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Abstract

Background: Wrist-worn inertial sensors are used in digital health for evaluating mobility in real-world environments. Preceding
the estimation of spatiotemporal gait parameters within long-term recordings, gait detection is an important step to identify regions
of interest where gait occurs, which requires robust algorithms due to the complexity of arm movements. While algorithms exist
for other sensor positions, a comparative validation of algorithms applied to the wrist position on real-world data sets across
different disease populations is missing. Furthermore, gait detection performance differences between the wrist and lower back
position have not yet been explored but could yield valuable information regarding sensor position choice in clinical studies.

Objective: The aim of this study was to validate gait sequence (GS) detection algorithms developed for the wrist position against
reference data acquired in a real-world context. In addition, this study aimed to compare the performance of algorithms applied
to the wrist position to those applied to lower back–worn inertial sensors.

Methods: Participants with Parkinson disease, multiple sclerosis, proximal femoral fracture (hip fracture recovery), chronic
obstructive pulmonary disease, and congestive heart failure and healthy older adults (N=83) were monitored for 2.5 hours in the
real-world using inertial sensors on the wrist, lower back, and feet including pressure insoles and infrared distance sensors as
reference. In total, 10 algorithms for wrist-based gait detection were validated against a multisensor reference system and compared
to gait detection performance using lower back–worn inertial sensors.

Results: The best-performing GS detection algorithm for the wrist showed a mean (per disease group) sensitivity ranging
between 0.55 (SD 0.29) and 0.81 (SD 0.09) and a mean (per disease group) specificity ranging between 0.95 (SD 0.06) and 0.98
(SD 0.02). The mean relative absolute error of estimated walking time ranged between 8.9% (SD 7.1%) and 32.7% (SD 19.2%)
per disease group for this algorithm as compared to the reference system. Gait detection performance from the best algorithm
applied to the wrist inertial sensors was lower than for the best algorithms applied to the lower back, which yielded mean sensitivity
between 0.71 (SD 0.12) and 0.91 (SD 0.04), mean specificity between 0.96 (SD 0.03) and 0.99 (SD 0.01), and a mean relative
absolute error of estimated walking time between 6.3% (SD 5.4%) and 23.5% (SD 13%). Performance was lower in disease
groups with major gait impairments (eg, patients recovering from hip fracture) and for patients using bilateral walking aids.

Conclusions: Algorithms applied to the wrist position can detect GSs with high performance in real-world environments. Those
periods of interest in real-world recordings can facilitate gait parameter extraction and allow the quantification of gait duration
distribution in everyday life. Our findings allow taking informed decisions on alternative positions for gait recording in clinical
studies and public health.

Trial Registration: ISRCTN Registry 12246987; https://www.isrctn.com/ISRCTN12246987

International Registered Report Identifier (IRRID): RR2-10.1136/bmjopen-2021-050785

(JMIR Form Res 2024;8:e50035) doi: 10.2196/50035
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Introduction

Digital mobility outcomes (DMOs) such as walking speed show
promise for assessing and predicting clinical outcomes in various
medical conditions [1-4]. However, the traditional assessment
of gait characteristics in clinical environments is often limited
by infrequent, short-duration assessments and artificial
measurement conditions [5,6]. Thus, the goal of ongoing
research is to transfer gait assessment into the real-world to
assess a patient’s everyday walking performance, investigate
treatment and medication effects, and monitor fluctuating
disease symptoms over long and continuous periods [7].

Typically, waist or lower limb–worn inertial sensors including
accelerometers and gyroscopes are used to assess gait
impairment, and numerous studies present implementation and
validation of respective algorithms [8-12]. However, wrist-worn
inertial sensors might be more acceptable to participants than
lower back sensors and thus better suitable for large-scale studies
over prolonged periods and are largely available due to the
advent of smartwatches and fitness trackers [13,14].

