the normalisation factor calculated from 
the inner product of mode shape φμ(r,θ): 

ϕ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫∫

si

φμ(r, θ)φμ
∗(r, θ)rdrdθ

√√√√ , where i = 1, 2 (10)  

within which superscript φμ
∗ refers to complex conjugate of φμ, δl0 is the Dirac function which equals to 1 when l = 0, and equals to 

0 when l ∕= 0. The integral area S1 and S2 is the interface area between the waveguide domains (D1 and D3) and the blockage/robot 
cavity (domain D2) (see Fig. 1). 

Multiplying Eq. (7) by p and subtracting Eq. (1) multiplied by Φμl gives [18]: 
∫ ∫ ∫

V

[
p∇

2
Φμl − Φμl∇2p +

(
k2

μl − k2
0
)

Φμlp
]
dV = iρ0ωQS(ω)Φμl(rs) (11)  

where the integral volume V is the volume of blockage/robot cavity in domain D2. Using the Green’s theorem Eq. (11) can be simplified 
to: 

∫ ∫

S1S2

(p∇Φμl − Φμl∇p) ⋅ ndS +
∫ ∫ ∫

V

(
k2

μl − k2
0
)

ΦμlpdV = iρ0ωQS(ω)Φμl(rs) (12)  

where n is the normal to the coupling surface. 
The closed cavity mode in Eq. (6) satisfies ∇Φμl ⋅ n = 0 at the coupling surfaces S1 and S2. Substituting Eqs. (2)–(6) into Eq. (12) and 

applying the orthogonality of the modes Φμl gives: 
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∑

mn

[iγmnai,mn − iγmnar,mn − iγmnct,mncos(lπ)]χμ,mn +
(

k2
μl − k2

0
)

bμl = iρ0ωQS(ω)Φμl(rs), (13)  

with 

χμ,mn =
∫∫

S

1
ϕ

φμ(r, θ)Ψmn(r, θ)dS, S = S1 or S2. (14) 

The above integral is evaluated over S1 or S2 to account for the coupling between the waveguide and the cavity. Based on the 
orthogonality of the modes Ψmn(r,θ), the continuity condition for the sound pressure at the interfaces is: 

ai,mn + ar,mn =
∑

μ,l
bμlχμ,mn, for S1, (15)  

ct,mn =
∑

μ,l
bμlcos(lπ)χμ,mn, for S2. (16) 

Substitution of Eqs. (15) and (16) into Eq. (13) leads to the following system of equations: 
(H − k2

0I)b = −2iχdiag[γ]ai + iρ0ωQS(ω)Φ(rs), (17)  

where I is a (M̂N̂LN ×M̂N̂LN) identity matrix, diag[] transfers a vector into a diagonal matrix where the diagonal elements are 
composed of the vector, and other non-diagonal elements are zeros. diag[γ] is a (MN × MN) diagonal matrix with its diagonal elements 
defined by γmn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k2

0 − k2
mn

√
. b is a (M̂N̂LN × 1) vector that expresses the amplitude of the modal response in the domain D2. ai is a (MN 

× 1) vector which expresses the amplitude of the modal response of the incident wave. χ is a (M̂N̂LN × MN) matrix that expresses the 
coupling between the waveguide and the cavity with its elements defined in Eq. (14). Φ(rs) is a vector (M̂N̂LN × 1) that denotes the 
modal excitation components. H is (M̂N̂LN ×M̂N̂LN) matrix (also referred to as the effective non-Hermitian Hamiltonian matrix in [13, 
14,21]) given by: 

H = diag
[
k2

μl
]
− iχdiag[γ]χ T − idiag

[
(−1)l

]
χdiag[γ]χTdiag

[
(−1)l

]
, (18)  

within which the symbol Tdenotes conjugate transpose. diag
[
(−1)l] is a (M̂N̂LN ×M̂N̂LN) diagonal matrix with the elements on the 

main diagonal defined by (−1)l. It is noted that the first term of the matrix H in Eq. (18) contains the eigenvalues of the rigid cavity 
defined by Eq. (8) in the absence of coupling with the waveguide domains D1 and D3, whereas the second and third terms describe the 
coupling between the cavity, domains D1 and D3, respectively. The last two terms in Eq. (18) contain the wavenumbers for all the 
modes including the evanescent modes. These modes are important to account for because of the complexity of the acoustic scattering 
effect at the cross-sectional change in the pipe. 

