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Abstract— Gaze estimation methods typically regress gaze
directions directly from images using a deep network. We show
that equipping a deep network with an explicit 3D shape model
can: i) improve gaze estimation accuracy, ii) perform well with
lower resolution inputs at high frame rates and, importantly, iii)
provide a much richer understanding of the eye-region and its
constituent gaze system, thus lending itself to a wider range
of applications. We use an ‘eyes and nose’ 3D Morphable
Model (3DMM) to capture relevant local 3D facial geometry
and appearance, and we equip this with a geometric vergence
model of gaze to give an ‘active-gaze 3DMM’. Latent codes are
used to express eye-region shape, appearance, pose, scale and
gaze directions, with these being regressed using a tiny Swin
transformer. We achieve fast real time at 89 fps without fitted
model rendering and 34 fps with rendering. Our system shows
state-of-the-art results on the Eyediap dataset, which provides
3D training supervision and highly competitive results on ETH-
XGaze, despite a lack of 3D supervision and without modelling
the kappa angle. Indeed, our method can learn with only the
ground truth gaze target point and the camera parameters,
without access to the ground truth gaze origin points, thus
significantly widening applicability.

I. INTRODUCTION

The estimation of gaze direction enables the visual un-

derstanding of human intention, with high utility in human-

computer interaction and XR. Active systems that project

light onto the face/eye region either simplify image pro-

cessing [1] or provide 3D information directly [2]. Previous

passive systems have built an eye model [3], eye-region

model [4], or a full head model [5], that can be fitted to given

images, which thereby provides a gaze direction estimation.

Many systems employ lightweight modelling in the sense

that they use landmark extraction for the face, eyelids, iris

contour and pupil contour [6], [7], [8].
Also, appearance-based methods that regress gaze di-

rections directly from RGB input images using deep net-

works, but without the use of 3D shape models, have been

popular [9]. Compared to these appearance-based methods,

model-based methods are less competitive in regard to gaze

estimation accuracy, due to a deep neural network’s fea-

ture extraction and nonlinear fitting ability. However, most

appearance-based gaze estimation methods predict only a

gaze direction (azimuth-elevation orientation), but no other

information about the 3D geometry of the gaze or the

eye-region, which often has high utility, such as design

of XR eyewear. Current literature has different gaze origin

representations (e.g. eyeball centres or a point on the face),

which requires additional effort to make performance com-

parisons [10].
We propose an end-to-end method, combining both

appearance-based and model-based elements. Our method

reconstructs the 3D eye-nose region, avoiding the highly-

variable mouth-jaw area that deforms over expressions, so

that it can more accurately predict gaze direction over a wide

range of facial shapes and head poses. We employ an eyes-

and-nose 3D Morphable Model (3DMM) and, crucially, we

equip this with a geometric vergence model of gaze. We

call this an active-gaze 3DMM. This enables the combined

rotation of the eyeballs to define the gaze under certain ge-

ometric constraints, such as coplanarity of the gaze vectors.

As a result, we can model the correlations between the face

and the left and right eyeballs. This ensures both accurate

gaze estimation and that the eyeball positions are consistent

with both the most rigid part of the face geometry and the

head pose, see Fig. 1.

Fig. 1. Active-gaze 3DMM fitting: top left: input image; top-right:
predicted gaze directions (red) and ground truth (green); bottom-
left: predicted eye region model; bottom-right: eye-region model
overlaid on input.

Adding a model to an appearance-based method provides

richer information e.g. we can trivially estimate the subject’s

inter-ocular distance, leveraging the fitted model’s correlation

between shape and size. This is applicable even though one

of our training datasets (ETH-XGaze) does not provide the

required eyeball centre information. Also, when designing

wearable devices such as smart glasses, both the eye-region

geometry information and the gaze information are impor-

tant. Under such circumstances, our approach provides both

the eye-region geometry and a much more accurate gaze
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estimation when compared to purely model-based methods.

Most image autoencoder 3D reconstruction methods from

monocular RGB images focus on faces [11], [12]. Typically,

their 3D face models only model the eyeball surface area as

part of the face, and the gaze directions are not explicitly

modelled. Our method both takes advantage of the image

autoencoder architecture and models the specific eye-region

area, designing gaze information into the model.