Traditionally, wrist-worn sensors have been used to detect
everyday life activities, estimate step counts, and quantify time
spent in different physical activity levels [13,15,16]. Even
though actigraphy allows real-world activity to be assessed as
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part of mobility, it might not deliver accurate insight into gait
impairment as assessed by spatiotemporal gait parameters. The
relevance of investigating real-world gait performance in more
detail has been highlighted by recent research [5]. Accordingly,
there is also a rising interest in the use of wrist-worn sensors
for gait assessment in the real world, ranging from gait and
stride detection [17-20] to the estimation of spatiotemporal gait
parameters [21,22].

The real-world measurement paradigm promises new insights
into everyday movement abilities. Large amounts of data may
better represent a patient’s everyday behavior and capture rare
but important episodes. An important first step toward assessing
gait in real-world settings is the identification of continuous
gait sequences (GSs). Those sequences can serve as preselected
regions of interest containing gait in long, continuous recordings
before more computationally complex algorithms for DMO
extraction are applied [23]. Furthermore, the focus on GSs
reduces the risk of estimating nonmeaningful DMOs in nongait
conditions. Finally, extracted GSs and their duration can
potentially differentiate between disease-related and healthy
walking behavior [24,25].

Accurate gait sequence detection (GSD) using wrist-worn
inertial sensors is, however, challenging due to several reasons.
First, compared to other sensor locations, the complexity of arm
movements is challenging for the extraction of mobility in
general and gait parameters in particular [15]. Upper limbs are
complex locations to assess DMOs due to the high movement
variability and individual preferences of the amount of arm
swing. Second, the use of upper limbs for a wide variety of
functions other than gait, movement constraints due to walking
with the hands in the pockets or holding a bag or other dual-task
walking, upper limb injuries, and walking aid use may confound
the data. Finally, validation data sets that include both wrist and
reference data for the assessment of real-world concurrent
validity in multiple disease conditions have not been available
so far. Validation studies with reference data have mostly been
restricted to healthy adults [22,26-29].

Various approaches for gait detection also from the wrist
position have been proposed [17,21,30,31], and the aim of this
study was to identify, compare, and rank available
state-of-the-art algorithms for GSD based on wrist-worn inertial
sensors using labeled real-world data from diverse disease and
healthy groups from the Mobilise-D technical validation study
[32]. In addition, the wrist-worn sensor results were compared
to the outcomes generated from the best-performing algorithms
for the lower back inertial sensor to allow conclusions about
GSD accuracy between different sensor positions.

The results of this study can help decision makers in clinical
studies and possibly in public health to recommend the use of
either wrist or lower back–worn inertial sensors. This could
allow for more agnostic data collection protocols to be adopted.
Patients will benefit as this technology will facilitate the
assessment of gait impairment in real-world conditions that may
allow quantifying a meaningful aspect of life.

Methods

Ethical Considerations

Ethics approval was obtained at the individual sites
(London-Bloomsbury Research Ethics Committee, 19/LO/1507;
Helsinki Committee, Tel Aviv Sourasky Medical Center, Tel
Aviv, Israel, 0551-19TLV; ethical committee of the medical
faculty of The University of Tübingen, 647/2019BO2; and
ethical committee of the medical faculty of Kiel University,
D438/18; University of Sheffield Research Ethics Committee,
029143). All participants provided written informed consent
before participating. The analysis is based on pseudonymized
data, and anonymized data will be published by the Mobilise-D
consortium. Participants in this study were not compensated.

Participants

Overview

For optimizing and evaluating algorithms for GSD, 2 separate
data sets from the Mobilise-D technical validation study were
used. This multicentric observational study with the aim of
validating real-world DMOs included different patient and
healthy populations. The study’s experimental protocol including
all inclusion and exclusion criteria have previously been
described in more detail in [32].