2.2. Trapped modes 

The matrix H can be used to formulate the eigenvalue problem to analyse the trapped modes in the domain D2: 
HVμl = K2

μlVμl, (19)  

where K2
μl denotes the frequency dependent eigenvalues of the matrix H, and Vμl denotes the associated eigenvectors. Note that here K2

μl 
is different from k2

μl in Eq. (18) because the eigen-value 
(

K2
μl
)

of the matrix H contains information about the coupling between the 
cavity and the waveguide, whereas k2

μl is the eigenvalue of the closed rigid cavity. Since H is a symmetric matrix, its eigenvectors are bi- 
orthogonal [22]. Therefore, the response amplitude in the domain D2 using Eq. (17) can be rewritten as: 

b =
(H − k2

0I)−1[ − 2iχdiag[γ]ai + iρ0ωQS(ω)Φ(rs)] = V(VHV−1 − k2
0VV−1)−1VT [ − 2iχdiag[γ]ai + iρ0ωQS(ω)Φ(rs)]

= V(K2 − k2
0I)−1VT [ − 2iχdiag[γ]ai + iρ0ωQS(ω)Φ(rs)],

(20)  

where K is a (M̂N̂LN ×M̂N̂LN) diagonal matrix with its elements Kμl determined with Eq. (19), V is the matrix that contains the ei-
genvectors Vμl (see Eq. (19)). The singular points of the acoustic response are at: 

Re{Kμl(ω)
}
= k0 (21)  

when Im{Kμl(ω)
}

= 0. Therefore, Kμl(ω) are the complex resonance frequencies which can also be used to estimate the trapped modes 
eigenfrequencies in domain D2. 
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2.2.1. Response corresponding to point source excitation 
In this section, we only consider scattering caused by an artefact in the presence of acoustic source positioned in the domain D2. It is 

noted that the point source is considered in the absence of any incident wave in the domain D1 so that the first term in the right-hand 
side of Eq. (17) corresponding to the incident wave can be ignored. The acoustic response at any arbitrary receiver point, rr, in domain 
D2 can be expressed as: 

p2(ω, rr) =
∑

μ,l
bμlΦμl(rr) = iρ0ωQS(ω)Φ(rr)T(H − k2

0I)−1
Φ(rs). (22) 

If the receiver is outside the cavity, i.e. anywhere in the domain D3, the response can be obtained by combining Eqs. (5), (16) and 
(17): 

p3(ω, rr) =
iρ0ωQS(ω)̅̅̅̅̅̅2π

√ Ψ(rr)T[eiγ(zr−L)]χTdiag
[
(−1)l

](H − k2
0I)−1

Φ(rs). (23) 

Similarly, the response at a receiver point in the domain D1 can be written as: 

p1(ω, rr) =
iρ0ωQS(ω)̅̅̅̅̅̅2π

√ Ψ(rr)T[eiγ (L−zr)
]
χ T(H − k2

0I)−1
Φ(rs). (24)  

2.3. Incident wave and scattering matrix estimation 

In this section we discuss the scattering of the incident wave caused by a blockage. Therefore, the term associated with the point 
source located in the domain D2 can be ignored. Substituting Eq. (17) into Eq. (15) gives the reflection coefficient rm2n2 ,m1n1 for the 
incident mode (m1, n1) with the amplitude ai,m1n1 reflected into the mode (m2, n2) with the amplitude ar,m2n2 : 

rm2n2 ,m1n1 = ar,m2n2
ai,m1n1

= −δm2m1 δn2n1 − 2iχm2n2

(H − k2
0I)−1

γm1n1 χm1n1 . (25) 

The transmission coefficient tm2n2 ,m1n1 for the incidence mode (m1, n1) with the amplitude ai,m1n1 transmitted into the mode (m2, n2) 
with the amplitude ct,m2n2 is: 

tm2n2 ,m1n1 = ct,m2n2
ai,m1n1

= −2idiag
[
(−1)l

]
χm2n2

(H − k2
0I)−1

γm1n1 χ m1n1 . (26)  

Eqs. (25) and (26) will be used to calculate the reflection and transmission coefficients associated with mode conversion caused by the 
blockage. 

2.4. Mode shapes in the waveguides and cavity 

The mode shape function Ψmn(r, θ) in Eqs. (2) and (5) can be written as: 

Ψmn(r, θ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1̅̅̅
π

√ RJ0(k0n)
J0(k0nr), m = 0,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

k2
mn − m2

√
kmn̅̅̅

π
√ RJm(kmn)

exp(imθ)Jm(kmnr), m ∕= 0.
(27) 

For a 3D axisymmetric blockage or robot body (as shown in Fig. 1a), the mode shape function of the annular pipe (see Eq. (9)) can 
be simplified as [23]: 

φμ(r, θ) = βm̂n̂

[
Yʹ̂

m

(1
2ηm̂n̂h

)
Jm̂(ηm̂n̂r) − Jʹ̂

m

(1
2ηm̂n̂h

)
Ym̂(ηm̂n̂r)

]
exp(im̂θ), (28)  

where 

βm̂n̂ = ηm̂n̂̅̅̅2√
/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⎛
⎜⎜⎝

Jʹ̂
m

(
1
2ηm̂n̂h

)

Jʹ̂
m(ηm̂n̂R)

⎞
⎟⎟⎠

2
(

1 − m̂2

η2
m̂n̂R2

)
− 1 + m̂2

η2
m̂n̂R2,

√√√√√√√ (29)  

and 12ηm̂n̂h is the (n̂+1)th positive root of the transcendental equation Yʹ̂
m(x)Jm̂

(
1
2 xh /R

)
− J’

m̂(x)Y
(

1
2 xh /R

)
=0, and Ym̂( ⋅ ) is the m̂th 

Bessel function of the second kind. 
For a small moon-shape blockage (h/R < 1) (see Fig. 1(c) and (d)), the non-axisymmetric modes split into two modes whereas the 

axisymmetric modes do not split but the eigenvalues are slightly shifted [24]. An example of the mode split phenomenon of the first 
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non-axisymmetric mode is shown in Fig. 2 adapted from [24]. φμ(r, θ) can be obtained analytically [24] or numerically from the modal 
analysis. 