Note that our system is more than just a gaze estimation

system as it generates a 3D fitted model of the whole

eye region and therefore has wider utility than a gaze-only

estimation system. In a significant sense, therefore, it is not

directly comparable to gaze-only systems, as the information

content of our outputs are much richer. Our system is fast

enough to keep pace with high-speed cameras of up to 89fps,

which may better temporally localise eye saccades.

Our aim is to investigate what can be achieved when com-

bining appearance-based with model-based system compo-

nents. The nature of our system is that it explicitly generates

a 3D geometric model and therefore we find that it works best

when there is good 3D supervision built into the 3D training

dataset. For example, we are able to demonstrate state-of-

the-art accuracy on Eyediap [13], where 3D supervision is

provided. Indeed, such information is readily available from

any modern 3D capture system, whether it be RGB-D or

multi-view for example. However, explicit 3D supervision is

not strictly necessary, as we demonstrate on the ETH-XGaze

dataset [14]. Here we demonstrate competitive performance

without 3D supervision, although we cannot improve on the

current gaze-only state-of-the-art system.

In summary, our main contributions are: i) An active-gaze

3DMM that focuses on the more rigid ‘eyes and nose’ region

and that is equipped with a geometric eye vergence model

for regularisation. ii) Demonstration that the active-gaze

3DMM increases gaze estimation accuracy and versatility.

iii) Demonstration of the method’s fast inference time for

real-time performance and adaptability, when only ground

truth 3D gaze targets are available, with no access to gaze

origin information.

To the best of our knowledge, we are the first to propose

a gaze estimation system that combines model-based gaze

vergence constraints with the self-supervised appearance

based constraints available in an autoencoder architecture.

II. RELATED WORK

We summarise related work in 3DMMs, facial 3D recon-

struction, and appearance-based gaze estimation.

A. 3D morphable models

Face 3DMMs were introduced more than two decades ago

by Blanz and Vetter [15] and perhaps is the most widely-

employed technique in recent statistical 3D face modelling

applications. Such 3DMMs model a linear or non-linear

3D facial space using a latent representation that can be

constructed in a number of different ways. Examples include

PCA [16], [17], [5], dictionary learning [18], wavelet de-

composition [19], Gaussian mixture models [20] and neural

nets [12]. Apart from the general face 3DMMs, there are sev-

eral approaches that bring more focus to eyeball modelling.

Bérard et al. [21] were the first to build a parametric model

of eyeballs. The quality of this eye model is high, but the

reconstruction process is semi-automatic. Wood et al. [4],

[22] attempt to build an eye-region model of the single eye

and use model fitting to estimate gaze. Ploumpis et al. [5]

propose a method for building a complete head morphable

model that includes eyeballs. The eye-region modelling is

similar to the approach of Wood et al. and is blended into

the head model. Amongst the publicly-available 3DMMs, we

choose the FLAME [23] model to build our eye-region model

since it has both eyeballs and can form a minimal eye-region

model for both eyes, see Fig. 1, bottom left.

B. 3D Face Reconstruction from Monocular RGB

Reconstruction methods generally fall into three cate-

gories: generative, regression and generative-regression hy-

brid. Generative methods focus on generating a 3D model to

fit the target data [24]. The approaches proposed by Wood et

al. [4] and Ploumpis et al. [5] both fall into this category.

Regression methods, recently popular due to deep learning

advances, focus on regressing the model parameters directly

via deep networks [25], [26]. The third category was firstly

proposed by Tewari et al. [11], and adopted by many

other works [27], [12]. This approach usually trains a joint

autoencoder model that encodes the model parameters via the

regression method, decodes the regressed model parameters,

and reconstructs the original input. In contrast to our work,

all of the mentioned face autoencoders focus on full face

reconstruction and use only a mesh surface to model the

eyeball, and the appearance of different gaze directions is

not present or modelled via texture.

C. Appearance-based Gaze Estimation Methods

Recent appearance-based gaze estimation methods usually

use a deep neural network to regress gaze directions. A

number of datasets containing RGB images and gaze labels

have been published that have enabled rapid progress. Along

with the datasets, various appearance-based methods use

different input representations, e.g., eye images [28], [29],

[30], face images [31], [14] or both [32], [33]. They also

use different network architectures (CNNs, attention-based or

combined) and different gaze representations (gaze originates

from the eyeball or gaze originates from face centre) [10].