Optimization Sample

To optimize algorithms for wrist position, including parameter
tuning, a separate optimization data set was used. This data set
was obtained during a test run within the Mobilise-D project,
distinct from the validation study. As a result, it exclusively
included healthy participants. Real-world gait data of 11 young
and healthy adults were assessed (Sheffield Teaching Hospitals
NHS Foundation Trust and University of Sassari, Italy) as part
of the Mobilise-D technical validation study. They were asked
to follow the same experimental protocol as the validation data
set.

Validation Sample

A convenience sample of 108 participants across 5 different
disease groups and 1 control group with healthy older adults
(HAs) were recruited. The data of those participants served as
validation data set for the final evaluation of algorithm
performance. The participant groups included patients with
chronic obstructive pulmonary disease, Parkinson disease,
multiple sclerosis (MS), proximal femoral fracture (PFF; hip
fracture recovery), and congestive heart failure (CHF).
Recruitment was performed at 5 sites: the Newcastle upon Tyne
Hospitals NHS Foundation Trust, United Kingdom; Sheffield
Teaching Hospitals NHS Foundation Trust, United Kingdom
(London-Bloomsbury Research Ethics Committee, 19/LO/1507);
Tel Aviv Sourasky Medical Center, Israel (Helsinki Committee,
Tel Aviv Sourasky Medical Center, Tel Aviv, Israel,
0551-19TLV); Robert Bosch Foundation for Medical Research,
Germany (ethical committee of the medical faculty of the
University of Tübingen, 647/2019BO2); and University of Kiel,
Germany (ethical committee of the medical faculty of Kiel
University, D438/18).
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Protocol

Activities of the participants were assessed during 2.5 hours of
real-world living undergoing their normal activities (home or
work or community or outdoor). They were also asked to
perform a limited number of predefined activities (outdoor
walking, walking up and down a slope and stairs, and moving
from one room to another), if they felt comfortable to do so
[33].

The participants were equipped with an inertial sensor worn at
the wrist on the nondominant hand (target sensor from which
our analysis data are derived) and a validated multisensor
system, the INDIP (inertial module with distance sensors and
pressure insoles) as reference [32,34]. In particular, the INDIP
system included 2-feet inertial sensors attached to the shoelaces
with clips (instep position), 2 distance sensors positioned
asymmetrically with Velcro over the ankles, and 2 pressure
insoles. GSD from the reference INDIP system has previously
been described [34]. Furthermore, the INDIP system has been
validated across the same patient and healthy adult groups
showing excellent results and reliability in the qualification of
mobility outcomes in laboratory and free-living environments
[34-38]. The decision to place the sensor on the nondominant
hand balances participant comfort, practicality, and data quality
as it minimized interference with other daily tasks (such as
writing, typing, and handling objects) and ensured consistent
data collection.

Lower back data were collected by a McRoberts Dynaport
MoveMonitor wearable inertial sensor (sampling frequency:
100 Hz, triaxial acceleration range: ±8g or resolution: 1 mg,
triaxial gyroscope range: ±2000 dps or resolution: 70 mdps),
which was attached to the lower back (L5) with an elastic belt
and Velcro fastening. The INDIP system, the wrist inertial
sensor (identical to those incorporated in the INDIP), and the
lower back MR device were synchronized using their timestamp
(±10 ms) and stored in a standardized and integrated data
structure [39].

Selection and Optimization of Gait Detection

Algorithms

We identified algorithms from the literature potentially suitable
for gait detection from lower back and wrist-worn inertial

sensors. Our algorithm selection was based on previous work
for gait detection from the lower back [11] and the availability
of code of the algorithm. Furthermore, algorithms were only
considered if they were able to extract gait (sequences) or strides
that could be assembled to GSs as previously described [11,40],
that is, strides were only combined to a GS if they were not
further apart than 3 seconds.