3. Results and discussion 

This section compares the predictions obtained with the analytical and numerical models for acoustic waves scattered by a 
blockage. A cylindrical pipe with rigid walls and a diameter of 150 mm was considered. The trapped modes analysis and point source 
excitation analysis were implemented using FEM in Comsol Multiphysics 6.0 with Perfectly Matched Layer (PML) at both ends of the 
pipe. The mesh elements were smaller than a 1/10-th of the minimum acoustic wavelength. The origin of the measured data is 
explained in the previous publication [5]. These data are also presented here for the experimental validation of the proposed analytical 
model used to predict the reflection coefficient. The analytical model used 20 modes in the pipe (modes index (m, n) in the domains D1 
and D3), 20 cross-sectional (modes with index μ = (m̂, n̂)) and 40 axial (modes index l) modes in the cavity (domain D2). 

3.1. Axisymmetric model 

3.1.1. Trapped modes 
This section discusses the trapped modes predicted with the theoretical model detailed in Section 2. For a cylindrical empty pipe, 

the eigen-frequencies of the first three modes (apart from the fundamental mode) can be estimated from Eq. (3). These are shown with 
solid vertical green lines in Fig. 3 at k10R=1.841, k20R =3.054, k01R =3.832, respectively. A cylindrical blockage with 1.2R in 
diameter, and L = 2R in length was located at the centre of the cross section. This choice for the diameter of the axisymmetric body for 
the subsequent simulation is relatively large and somewhat extreme. It was chosen to demonstrate the ability of the proposed model to 
cope with a complexity of the acoustic scattering problem when the body size is comparable to the pipe’s diameter. The first two 
eigenfrequencies of the annual pipe (domain D2), that can be predicted using the transcendental equation (Eq. (28)), are at kR=1.26 for 
mode (1,0) and at kR=2.51 for mode (2,0) (shown in Fig. 3(a) with the vertical green dashed lines). 

The cut-off frequency of the first non-axisymmetric mode (1,0) in the domain D2 (annular pipe) is observed at kR=1.26 which is 
smaller than the cut-off frequency of the same mode in the empty pipe in domains D1 and D3 (kR =1.84). Intuitively, the first non- 
axisymmetric wave pattern in the frequency range kR from 1.26 to 1.84 (grey regime in Fig. 3(a)) can propagate in the annular 
pipe (domain D2) but not in the domains D1 and D3. Therefore, this mode is expected to be restricted (or so-called trapped) within the 
domain D2. This trapped wave physics was analyzed using the eigenvalue decomposition of the symmetric matrix H as discussed in 
Section 2. It is shown in Fig. 3(a) that the frequency of the trapped eigenmode can be found as an intersection of the solution of Eq. (21) 
(the black solid line in Fig. 3a) with the eigenvalues of Eq. (19). For example, the trapped eigenmodes corresponding to the first two 
eigenvalues K100 and K101 of Eq. (19) highlighted in Fig. 3(a) as the black star points are observed at kR =1.39 and kR =1.69, where the 
solutions of Eq. (19) cross the solution of Eq. (21). These analytically predicted eigen-frequencies match with the numerical solution 
given in Ref. [9]. The shapes of trapped modes with index (1,0,0) and (1,0,1) at kR =1.39 and kR =1.69, respectively, are numerically 
calculated with Comsol as shown in Fig. 4. It is observed that the acoustic energy is concentrated in the annual pipe and decays rapidly 
in the unblocked parts of the pipe (domains D1 and D3) which means the wave does not propagate. This energy concentration may 
result in the acoustic reverberation with a long duration in the time domain if a broad band excitation is used for pipe inspection. It is 
likely to lead to issues with signal overlapping and to complicate faults detection or classification. 

Fig. 2. An illustration of the mode shape changes caused by the presence of a moon-shape blockage. First row: (a) the original shape of non- 
axisymmetric mode (1,0); (b and c) splitting of the original mode into the anti-symmetric and symmetric modes, respectively. Second row: (d) 
the original shape of the axisymmetric mode (0,1); (e) the change in the axisymmetric mode shape caused by the blockage [24]. 
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There exist extra two points satisfying Kμl = k0 (Eq. (21)) below the first eigen-frequency (mode (1,0,0)) which corresponds to K001 
and K002 eigenvalues of Eq. (19) (see Fig. 3(a)). This is due to the superposition of forwards and backwards propagating wave in the 
annual pipe caused by the discontinuity of the cross-section area in the plane wave regime. These modes have non-zero imaginary 
eigenvalues (see Fig. 3b) Im{Kμl

}
∕= 0 which correspond to the case when acoustic energy can leak out from the cavity to the 

waveguide and propagate. Whereas the trapped modes (1,0,0) and (1,0,1) have zero imaginary part leading to the local energy 
concentration. 