Prediction using high-resolution eye images has been the

mainstream of this area, but face features were found to pro-

vide additional information for gaze estimation [34]. Recent

work has focused on using super-resolution techniques for

gaze estimation on very low resolution images [35]. Another

recent work focuses on selecting relevant features in the

latent code to facilitate good cross-domain performance [36].

On the more traditional side, model-based gaze estimation

often involves a geometric eye model that is fitted to detected

eye features, such as corneal reflections, pupil centre, iris

contour, and eye landmarks [4], [5], [37].
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Fig. 2. Autoencoder with tiny version of the Swin Transformer. LE (Linear Embedding) is used in stage one and PM (Patch Merging) is
used in stages 2−4. ST Block is a Swin Transformer block. Blue points are 3D model landmarks projected to the image plane. ‘L’ terms
show where training losses are generated. The latent vector ZM encodes the 3D shape and color-texture of the eye region, while ZE is
vector that encodes the eyeball orientations (azimuth and elevation for both eyes) that correspond to the gaze direction.

III. PROPOSED METHOD

Our architecture (Fig. 2) shows that the raw image I is

fed to the encoder to regress eye-region reconstruction pa-

rameters zM and eye rotation parameters zE . The eye-region

parameters are defined as follows: zM = (zS,zA,r,T, f )T ,

where zS are shape parameters, zA are texture parameters,

r,T are head pose parameters describing rotation and trans-

lation respectively and f is the scale factor due to projection.

We use the Swin transformer [38] as our encoder network.

The eye-region reconstruction parameters zM are used to

reconstruct a textured eye-region 3D mesh, thus providing

predicted 3D eyeball centres as gaze origins (eyeball vertex

means), and a set of 2D projected landmarks for eye-region

alignment. The eye rotation parameters zE predict the gaze

vectors for both eyes. Using the gaze origins and gaze

vectors, we employ a geometric vergence model to constrain

the gaze directions of both eyes jointly. Finally, we use a

differentiable renderer to render the output image for pixel-

wise comparison to the input. We now elaborate each pipline

component.

A. Pipeline components

Encoder. The input image is first divided into non-

overlapping patch tokens. This is followed by four Swin

transformer blocks. We define Di as the number of blocks at

stage i, where D1...4 = (2,2,6,2), and use the Tiny network

structure provided by the authors. For the first stage, the

linear embedding module is applied before the transformer

blocks, and for the other three stages, a patch merging

module is applied before each set of transformer blocks to

reduce the output dimensionality. These four stages jointly

produce a feature map that is fed to a linear layer to regress a

semantically-meaningful feature vector. This is then divided

into two parts: eye-region reconstruction parameters zM and

both eyes’ gaze directions, zE . Directions are defined by

azimuth and elevation, hence zE is a 4-vector.

Fig. 3. The mean eye-region mesh, extracted from the FLAME
model [23] and incorporated into our active-gaze 3DMM fitting
system, which has rotatable eyeballs

Eye-Region 3D Morphable Model (3DMM). The eye-

region 3DMM is constructed by selecting the relevant ver-

tices and their topology from the FLAME [23] model. As

shown in Fig. 3, both eyeballs, the eye-region and the nose

are selected. Eyeballs, which are simple spheres, are used

to model gaze directions, eyeball sizes, and inter-ocular

distances. The eye-region contains 22 landmarks on the

eyebrows and eye contours, which is used to model eyeball

positions and head poses. We omit the remaining parts of the

FLAME head model, firstly to enable a more compact and

efficient learning process, and secondly since they have much

higher variance in features (e.g. mouth/jaw variations due to

speech and/or facial expressions) that are not relevant to gaze

modelling, and may introduce confounding factors. Notably,

the largely rigid nose area, which contains nine landmarks on

the nose ridge and the philtrum area, is added to strengthen

the head pose prediction. We also use the albedo model

presented by [39] to enable differentiable rendering of the

eye-region model.



We reconstruct the 3DMM’s shape S ∈ R
N×3 from the

standard FLAME-basis shape parameters zS and the texture

A ∈ R
512×512×3 from texture parameters zA as follows:

S = µS +USzS (1)

A = µA +UAzA, (2)

where N is the number of vertices in the eye-region shape

model, µ{S,A} and U{S,A} are the mean and principal compo-

nents provided by the shape and texture 3DMMs respectively.