Wherever possible, algorithm parameters were optimized as
follows. First, it was deemed necessary to replace any
axis-specific dependency by the 3D accelerometer signal norm,
if possible. While the lower back provides a rather constant
vertical orientation with respect to the global world coordinate
system during walking, the axis orientations of wrist sensors
change constantly due to free arm movement. Using the norm
as orientation-independent signal was the most natural choice
without introducing any other sensor-body alignment process.
Second, algorithm-specific parameters were optimized on the
optimization data set of 11 young and healthy participants
(described earlier). A grid search was used to assess algorithm
performance for different algorithm parameter combinations
on the optimization data set. The best-performing parameter
combination was used for further validation of the algorithms
on the validation data set (participants from all the 6 different
participant groups). Algorithm performance was evaluated as
described below. The Paraschiv-Ionescu (2020) algorithm was
not optimized as it contains a data-adaptive threshold. The Brand
(2020) algorithm was initially developed specifically for
analyzing data from wrist-worn inertial sensors. Consequently,
the algorithm remained largely unchanged, except for modifying
the training data. Thus, only the optimized version, which
involved training the model on the optimization data set, was
evaluated.

The performance of the wrist-based algorithms was compared
to 3 lower back–based algorithms, which have previously been
validated on the same data set [11]. This includes the algorithms
Iluz (2014) (denoted GSDA previously [11]) and

Paraschiv-Ionescu (2019) (denoted GSDB and GSDC previously

[11]). The specific lower back algorithm parameters for the
lower back are described in Table 1.
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Table 1. Algorithm descriptions including overview over default and tuned algorithm parameters. GSDAa, GSDB, and GSDC are algorithm versions
described and validated for the lower back [11].

Algorithm parameters (optimized)Algorithm parameters (default)Original
sensor
position

DescriptionAlgorithm name
(reference)

Domain

WristUse of deep convolutional
neural network to discrimi-

Brand (2022)
[17]

Ma-
chine
learn-

ingb

• CNNd trained on Mobilise-D
optimization data set (see Meth-
ods)

• N/Ac

nate gait and nongait seg-
ments based on accelerometer
data.

WristThis method finds peaks in
the summed and squared

Gu (2017)
[41,42]

Time

domaine
• verisense_k=2• verisense_k=3

• •sim_thres=–0.5 sim_thres=–0.8

(RMSf) acceleration signal. It •• cont_thres=4cont_thres=4

• mag_thres=1.2• mag_thres=1.2uses multiple thresholds to
determine if each peak be-
longs to a step or artifact.

Lower
back

Window-based threshold
comparison of combined SD
of 3D acceleration signal and
vertical acceleration.

Hickey (2017)
[43]

Time

domaing
• ThresholdStill=0.2• ThresholdStill=0.2

• •ThresholdUpright=–0.5 ThresholdUpright=–0.5

Lower
back

Convolution of input signal
with a gait cycle template
(sine wave). Detection of lo-

Iluz (2014)
(GSDA) [44]

Tem-
plate

basedg

• Vertical and anteroposterior ac-
celeration replaced by accelera-
tion norm

• Vertical and anteroposterior ac-
celeration used (lower back)

• activity_thres=0.01
cal maxima in convolution • activity_thres=0.04• min_bout_length=5
result to define regions of
gait.

• min_bout_length=10• template_len=0.5

• template_len=1• cm_norm_thres=0.4

• cm_norm_thres=2.5

WristTemplate-based method (con-
sidering covariance between

Karas (2019) [31]Tem-
plate

basede

• sim_MIN=0.3• sim_MIN=0.85

• •dur_MIN=0.8 dur_MIN=0.2
a scaled and translated pattern
function) for stride detection

•• dur_MAX=3.0dur_MAX=1.4

• ptp_r_MIN=0.2 • ptp_r_MIN=0.2
based on adaptive empirical
pattern transformation.

•• ptp_r_MAX=3.0ptp_r_MAX=2.0

• •mean_abs_diff_med_p_MAX=0.5 mean_abs_diff_med_p_MAX=0.5

• mean_abs_diff_med_t_MAX=0.5• mean_abs_diff_med_t_MAX=0.2

• mean_abs_diff_dur_MAX=0.5• mean_abs_diff_dur_MAX=0.2

Lower
back

Based on ActiGraph activity
counts using sliding windows
and adaptive thresholds.