It is also observed that the amplitude of the real/imaginary eigenvalues of (0,0,1) and (0,0,2) axisymmetric modes increases almost 
linearly with frequency until it is close to the first axisymmetric mode (0, 1) of the pipe as shown in Fig. 3(a). On the other hand, the 
amplitude of the eigenvalues for the non-axisymmetric modes, e.g. μ=(1, 0) (see Fig. 3(a)) decreases with zero imaginary part until it is 
close to the corresponding non-axisymmetric mode. 

Fig. 3. (colour online). The frequency dependent eigenvalue Kμl: (a) real part; (b) imaginary part with wavenumber k0(black solid line), K001 (blue 
dashed line), K002 (red dashed line), K003 (black dashed line), K100 (blue dash-dotted line), K101 (red dash-dotted line), K102 (black dash-dotted 
lines), K200 (blue dotted line), eigenfrequencies of the waveguide (green solid line), eigenfrequency of the annual pipe (green dashed lines). Two 
black star points are the first two eigenvalues K100 and K101 at kR =1.39 and kR =1.69. The black dot point is the eigenvalue of mode (1,0,2) at 
kR =2.20. 

Y. Yu et al.                                                                                                                                                                                                              



Journal of Sound and Vibration 588 (2024) 118522

9

3.1.2. Point source excitation 
This section analyses the acoustic response with point source excitation and single receiver close to the cylindrical rigid body in the 

pipe as shown in Fig. 5. In application to the acoustic inspection systems introduced in this paper this rigid body modelled a robotic 
platform where acoustic sensors are usually installed on the top of the robot for condition monitoring and defects detection in a sewage 
pipe to avoid a contact with the water flow at the bottom of the pipe. This type of installation of sensors is affected by the robot body 
due to the existence of a trapped mode in the adjacent air cavity. 

For simplicity, in this paper the prediction of the trapped modes associated with the geometry illustrated in Fig. 5 was conducted for 
specific dimensions of the rigid body with h = 1.2R, L = 2R, fixed receiver location and two source positions. Fig. 6 shows the acoustic 
pressure predicted with the numerical and analytical models for a point source excitation (volume flow rate out from the source 0.001 
m3/s) being at the centre (in the middle of the top surface) of the cylindrical rigid body with the axial coordinate zs = 1 /2L or off- 
centre at zs = 1/3L. The receiver was fixed at zr = 2/3L (see Figs. 1 and 5 for notations). The radial coordinates of the excitation 
and the receiver were r = h/2 on the top of the body with θ = π (see Fig. 5). The blockage dimensions and its position were identical to 
that analysed for the trapped mode in Section 3.1.1 with the results shown in Fig. 3. It must also be noted that the receiver/source 
location was chosen to be off-centre and away from the nodal point of the trapped modes discussed in the Section 3.1.1. As shown in 
Fig. 6, the analytically predicted sound pressure and the FEM simulation agree withing 4 dB over the frequency range of kR<4 apart 
from the resonance frequencies. The resonances were predicted with the eigenvalues discussed in Section 3.1.1. When the eigenvalue 
has zero or relatively small imaginary part, the acoustic resonance is not damped leading to a sharp peak, e.g. the peaks at kR =1.39 
and kR =1.69 in Fig. 6 corresponding to the eigenmodes (1,0,0) and (1,0,1) with zero imaginary components, respectively. On the 
contrary, mode (1,0,2) (black dot in Fig. 3(a)) with resonance around kR =2.20 presents smoother or wider peak which corresponds to 
the non-zero imaginary eigenvalue. Observed mode damping phenomenon can be understood as the acoustic energy leaking out from 
the cavity and acoustic wave propagating in both the cavity and waveguide. In the plane wave regime, the analytical model tends to 
overestimate the acoustic pressure (as seen in Figs. 6–8 below kR <0.6), which is due to some underestimation of the imaginary part of 
the eigenvalues introduced in Section 2.1. It is also noted that the discrepancy in the low frequency range observed in Figs. 6–8 makes 
in reality little impact on the accuracy of the analytical prediction because of the mid- to high-frequency range used in the robotic 
platform in a typical experiment. The size of the speaker deployed on a robot cannot be large making it difficult to excite acoustic 
waves below 500 Hz (which corresponds to kR=0.7 in a 150 mm diameter pipe). The placement of the source at the cylinder’s middle 
point (zs = 1/2L) precludes the excitation of the first axial modes of the annular pipe, i.e. mode (1,0,1), owing to the source’s 
alignment with the nodal position. 

Fig. 4. (colour online). The trapped modes (1,0,0) at kR =1.39 (upper figure) and (1,0,1) at kR =1.69 (lower figure) from numerical simulation for 
the axisymmetric artefact with L = 2R and h = 1.2R. 