Then the eye-region shape S is transformed with rotation R,

translation T and scale f to the camera coordination system

by:

S′ = f SRT +1T, (3)

where R ∈ SO(3) is the rotation matrix derived from the

Euler angle rotation r ∈ R
3 and 1 ∈ R

N×1 is the vector of

all ones. Finally, given the camera calibrations are available,

we construct a full perspective projection ΠΠΠ ∈ R
3 → R

2

to project the eye-region shape in 3D camera space S′ to

image plane, thus obtaining the predicted 2D landmarks

L̂ on image plane. We use a differentiable renderer DR

implemented by PyTorch3D [40], with the same projection

model, to form image Î as:

Î = DR
(

S′,A,ΠΠΠ
)

. (4)

All previous works on 3D face reconstruction that involve

differentiable rendering assume a Lambertian surface. This

is not well-suited to the eyeball due to its moisture, which

causes specularities. Our experiments shows that the geo-

metric vergence constraints contribute significantly to gaze

estimation accuracy, thus we choose the ambient Phong

lighting model.

With the reconstructed 3D eye-region, we form the 3D

gaze origin loss function Lo as

Lo = ∥ô−o∥1
1, (5)

where o is a 3D ground truth gaze origin provided by the

training dataset (if available) and ô is some point derived

by the eye-region shape; e.g. a predicted eyeball centre

is obtained by averaging all eyeball vertices. With such

a design, our method becomes universally applicable to

any gaze origin definition, as provided by the dataset; for

example, both eyeball-centered and face-centered have been

used in the literature. This obviates the conversion step

described by Chen et al. [10] that converts gaze ground

truth between datasets using different gaze representations.

With the projection model 2D projected landmarks can be

obtained, giving the 2D landmark loss function Llm as:

Llm = ∥L̂ −L ∥2
2, (6)

where L , the ground truth 2D landmarks, are either provided

by the dataset or generated before training using PyTorch

Face Landmark [41] with a pre-trained MobileNetV2 [42]

as the backbone network. The predicted 2D landmarks L̂

are obtained by projecting selected vertices in the eye-region

shape S′ onto the image plane via the perspective projection,

ΠΠΠ. We employ the Multi-PIE [43] definition of 68 face

landmarks and select 31 corresponding points on the eye-

region 3DMM and input images.
Finally, the pixel loss Lpix for rendered eye-region images

is formed as:

Lpix = ∥Î− I∥2
2. (7)

Vergence model. The predicted gaze rotations zE =
(rl ,rr)

T are azimuths and elevations for both eyes (e.g.

rl = (rle,rla)
T ). An eyeball rotation matrix Re

{l,r} is derived

for each eye using each pair of these Euler rotation angles.

We assume that the gaze direction is a vector originating

from the centre of the eyeball, and pointing towards the

iris centre and we initialise this in the global camera frame

to be pointing towards the camera i.e. g0 =
[

0 0 1
]T

.

Thus, face frame gaze vectors for both eyes are calculated

as: gi = Re
i g0, i ∈ {l,r}. They originate from both eyeballs’

centre o{l,r} respectively. The eyeball rotation matrices Re
{l,r}

are also applied to the front-facing (i.e. unrotated) eyeball

shapes of the reconstructed 3D eye-region shape to rotate

the eyeballs to produce a plausible appearance.

or

ol

gr

gl

t

Fig. 4. The vergence model of gaze for the active-gaze 3DMM,
showing eyeball origins (ol,r), gaze directions (gl,r) and viewing
target t in the global camera frame. In general, the regressed gaze
directions are skew and the loss function penalises this lack of
coplanarity. Note that all parameters are defined in the camera
coordinate system.

As shown in Fig. 4, we equip our system with geometric

constraints so that both eye gazes are mutually constraining

each other via a mutual gaze target t̂. Due to the nature

of human gazes, there are three underlying constraints for

this vergence model: i) both gaze vectors are directed in a

forward direction away from the head; ii) the gaze vectors

are coplanar; iii) the gaze vectors intersect at the gaze target

t̂, unless they are parallel. These three constraints can be

satisfied during the process of calculating the gaze target t̂,

which is defined as the closest point between the two gaze

vectors. We define Ki = oi + kigi, i ∈ {l,r} as the two end

points of the shortest segment connecting left and right gazes.