Kheirkhahan
(2017) [45]

Time

domainb
• Walking threshold=0.6• Walking threshold=0.75

Lower
back

Locomotion period detection
based on detected steps from
the Euclidean norm of the ac-

Paraschiv-Iones-
cu (2019) (GSDB

and GSDC) [46]

Time

domaing
• Wrist: th=0.35• GSDB: th=0.1

• GSDC: th=0.15

celerometer signal. Consecu-
tive steps are associated to
gait sequences.

Lower
back

Extension of Paraschiv-
Ionescu (2019). It applies an
improved preprocessing strat-

Paraschiv-Iones-
cu (2020) [47]

Time

domaing
• N/A• N/A

egy for the acceleration norm
including an iterative succes-
sion of smoothing and en-
hancement stages. Further-
more, a data-adaptive thresh-
old was introduced.

Lower
back

Time-frequency analysis us-
ing wavelets.

Wavelets (Propri-
etary, Center for
the Study of

Frequen-
cy do-

maing

• Vertical acceleration replaced
by acceleration norm

• Vertical and anterio-posterior
acceleration used (lower back)

Movement, Cog-
nition, and Mobil-
ity. Tel Aviv
Sourasky Medi-
cal Center, Tel
Aviv, Israel)
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Algorithm parameters (optimized)Algorithm parameters (default)Original
sensor
position

DescriptionAlgorithm name
(reference)

Domain

• Epoch length: 1 second• Epoch length: 30 secondsWristActivity detection using ran-
dom forests and hidden
Markov models to detect vari-
ous activity modes. Only the
output for “walking” activity
was considered.

Willetts (2018)
[20]

Ma-
chine
learn-

ingb

aGSD: gait sequence detection.
bProgramming language is Python (Python Software Foundation).
cN/A: not applicable.
dCNN: convolutional neural network.
eProgramming language is R (R Foundation for Statistical Computing).
fRMS: root-mean-square.
gProgramming language is Matlab (MathWorks).

Gait Detection Validation Metrics Evaluation

The output of the gait detection algorithms yielded start and
end times for all GSs. Each 2.5-hour recording (containing a
varying number of GSs) was segmented into windows of 0.1
seconds as previously described [11]. Based on the comparison
of the algorithm output to the reference system, each window
was classified as true positive (TP), false positive (FP), true
negative (TN), or false negative (FN) regarding the detection
of gait [11]. For each 2.5-hour recording, the following metrics
were calculated:

Furthermore, errors of the total duration of all GSs and for the
number of detected GSs in each 2.5-hour recording were
calculated. The relative and relative absolute errors were
determined as a ratio between the (absolute) errors per GS and
the corresponding estimates from the reference system,
expressed as a percentage. All metrics were calculated for each
participant and for the algorithms applied to both wrist sensor
versus reference system as well as to lower back sensor versus
reference system. We aggregated the error metrics on a disease
group level using the mean.

The intraclass correlation coefficient (ICC2,1) [48] was

calculated for the total GS duration for each 2.5-hour recording
on a participant group level (n=6). Values smaller than 0.50,
between 0.50 and 0.75, between 0.75 and 0.90, and larger than
0.90 were indicative of poor, moderate, good, and excellent
reliability, respectively [49].

A previously described methodology to combine the above
metrics into 1 performance index ranging between 0 (worst)
and 1 (best) was used [50]. This index is calculated based on a

weighted combination of the above-defined metrics (accuracy,
sensitivity, specificity, sensitivity, positive predictive value,
ICC, mean GS duration relative absolute error, and mean GS
number relative absolute error). Each metric can be considered
a cost or benefit metric contributing to the performance index
with a specific weight (Multimedia Appendix 1). This enables
a direct comparison and ranking of the algorithm performances
[11]. The performance index was calculated per disease group
(n=6).