Fig. 5. An illustration of the geometry used for modelling of the acoustic response with a point source excitation on the robotic platform.  
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Fig. 7 and Fig. 8 show the acoustic response of a thinner cylindrical rigid body with h = 0.8R and h = 0.4R, respectively. The 
agreement between the analytical model and FEM is closer when the cylinder is thinner. The averaged difference between analytical 
and FEM over the frequency range 0.7<kR<4.1 for off-centre source and centre source is 3.2 dB and 2.4 dB, respectively, when h =
0.8R (see Fig. 7), and 2.1 dB and 1.5 dB respectively when h = 0.4R (see Fig. 8). For a thinner cylinder the number of undamped 
resonances is also reduced since the eigenfrequency of the annual pipe gets closer to the eigenfrequency of the empty pipe. 

3.2. Non-axisymmetric model 

3.2.1. Trapped mode 
A half-moon blockage at the bottom of the pipe can split a non-axisymmetric mode into two modes (see Fig. 2): symmetric and anti- 

symmetric [24]. For a small blockage, this anti-symmetric mode has an eigenfrequency slightly lower than that of the first cut-off 
frequency (k10R) of the empty pipe (see Fig. 4 from [24]) which then may result in a trapped mode in the frequency range 

Fig. 6. A comparison of the acoustic frequency response predicted for a point source at the centre (black lines) zs = 1/2L or off-centre (red lines) zs 
= 1/3L of the cylinder surface in the pipe; h = 1.2R (see also Fig. 5 for setup illustration). 

Fig. 7. A comparison of the acoustic response predicted for a point source at the centre (black lines) zs = 1/2L, or off-centre (red lines) zs = 1 /3L of 
the cylinder surface in the pipe; h = 0.8R (see also Fig. 5 for setup illustration). 
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between the anti-symmetric mode and k10R. The analytical model used the solution of the wavenumbers from Ref. [24] to obtain the 
mode shapes for both anti-symmetric and symmetric modes: 

φ
(1)
m̂n̂(r, θ) = sin(m̂θ)Jm̂

(
k(1)

m̂n̂r
)
, (30)  

φ
(2)
m̂n̂(r, θ) = cos(m̂θ)Jm̂

(
k(2)

m̂n̂r
)
, (31)  

where k(1)
m̂n̂ and k(2)

m̂n̂ are determined empirically from Tables 1 and 2 in Ref. [24]. Note that this model is limited for blockages <20 % as 
proposed in Ref. [24]. 

As shown in Fig. 9 the first non-axisymmetric mode for an empty pipe has the eigenfrequency of kR=1.841, whereas for a 20 % 
blockage with the dimensions h = 0.4R, L = 2R, the first non-axisymmetric mode is split into an anti-symmetric and symmetric mode 
at kR=1.76 and kR=2.16, respectively. Between the anti-symmetric mode kR=1.76 and the first non-axisymmetric mode (k10R), the 
trapped mode exists at around kR=1.81 (marked as star where the blue-dashed curve Re{K100} crosses with the black solid curve k0 in 
Fig. 9(a)). In this case, the imaginary part of the eigenvalue Im{K100} is close to zero as shown in Fig. 9(b). This analytical solution has 
close agreement with the numerical prediction at kR=1.83 with the mode shape shown in Fig. 10. In Fig. 10 the mode shape of the 
acoustic wave has an anti-symmetric mode pattern respected to the θ=0 plane (which is the nodal plane). 

There also exist two extra points satisfying Re{Kμl
}
= k0 below the first eigenfrequency k10R: K001 and K002 (see Fig. 9). These roots 

are caused by the superposition of the forward and backward propagating modes in the annual pipe in the plane wave regime. Again, 
these modes have non-zero imaginary eigenvalues (see Fig. 9(b)) i.e., Im{Kμl

}
∕= 0 which represent example of leaky modes. 

3.2.2. Point source excitation 
In this section, FEM and analytical model were used to estimate the acoustic response due to a point source excitation (volume flow 

rate out from the source 0.001 m3/s) at an off-centre position:
(
− h, L

3,
L
3

)
in the presence of a 20 % blockage with h = 0.4R, L = 2R. 

With a point source at an off-centre position, almost all the modes can be excited. As shown in Fig. 11, there is a narrow peak at 
kR=1.83, which represents the anti-symmetric mode (1,0,0). This is due to the zero imaginary part of the eigenvalue of K100. The other 
resonances tend to have wider peaks/troughs compared with mode (1, 0,0) over the frequency range up to kR=4. This matches with 
the mode analysis in the Section 3.2.1. The maximum difference between the analytical model and the FEM is less than 4.8 dB over the 
frequency range 0.1<kR<4. The fluctuation observed in the analytical model, and the mismatch between the FEM and the analytical 

Fig. 8. A comparison of the acoustic frequency response predicted for a point source at the centre (black lines) zs = 1/2L, or off-centre (red lines) zs 
= 1/3L of the cylinder surface in the pipe; h = 0.4R. 

Table 1 
The mutual mean differences (Eq. (33)) between the reflection coefficient spectra predicted with the proposed analytical model, FEM simulation 
or measured in the experiment for the frequency range of kR<1.83 (10; 20; 30 % blockage ratio).   