Therefore,

t̂ = (Kl +Kr)/2. (8)

Since the shortest segment must be perpendicular to both

gaze vectors, we can derive the shortest distance d as:

d := ∥Kl −Kr∥= klr (gr ×gl) , (9)

where kl , kr and klr can be solved by:
[

kl kr klr

]T
=
[

gl −gr gr ×gl

]−1
(or −ol) . (10)



We design three loss terms based on the underlying

constraints of the geometric vergence model. Firstly, the gaze

skew loss, Lskew = d2, encourages the two gaze vectors to

be coplanar. Secondly, the predicted gaze target, t̂, along

with the 3D ground truth target, t, forms a gaze target loss

Lt =
∥

∥t̂− t
∥

∥

1

1
. Finally, a gaze pose loss is given as Lg =

∥

∥zE − rgt

∥

∥

1

1
, where rgt is the ground truth eyeball rotation.

All of these losses reduce gaze error, while preventing the

physically impossible case of the gaze being directed into

and behind the head.

Regulariser. In addition to the previously stated loss

function terms, we employ a regulariser on the 3D eye-region

shape and texture latent code zS and zA to encourage the

reconstructed eye-region shape and texture to stay within the

model space. The regulariser is defined as follows:

Lreg = ∥zS∥
2
2 +∥zA∥

2
2 . (11)

Complete loss function. Finally, all the losses

are combined linearly as L = Λ
T Lvec where

Λ = [λ1 . . .λ7]
T are the hyperparameter weights required

to balance each loss component in the loss vector

Lvec = [Lpix,Llm,Lo,Lt ,Lskew,Lg,Lreg]
T .

B. Implementation Details

For our Swin transformer encoder, we use the tiny configu-

ration with the pretrained weights on ImageNet [44]. We use

the Adam optimiser [45] with learning rate set to 5× 10−5

and weight decay set to 1 × 10−4 to train our model for

70 epochs. The hyper-parameters λ1 . . .λ7 to weight all loss

function components are set to 1, 0.5, 1× 103, 2.5× 103,

5×102, 1 and 5×10−2 respectively for the Eyediap dataset.

Tuning hyperparameters was straightforward, as our sys-

tem is highly constrained by geometry. We initialised all

the weights to the same order of magnitude (0-1) and then

we varied each independently to find some improvement.

We also tried auto-tuning [46] and got almost as good

performance (auto 4.8 degrees vs manual 4.55).

IV. EVALUATION

We employ two datasets for evaluation: Eyediap and ETH-

XGaze. Eyediap [13] is a dataset containing videos of 16

subjects looking at various targets. We use the floating ball

target videos. A static head pose session and a dynamic head

pose session are recorded for each subject, resulting in 28

sessions of, on average, 2701 frames per session. We use the

low-resolution VGA version (640×480) for our experiments.

This low resolution, along with the fact that we are using

dynamic head poses as well as static ones (some authors use

static only), means that we are aiming to solve the hardest

version of the gaze estimation problem over this dataset.

During training and testing, we utilise all validated frames

except those not detected by the face landmark localisation

algorithm. We perform cross-subject evaluations on this

dataset, using a leave-two-subjects-out strategy by using two

subjects’ both static and dynamic head pose sessions as the

test set, and the remainder as the training set. We train on

∼ 61k frames and test on ∼ 14k frames.

ETH-XGaze [14] is a large dataset covering a wide range

of head poses, with over one million images from 110

participants. The evaluation on the test set is performed on

an online platform provided by the authors. We use the

standard 15 participants as the within-domain test set and

the standard set of 80 subjects as the training set. We also

use the landmarks provided by this dataset to train our model.

The loss function we defined introduces seven hyperpa-

rameters, which may suggests a difficult tuning process.

However, many losses are imposing the same model re-

striction that help stabilise the training process, we group

empirically correlated losses into 3 groups and treat each

group as a single joint loss, to make hyperparameter tuning

process simpler. We also perform ablation studies with the

three groups in Sec. V.