Statistical Comparison of Algorithm Performance

(Wrist vs Lower Back)

For each algorithm, the optimized version (if available) was
compared against a representative algorithm for the lower back
[Iluz (2014)] with a 2-sided paired t test on a participant level
for each performance metric and adjusted P values for multiple
testing using Benjamini and Hochberg procedure [51].

Influence of Walking Aids on Algorithm Performance

As the validation data set includes participants with a potential
need to use walking aids during the assessment, the effect of
walking aids was investigated on algorithm performance.
Information was available about (1) whether a walking aid was
used and (2) what type of walking aid (among 1-sided canes or
crutches, 2 crutches, rollators, and walkers) was used during
the 2.5-hour free-living recording.

Results

Population Overview

Of the 108 recruited participants, 25 participants were excluded
from subsequent analysis, as either reference, wrist, or lower
back sensor data were missing or incomplete (HA: n=3, MS:
n=7, Parkinson disease: n=5, PFF: n=8, and CHF: n=2). Wrist
and lower back validation were based on the same set of
participants. Thus, 83 participants were included in the
validation analysis. Overall, 10 participants used walking aids.
Participants’clinical and demographic characteristics per disease
group are shown in Table 2.
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Table 2. Demographic and clinical characteristics of the participants included in the real-world analysis. The gait sequence (GS) information is based
on the GSs detected by the reference system given per 2.5-hour recording. Gait duration is given as sum over all GSs in one 2.5-hour recording.

Optimization sampleValidation sampleCharacteristics

HAPFFfPDeMSdCOPDcCHFbHAa

11 (11.7)11 (11.7)15 (16)13 (13.8)17 (18.1)10 (10.6)17 (18.1)Participants, n (%)

29.55 (7.76)79.70 (6.86)69.20 (7.48)47.23 (11.09)69.35 (9.10)68.60 (12.21)72.35 (6.00)Age (years), mean (SD)

174.64 (9.24)170.23 (9.07)172.73 (7.96)166.31 (9.11)168.97 (6.61)174.40 (10.27)167.00 (10.91)Height (cm), mean (SD)

69.09 (11.35)70.59 (16.86)79.13 (16.27)80.09 (22.11)73.71 (14.22)83.75 (18.44)74.36 (12.53)Weight (kg), mean (SD)

0 (0)2 (18)1 (7)3 (23)0 (0)4 (40)0 (0)Walking aid users, n (%)

—One cane or
crutch: 2

Rollator: 1One cane or
crutch: 1; 2
crutches: 1;
walker: 1

—One cane or
crutch: 2; rolla-
tor: 2

—gWalking aid types

—25.09 (4.46)23.93 (4.45)26.23 (3.49)24.65 (3.39)26.70 (3.06)28.18 (1.38)MoCAh (0-30), mean (SD)

N/AN/AI: 3, II: 7, III:
5

N/AN/AN/AN/AiHoehn and Yahr stage, n

N/AN/A30.67 (13.33)N/AN/AN/AN/AMDS-UPDRS IIIj (0-132),
mean (SD)

N/AN/AN/A3.85 (1.72)N/AN/AN/AEDSSk (0-6), mean (SD)

N/A7.73 (3.10)N/AN/AN/AN/AN/ASPPBl (0-12), mean (SD)

N/AN/AN/AN/A19.65 (8.95)N/AN/ACATm score (0-40), mean
(SD)

N/AN/AN/AN/A1.58 (0.58)N/AN/AFEV1
n (L), mean (SD)

N/AN/AN/AN/A357.65 (88.52)323.50
(171.46)

N/A6MWTo distance (m),
mean (SD)

39.2 (36.4-64.2)19.2 (13.0-
24.8)

13.9 (10.9-
24.7)

12.3 (9.4-
18.3)

17.2 (12.9-
21.1)

17.8 (9.9-
29.7)

27.2 (25.5-
30.1)

Gait duration (minutes),
median (IQR)