Rrα : Analytical Numerical (FEM) Measurement 
Rrβ: Analytical — 1.7; 4.1; 9.6 % 10.2; 3.2; 6.5 % 
Numerical (FEM) 1.8; 3.5; 7.9 % — 10.3; 3.6; 4.4 % 
Measurement 11.6; 3.1; 5.6 % 11.6; 4.2; 5.1 % —  
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models beyond the first cut-off frequency can be linked to inaccuracies in using the mode shapes (see Eqs. (30) and (31)) within the 
analytical model beyond the first cut-off frequency. This discrepancy is less than 3 dB within the frequency range of kR<4 for a 
blockage smaller than 20 % [24]. However, this error can be larger for blockages size over 20 %. For example, this maximum difference 
can be over 5 dB for a 30 % blockage. 

Table 2 
The mutual mean differences (Eq. (33)) between the reflection coefficient spectra predicted with the proposed analytical model, FEM simulation or 
measured in the experiment for the frequency range of kR>1.83 (10 %; 20 %; 30 % blockage ratio).   

Rrα : Analytical Numerical (FEM) Measurement 
Rrβ : Analytica zl — 7.5; 19.4; 27.5 % 14.5; 29.9; 19.6 % 
Numerical (FEM) 8.2; 18.2; 22.6 % — 12.4; 34.5; 11.1 % 
Measurement 16.6; 31.1; 19.2 % 14.6; 68.4; 18.6 % —  

Fig. 9. The behaviour of the frequency dependent eigenvalue Kμl: (a) real part; (b) imaginary part for the pipe with a non-axisymmetric blockage (h 
= 0.4R, L = 2R) and wavenumber k0 (black solid line), K001 (blue dashed line), K002 (red dashed line), K003 (black dashed line), K100 (blue dash- 
dotted line), K101 (red dash-dotted line), the symmetric mode K̂ 1̂00 mode (black dash-dotted line). The eigenfrequencies of the waveguide (green 
solid line), eigenfrequencies of the annual pipe (green dashed line). 
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3.3. Experimental validation 

This section presents data on the acoustic reflection coefficient for a non-axisymmetric blockage in a typical drainage pipe. The data 
were obtained with a six-microphone array carried by a mobile testing platform (a remotely controlled robot (iRobot Looj 330 by 
iRobot [25]) similar to that detailed in [5,6]. This measurement setup is shown in Fig. 12. The measurements were carried out in the 
Integrated Civil and Infrastructure Research Centre (ICAIR) at Sheffield [26] to validate the analytical model proposed in Sections 3.1 
and 3.2. A 16 m long straight section made of a few uPVC drainage pipes with the 150 mm diameter was used in this experiment (see 
Fig. 12(a)). Different sizes of concrete blockages ( h

2R = 0.1, 0.2 and 0.3, i.e. 10 %, 20 % and 30 % blockages) were moulded and used to 
validate the analytical model and simulation. A photograph of these blockages is shown in Fig. 12(b). A complete termination ( h

2R=1) 
was used as a reference blockage. The surface of the concrete blockages was assumed to be rigid, i.e. no more than 1 % of sound energy 
was absorbed in the adopted frequency range. 

The acoustic sensor system consisted of a loudspeaker, six-microphone array, power amplifier for the speaker, 32-bit analogue to 
digital converter (ADC), digital to analogue converter (DAC) and Raspberry Pi 4 used for data acquisition and control as shown in 
Fig. 12(c). The sampling rate was set to 16 kHz. The microphone type used in this measurement was MSM321A3729H9CP by 
MEMSensing Microsystems Co. Ltd. Visaton 2242 speaker with the 32 mm diameter was driven with a 3 W power amplifier. Initially 
the speaker was located at the centre of the pipe within 5 mm positional error to minimise the excitation of non-axisymmetric modes. 
The microphone array was axisymmetrical with radius of 0.628R (see Fig. 12(c)) to follow the nodal line of the first axisymmetric mode 
(0, 1) for the empty pipe (see Fig. 2(e)). Therefore, the plane wave reflected from the blockage or other pipe features could be extracted 
and enhanced using an average of six microphones and wavelet denoising by sparse representation over the frequency range of 
0.01<kR<4. 

A 100–3000 Hz (0.01<kR<4.12) sweep sine with 10 s duration was used as the excitation signal. The impulse response was ob-
tained by deconvolution between the extracted plane wave and the excitation signal. The separation distance between the robot and 
the blockage was 5 m in the middle of the straight section of the pipe, so that the reflection pulse was time windowed for the calculation 
of the reflection coefficient. It is worth noting that the reflection coefficient from the 10 %, 20 % and 30 % blockages was normalised in 
the frequency domain by the reference signal measured for the reference 100 % blockage which was assumed as a rigid reflector with 
reflection coefficient equal to 1 across the adopted frequency range. The reflection coefficient was estimated from the acoustic impulse 

Fig. 10. The acoustics pressure of the trapped mode (1,0, 0) predicted with the numerical simulation for a 20 % non-axisymmetric blockage (h =
0.4R, L = 2R) located at the bottom of the pipe. 