A. Quantitative Evaluation

We compare our results with some previous methods

with the commonly-adopted angular error metric. This error

metric measures the angle between the predicted gaze vector

and the ground truth gaze vector. Results on Eyediap for the

floating ball experiment are given in Table I and show that

our method gives the lowest mean error. We also include

a baseline which uses the Swin transformer to regress gaze

rotation only. This demonstrates that incorporation of our

geometric model improves accuracy over an equivalent gaze-

only system. This is studied further in the ablation studies in

section V.

For Table I (Eyediap) standardisation of evaluation is

impossible as Eyediap is a dataset but not a benchmark.

There is no standardised train/test split across the published

literature. Also, different papers use different video session

types (static head pose only or static-plus-dynamic head)

and different image resolutions (640x480 vs 1920x1080).

However, unlike some competing works in Table I, we solve

the most difficult problem in that we both use the smaller

image resolution and, like [6], we evaluate over both static

and dynamic head poses - not just static only. Furthermore,

we evaluate on around 14,000 frames. Despite the hard

version of the problem over many frames, we still get state-

of-the-art performance, albeit in the context of cautiously

reporting the accuracy of competing systems for reference

against ours.

For the more recent ETH-XGaze dataset, we show com-

petitive gaze results, see Table II, compared to purely

appearance-based methods, while providing much richer

information via full parameterisation of our active-gaze

3DMM. In other words, unlike other methods, we also get the

eye region shape and texture and the 3D eyeball positions.

For the results in Table II (ETH-XGaze dataset), the training

and test sets are identical across all methods and therefore

they are directly comparable i.e. the standard ETH-XGaze

evaluation benchmark is employed. Note also that we do

not exploit modelling of the kappa angle (the angle between

the visual axis and the pupillary axis) and only employ a



TABLE I. Angle error (◦) on gaze vectors originating from the
eyeballs: Eyediap dataset, floating ball target experiment. Note that,
unlike some other systems, our system solves the most difficult
problem in that it employs only low resolution images on both
static and dynamic poses, over 14K test images. Note that some
‘appearance-based’ methods may use landmarks, eg [29] and that
there are some variations in (pre)training data volume.

Method mean ± std median

Appearance-based

Methods

Palmero et al. [6] 5.19 \
Zhang et al. [34]# 6.76 \
Cheng et al. [31] 5.17 \
Zhang et al. [47] 7.37 \
Sinha et al. [29] 4.62±2.93 \

Gaze360 [48]# 5.58 \
RT-Gene [49]# 6.30 \

Dilated-Net [50]# 6.57 \
Baseline 5.25±3.58 4.45

Model-based
Methods

PR-ALR [13]∗ 8.1 \
Wood et al. [4]∗ 9.44 8.63

Ploumpis et al. [5] 8.85 \
Park et al. [37]∗+ 11.9 \

Combined Method Ours 444...555555±±±333...222999 333...888222

∗ Eval. on static head pose only. # Converted from face gaze by Cheng et

al. [10]. + Trained on synthetic data only.

lightweight backbone network with relatively low training

demands. Finally, note that Cheng et al. [31] is not included

in Table II as they only pretrain on ETH-XGaze, and don’t

evaluate on that dataset.

TABLE II. Angle error (◦) ETH-XGaze dataset.

Method mean std

PureGaze [51] 6.79 \
Zhang et al. [14] 4.50 \

Gaze360 [48] 4.46 \
Zhang et al. [34] 7.38 \

Cai et al. [52] 333...111111 \
Ours 5.80 4.95

There are two types of task for gaze vector estimation: i)

the gaze originates from the eyes and ii) the gaze originates

from faces [10]. While our method is successful on the eye

gaze task, it does not have an advantage from accurately

predicting the face gaze. This is due to only one gaze

vector being available and our model takes advantage of

the correlations between both gaze vectors originating from

the eyes. In the Eyediap ablation study, we found that the

gaze origin (i.e. eyeball centre) loss is required for better

performance (there is a more than 60% increase in error

without this loss component), and the ETH-XGaze dataset

does not provide any eyeball centre information. However,

our method does not require explicit conversion between

the eye gaze task and the face gaze task. Moreover, during

training our method approaches the ground truth very quickly

and we obtain our results with training for only 20 epochs on

10% of the training set (approx. 60,000 images) randomly

sampled every batch.