36 (23-42.5)37 (30.5-51)31 (22-46)37 (18-45)71 (37-80)55 (21-71.8)66 (56-88)Number GS, median (IQR)

aHA: healthy older adult.
bCHF: congestive heart failure.
cCOPD: chronic obstructive pulmonary disease.
dMS: multiple sclerosis.
ePD: Parkinson disease.
fPFF: proximal femoral fracture.
gNot available.
hMoCA: Montreal Cognitive Assessment.
iN/A: not applicable.
jMDS-UPDRS III: Movement Disorder Society Unified Parkinson Disease Rating Scale Part III.
kEDSS: Expanded Disability Status Scale.
lSPPB: short physical performance battery.
mCAT: Chronic Obstructive Pulmonary Disease Assessment Test.
nFEV1: forced expiratory volume in 1 second.

o6MWT: 6-minute walking test.

Algorithms

Overall, 10 algorithms were included in this validation study
(Table 1). They included algorithms originally used for the
lower back as well as wrist-specific algorithms. They can be
grouped into different domains: (1) time- or frequency
domain–based, (2) stride template–based, and (3) machine

learning algorithms. All implemented algorithms have been
adapted to use the 3D accelerometer signal only.
Algorithm-specific parameters were optimized on the
optimization data set (Table 1).
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Performance Results

The performance of most optimized algorithms increased
compared to using default algorithm parameters (Figure 1). The
optimized versions of the Brand (2022) and Paraschiv-Ionescu

(2019) algorithms had a performance index above 0.7 for all
groups, with the Brand (2022) algorithm showing the highest
performance (Figure 1). In the following, the wrist results for
the optimized algorithm versions are reported.

Figure 1. Performance of assessed algorithms based on a disease group level (n=6). Individual data points are highlighted for each disease group as
an overlay. The names of lower back algorithms are given as defined previously [11] and referred to in Table 1. Boxes indicate lower and upper quartiles;
the whiskers correspond to 1.5 IQR. Colors indicate the algorithm version: orange indicates the default algorithm version without optimized parameters,
and blue indicates the optimized algorithm (parameter tuning based on the optimization data set). In the “wrist” subplot, shapes indicate the disease
group to visualize algorithm performance for each group. CHF: congestive heart failure; COPD: chronic obstructive pulmonary disease; GSD: gait
sequence detection; HA: healthy older adults; MS: multiple sclerosis; PD: Parkinson disease; PFF: proximal femoral fracture (hip fracture recovery).

Regarding wrist-based GSD, the performance index of the
algorithms Willetts (2018), Iluz (2014), and Kheirkhahan (2017)
was between 0.74 and 0.81 for most disease groups, except for
the PFF group (Multimedia Appendix 2). In the PFF group, the
performance index was 0.66 for the Iluz (2014) and Kheirkhahan
(2017) algorithms, while it was 0.57 for the Willetts (2018)
algorithm.

For the 5 best-performing algorithms Brand (2022),
Paraschiv-Ionescu (2019), Iluz (2014), Kheirkhahan (2017),

and Willetts (2018), the mean sensitivity ranged between 0.52
(SD 0.28) and 0.81 (SD 0.09) (when excluding the PFF group),
whereas the only algorithm showing mean sensitivity (per
disease group) consistently higher than 0.70 was Brand (2022).
The specificity for those algorithms was between 0.91 and 0.98.
ICC values (for GS duration) ranged between 0.72 and 0.99.
For PFF, the performance was consistently lower, with
sensitivity ranging between 0.29 and 0.55, specificity between
0.94 and 0.96, and ICC values between 0.08 and 0.83 (Figure
2 and Multimedia Appendix 2).
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Figure 2. Sensitivity (left) and specificity (right) for the best-performing wrist algorithms (performance index higher than 0.7 for most disease groups
except proximal femoral fracture) based on a participant level (N=83). Colors indicate the algorithm version: orange indicates the default algorithm
version without optimized parameters, and blue indicates the optimized algorithm with parameter tuning based on the optimization data set. GSD: gait
sequence detection.