Fig. 11. A comparison of the acoustic frequency response predicted for a point source at the off-centre position, 
(
− h, L

3,
L
3

)
of the flat surface on 

the blockage; h = 0.4R. 
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response using the method detailed in [5]. Accordingly, it was predicted using the new analytical model detailed in Section 2.2 and 
FEM. The predictions were compared against the measured data. The reflection coefficient Rr can be defined as: 

Rr(ω) = pr(ω)/pi(ω) (32)  

where pi(ω) is the spectrum of the incident sound wave measured using the sound reflection from a rigid termination, pr is the spectrum 
of the sound wave reflected from the blockage. 

Fig. 13 demonstrates a comparison between the measured reflection coefficient spectra, FEM simulation and analytical solution for 
the 10 %, 20 % and 30 % blockages. It is clear from Fig. 13 that the behaviour of the measured and simulated reflection coefficient 
spectra is different below the first cut-off frequency at kR = 1.83 and above it. The measured, simulated and analytically predicted 
spectra agree much better below kR = 1.83 but can deviate considerably above this frequency particularly for the blockage ratios 
greater than 10 %. Tables 1 and 2 present the mutual mean differences between the measured, simulated and analytically predicted 
reflection coefficient spectra estimated separately for the kR < 1.83 and kR > 1.83 frequency ranges as: 

ϵR = 1
W

∑W

w=1

⃒⃒Rrα(ωw) − Rrβ(ωw)
⃒⃒

max[Rrα]
× 100% , (33)  

respectively. In the above equation Rrα is either the analytically predicted, simulated or measured reflection coefficient spectrum 
(columns in Tables 1 and 2) and Rrβ is the reference reflection coefficient spectrum against which this difference was estimated (rows in 
Tables 1 and 2). W in Eq. (33) is the total number of frequencies in the Fourier transform at which the difference was estimated. 

In the kR < 1.85 frequency range the analytical model and FEM agree very well within ϵR ≤ 4.1 % for the small and medium 
blockages, i.e. 10 % and 20 % (See Table 1). In the case of the 30 % blockage the maximum difference increases to 9.6 %. With the 
increasing size of the blockage the frequency of the first minimum in the refection coefficient spectra (anti-resonance) decreases. This 
decrease is predicted with the analytical model, FEM simulation and confirmed with the measured data (see Fig. 13). For example, the 
trough for 10 % blockage is observed at around kR = 1.44, which is close to that for the 2D solution [18] (around kR = 1.46) with only 
the plane wave considered. For the 20 % blockage the anti-resonance is observed around kR = 1.36. This trough shifting phenomenon 
is caused by the coupling between the modes in the air cavity at the blockage location and the plane wave of the waveguide as 
explained in the previous sections. As the blockage becomes larger, e.g. 30 %, the analytical model overpredicts the frequency of the 
anti-resonance by 7.1 % (see Fig. 13). The frequency of this resonance predicted with the FEM simulation agrees with the measured 
data within 1.3 % for all the three blockage sizes. 

When the blockage was 10 %, its reflection coefficient was also relatively small, i.e. well below Rr(ω) < 0.1 (see Fig. 13). It is likely 
that the measured reflection coefficient for such a small blockage became comparable with the experimental errors expected with a 6- 

Fig. 12. (a) a straight pipe with 150 mm diameter and 16 m length; (b) concrete blockages with 10 %, 20 % and 30 % and 100 % (reference) 
blockage ratios ( h

2R× 100%) as seen from left to right; (c) a robotic platform with microphone array and speaker. 

Y. Yu et al.                                                                                                                                                                                                              



Journal of Sound and Vibration 588 (2024) 118522

15

microphone cross-sectional array as explained in [5,6]. Also, the 32 mm diameter speaker used in the experiment struggled to ensure a 
sufficient signal-to-noise ratio below 500 Hz (i.e. below kR ≈0.7 in Fig. 13). In the kR < 1.85 frequency range other factors such as poor 
pipe joints, wall vibration and scattering by the robot’s body can also affect the quality of the measured data. In particular, the robot’s 
body, speaker and array support shown in Fig. 12(c) are complicated in shape and the size of the whole arrangement is comparable to 
the acoustic wavelength. These factors are difficult to account for accurately in the FEM simulation and impossible with the proposed 
analytical model. 

In the kR > 1.85 frequency range the behaviour of the reflection coefficient spectra predicted with the FEM for these three 
blockages becomes much more complex (see Fig. 13). Clear differences between the analytical model and FEM are visible in the results 
shown in Fig. 13, particularly for the 20 % and 30 % blockages. For these blockage ratios the maximum differences were 19.4 % and 
27.5 % (see Table 2), respectively. In the vicinity of the cut-off frequencies the FEM simulation demonstrates clear resonance peaks that 
are not visible in the measured or analytically precited reflection coefficient spectra (see Fig. 13(b and c)). At these resonances the FEM 
simulated reflection coefficient is 50–100 % greater than the measured reflection coefficient. Key factors that affect the quality of the 
FEM simulation relate to scattering of sound by the robot’s body, finite size of the speaker used in the experiment and the thermos- 
viscous effects in the pipe contributing to acoustic attenuation. These factors were neglected in the simulation. There are also clear 
differences between the analytical model and measured data (see Fig. 13). It was explained in Section 3.2.2 that the analytical model 
makes an assumption regarding the mode shapes and wavenumbers in Eqs. (30) and (31) used to calculate the acoustic pressure in the 
domain D2 above the blockage (Fig. 1). This assumption breaks down beyond the first cut-off frequency when the blockage ratio 
increases above 20 % [24]. Therefore, it can be suggested that the proposed analytical model is more suitable for prediction of the 
acoustic reflection coefficient for smaller blockages, e.g. those with h/(2R) ≤ 0.2. Proactive detection of these blockages is particularly 
important because they can be removed at a relatively low cost and when the probability of pollution and service disruption is low. 