We now report our reconstructed model’s quality. Our face

patches on the Eyediap dataset have 96 × 96 pixels, our

predicted face landmarks are filtered manually to remove

frames with obstacles in front of the face. The average

landmark error in pixels is 4.84 pixels per landmark. We

further normalise pixel landmark errors by dividing the

distance between the left eye’s left corner and the right eye’s

right corner, which results in a proportion of 0.113.

B. Cross-dataset comparative performance

It is instructive to consider the comparative performance

of our system across the two datasets: why is our Eyediap

gaze performance better than ETH-Gaze and what are the

implications of this? First, our method is explicitly 3D. Rich,

explicit 3D information concerning eyeball positions and

eye-region shape is often more useful than gaze direction

only. In terms of gaze accuracy, such a system is always

going to be more successful when it has strong 3D supervi-

sion, which is the case for Eyediap but not for ETH-Gaze. In

ETH-XGaze, we only have supervisory 3D information from

a 3D morphable model fitted to some facial landmarks on a

single 2D image, where overall 3D scale is not accurate. The

ETH-XGaze dataset capture used 18 views so much more

accurate 3D information could have been supplied with this

dataset. If it was, we would expect a lowering of our overall

error. However, despite poor quality 3D supervision, we still

obtain competitive results compared with systems directly

regressing gaze without use of an explicit geometric model.

Whilst it is true that strong 3D supervision for state-of-the-

art performance is some form of limitation, multi-view 3D

and RGB-D are now well-developed, accurate and accessible,

and this conveys a significant advantage on our system - a

much richer, more explicit and more useful explanation of

image content.

C. Inference speed comparisons

To our knowledge, our system has the fastest reported

inference rate at 89fps (averaged over 4403 frames) for

gaze computation. This is without rendering the fitted model.

Comparisons with other system’s inference speed are given

in Table III, along with the reported computational platforms.

We run on a single RTX 3090 graphics card. Our system

has a significant advantage in applications where high frame

rate (> 30fps) cameras are required. For example, our system

may be useful to interpolate when rapid eye saccades happen.

Indeed, three gaze directions are capable of being captured

for a 40ms saccade. However, this assumes that camera

image blur is not a significant issue. A video of real-time

performance is presented in the supplementary, using the

same colour scheme as the qualitative results in Fig. 5.

TABLE III. Inference speed, frames/sec (fps), compared to other
systems. The implementation platform reported in each paper is
specified.

Method fps Reported platform

Park et al. [37] 26 Intel i7-4770 + Nvidia 1080Ti
Fischer et al. [49] 25.3 Intel i7-6900K + Nvidia 1070

Wood et al. [4] 0.27 3.3Ghz CPU, GTX 660 GPU
Ploumpis et al. [5] 0.2 Intel Core i7 3.8 GHz + RTX 2080 Ti

Ours 89 RTX 3090 card



D. Qualitative Evaluation (Eyediap)

For qualitative evaluation on Eyediap, results are presented

in Fig. 5. This shows predicted gaze vectors relative to

their ground truth, predicted locations of vertices on the 3D

model (projected into the image plane i.e. predicted landmark

locations) and, in the final column, the rendered 3DMM

using the chosen albedo model is shown.

Although our estimated gaze vectors (red) are consistent

with the ground truth directions (green), we note that the

rendered models in the final column are not visually ap-

pealing when compared to state of the art photorealism. For

example, due to the nature of the albedo model we used,

the eyeball’s sclera region appears to be slightly cloudy.

However, the photometric loss generated by the rendering

serves to regularize the 3D model fitting and the gaze

estimation accuracy is not adversely affected.

V. ABLATION STUDIES

Although a typical ablation study only removes one loss

component at a time in order to isolate the effect of that

component, we take a different approach here. We observe

that various subsets of our loss components are entangled

and serve the same task within our system, where each task

aids gaze estimation. Therefore, we perform a higher-level

ablation study to investigate the utility of these tasks in

the context of the overall gaze accuracy, with the results

presented in Table IV.

We used a randomly selected subject’s static and dynamic

head pose sessions (approx 7K frames over pose variations)

as the test set for all ablation experiments.