Fig. 13. A comparison of the reflection coefficient for: (a) 10 %, (b) 20 %, (c) 30 % blockages.  
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It is noted that the analytical model used in this paper is computationally much more efficient in calculating the reflection coef-
ficient compared to the FEM simulation. The analytical model can be solved within 30 s for a blockage in a 150 mm diameter pipe with 
20 Hz resolution over the frequency range 10–3000 Hz (0.01<kR<4.12) using Matlab Version 9.13 (R2022b) on a workstation with 
Intel(R) Core (TM) i7–9980 × 3.8 GHz CPU, and 128 GB RAM, whereas the computational time for the FEM model in Comsol executed 
on the same workstation is around 5 h (around 600 times slower). 

4. Conclusions 

A 3D analytical modal coupling method has been proposed to predict the acoustic wave scattering from an axisymmetric or non- 
axisymmetric artefact (i.e. blockage or robot’s body) in a cylindrical waveguide such as a air-filled drainage pipe. The proposed 
method theoretically explains the existence of trapped modes due to the presence of a 3D axisymmetric or non-axisymmetric artefact in 
the pipe. These artefacts represent a robot’s body or blockage that scatters the acoustic field in the pipe. The accuracy of the proposed 
analytical model has been estimated against a numerical simulation based on the final element method and validated against measured 
data. A comparison against the results of numerical simulation has demonstrated that the new analytical model is accurate withing 4 
dB over the frequency range of 0.1<kR<4 for an axisymmetric blockage with the blockage ratio of h/(2R) = 0.6. In the case of a non- 
axisymmertic blockage the difference between the proposed analytical model and numerical simulation has been within 3 dB for h 
/(2R) < 0.2. This difference can increase significantly for non-axisymmetric blockages with larger h/(2R) ratios. However, the pro-
posed analytical model is at least 600 times computationally more efficient that the FEM simulation. 

The acoustic response of the pipe obtained with a point source excitation was predicted at six receiver points corresponding to the 
positions of microphones in an acoustic array installed in the pipe to detect and localise a non-axisymmetric blockage. The response has 
then been used to calculate the reflection coefficient for the 10 %, 20 % and 30 % blockages (i.e. 0.1, 0.2 and 0.3 blockage ratios). The 
analytical model demonstrates a 4.1 % agreement with the numerical and 11.5 % agreement with the measured reflection coefficient 
spectra in the frequency range below the first cut-off frequency kR=1.83. As the blockage becomes larger or the frequency range 
extends beyond kR=1.83 the difference between this analytical model and measured reflection coefficient data increases to 19.6 %. It 
has been observed that the frequency of the first anti-resonance in the reflection coefficient spectra shift towards the lower frequency 
range as the blockage ratio increases. This frequency shift caused by the coupling with the cavity modes and it has been predicted with 
the analytical model to within 2.7 % for the blockage ratios below 20 %. 

There are several limitations of the proposed analytical model. Firstly, beyond the first cut-off frequency the classic mode shapes 
and wavenumbers assumed in Eqs. (30 and 31) are no longer accurate enough for blockage ratios above 20 % [24]. Secondly, the 
number of modes required for more precise calculations has to be much greater than that used in this work (20 modes in the pipe with 
index (m, n) in the domains D1 and D3, 20 cross-sectional modes with index μ = (m̂, n̂) and 40 axial modes with index l in the domain 
D2, see Section 2). Thirdly, it has been found difficult to validate accurately the new model against the FEM simulation or measured 
data. The FEM simulation used in this work has not included the exact robot shape that proved to be too sophisticated to be accurately 
modelled with the FEM. The FEM has not taken into account the finite size of the speaker used in the experiment and visco-thermal 
effects in the pipe. The reflection coefficient measured for the 10 % blockage has been found too low to measure it very accurately with 
a 6-microphone cross-sectional array for the reasons explained in [5,6]. Also, the 32 mm diameter speaker used in the experiment has 
not been powerful enough to ensure a sufficient signal-to-noise ratio below 500 Hz to validate the model below kR=0.7. Finally, other 
factors such as poor pipe joints, wall vibration and scattering by the complex robot’s body shape could have also affected the quality of 
the measured data across the frequency range considered in this work. These factors are difficult to consider theoretically or with the 
FEM simulation adopted for this work. Our study suggests that the scattering pattern from a simple axisymmetric artefact in a pipe is 
very complex. The complexity of the scattering pattern increases progressively with the increased complexity of the artefact’s shape. 
This topic deserves a separate systematic study through a more refined numerical simulation supported by a more extensive experi-
mental work and machine learning. 
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