The three tasks, along with the loss components that serve

them are as follows:

1) appearance-based gaze estimation with Lg (used by

itself in the baseline model system)

2) constraining eye vergence with Lt , Lo and Lskew (used

by itself in the vergence model system)

3) eye-region reconstruction with Lpix, Llm and Lreg (com-

bined with tasks 1 and 2 above, and used for our final

system (Ours))

First, we construct a baseline that comprises only our

vision backbone network (i.e. Swin transformer) which pre-

dicts two eyeball rotations. It is trained with only the gaze

pose loss function Lg, thus it employs Task 1 (above) only.

We denote this experiment as Baseline model in Table IV.

Then we construct our system with the vergence model

only, i.e. the model solves Task 2 only. Since the predicted

gaze origins (i.e. eyeball centres) are not available if no 3D

eye-region model is reconstructed, we predict the eyeball

centres directly using the backbone network. This experiment

is denoted as Vergence model in Table IV.

Then we report our proposed method with all loss terms

(i.e. aimed at solving all three tasks simultaneously), denoted

as Ours, shown in the final row of Table IV.

Starting from our full system, we remove only the loss

term Lo to let the model learn without ground truth eyeball

positions. This experiment is denoted as Ours w/o Lo.

Finally, we evaluate the value of the Swin transformer

against a former popular vision backbone ResNet-18 [53].

This is denoted Ours - ResNet18 in Table IV.

TABLE IV. Angle error (◦) on subject 15 from Eyediap dataset for
the ablation study

Method Tasks Losses Mean ± Std Med
solved used (max 7) (degs) (degs)

Baseline model 1 1 (Lg) 5.60±3.28 5.01
Vergence model 2 3 (Lt ,Lo,Lskew) 4.80±3.07 4.23

Ours w/o Lo 1,2,3 6 6.64±4.92 5.26
Ours-ResNet18 1,2,3 7 4.94±3.16 4.34

Ours 1,2,3 7 444...111111±±±222...999333 333...444222

The performance of our system (Ours) shows that com-

bining Task 3 (eye region reconstruction) with Task 1 (ap-

pearance) and Task 2 (vergence) gives better performance

than using only Task 1 or Task 2 alone, thus showing the

effectiveness of our multi-task method.

The vanilla appearance-based method (baseline) cannot

perform competitively when using low resolution images.

Indeed, our vergence model, even when operating on its own,

performs better than the appearance based baseline.

We observe that the gaze origin loss Lo is important.

It provides guidance to both gaze direction and 3D eye-

region reconstruction. Since the ETH-XGaze dataset does

not provide ground truth 3D eyeball centres, this explains

why the results on ETH-XGaze dataset are not as good as

the results on the Eyediap dataset.

The attention mechanism of the Swin transformer [38]

vision backbone network may be aiding the gaze estima-

tion task. However, since the Swin transformer has around

29 million trainable parameters, while ResNet18 only has

around 11.5 million, we cannot disentangle the attention

effect from the overall size of the backbone network.

VI. CONCLUSIONS

Our approach reconstructs the 3D eye-region as well as

the gaze direction by exploiting the advantages of both

appearance-based and model-based techniques. Results show

state-of-the-art accuracy on Eyediap as well as fast, real-time

inference.

Our results on ETH-XGaze are competitive, despite the

fact that strong 3D supervision is not provided with the

dataset in terms of eyeball origins. By utilising a state-of-

the-art vision backbone (the Swin transformer), we close the

gap on the gaze estimation task where model-based methods

lack the raw feature extraction ability.

In addition to HCI applications, our work can be further

applied to inter-ocular distance prediction, ear-to-ear face

region modelling, with associated accurate and high-speed

gaze estimation. As such, our work has the potential to

contribute to human eye-region understanding and can serve

as a useful design tool for various categories of eyewear.



Fig. 5. Three subjects (one subject per row) focusing on a floating target (orange ball) in the Eyediap dataset. For each row: (i) input
image (far left); (ii) input image with gaze vectors superimposed (ground truth gaze vectors are green, predicted gaze vectors are red);
(iii) projected 3D model with predicted landmark positions (blue crosses); (iv) rendered eye-region model superimposed on input image
(far right). Note that the predicted gaze vectors (red) have strong agreement with ground truth (green). However, the rendered model on
the right is not competitive in terms of photorealism. This is not a goal of our system, which merely employs the rendered image as a
3D model fitting regularizer using a photometric loss.
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