The mean relative absolute error of the total estimated gait
duration during the 2.5-hour recordings was between 8.9% (SD
7.1) (HA) and 32.7% (SD 19.2) (PFF) for the best-performing
algorithm, that is, Brand (2022). The Paraschiv-Ionescu (2019)
algorithm showed an error between 22% (HA) and 38% (PFF),
while the other algorithms performed worse. The mean relative
absolute error regarding the number of detected GSs in the

2.5-hour recording ranged between 22.3% (SD 21.1) (HA) and
44.6% (SD 55.3) (PFF) for the Brand (2022) algorithm and
worse for the other algorithms (Multimedia Appendix 2). Figure
3 visualizes the relative errors indicating whether the algorithms
under- or overestimate the number and duration of detected
GSs.

Figure 3. Relative errors of the estimated number of GSs (left) and of the estimated gait duration (right) per 2.5-hour recording based on a participant
level (N=83). The dashed red line represents an error of 0 (optimal result). Negative relative errors indicate that fewer GS were detected or the total GS
duration was lower than estimated by the reference system. The figure includes the best-performing algorithms (performance index higher than 0.7 for
most disease groups except proximal femoral fracture). Colors indicate the algorithm version: orange indicates the default algorithm version without
optimized parameters, and blue indicates the optimized algorithm with parameter tuning based on the optimization data set. GS: gait sequence; GSD:
gait sequence detection.

For the reported algorithms applied to the lower back position,
sensitivity ranged between 0.71 and 0.91, specificity between
0.96 and 0.99, and ICC values between 0.68 and 1.0 (Multimedia
Appendix 3). Overall, algorithms applied to wrist signals
resulted in lower performance compared to the lower back
position as shown in Figure 1 and quantified as follows.
Differences in validation metrics of algorithms applied to either
wrist compared to the lower back algorithm Iluz (2014) were
statistically assessed (Table 3) based on the validation metrics
per participant (Multimedia Appendix 4). For sensitivity, all
algorithms for the wrist are different (P<.001) from GSDA, with

the Brand (2022) algorithm having the smallest difference in

mean (–0.126), and Willetts (2018) the largest (–0.317)
compared to the lower back algorithm Iluz (2014). For
specificity, the Brand (2022), Iluz (2014), and Kheirkhahan
(2017) algorithms are not significantly different (P>.10) from
GSDA, with the Brand (2022) algorithm having the smallest

difference (–0.00192). The Brand (2022) algorithm is closest
to GSDA for relative error in number of detected GSs (P=.021

and a difference in mean of 0.042). No statistical
comparison was conducted for the performance index itself, as
the index was calculated only per disease group, resulting in a
small sample of 6 data points.
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Table 3. Statistical results comparing each wrist algorithm and metric (optimized versions) with a representative lower back algorithm with good
performance (Iluz (2014) applied to the lower back).

Adjusted P valueP valueMean differenceAlgorithm and metric

Willetts (2018)

<.001<.001–0.317Sensitivity

<.001<.001–0.029Specificity

<.001<.001–0.258PPVa

<.001<.001–0.064Accuracy

<.001<.001–0.325Relative number GSb error

.38.37–0.055Relative GS duration error

Brand (2022)

<.001<.001–0.126Sensitivity

.49.49–0.002Specificity

.04.03–0.037PPV

<.001<.001–0.014Accuracy

.21.190.042Relative number GS error

<.001<.001–0.131Relative GS duration error

Paraschiv-Ionescu (2019)

<.001<.001–0.277Sensitivity

<.001<.001–0.011Specificity

<.001<.001–0.115PPV

<.001<.001–0.041Accuracy

<.001<.0010.335Relative number GS error

<.001<.001–0.216Relative GS duration error

Iluz (2014)

<.001<.001–0.273Sensitivity

.29.27–0.004Specificity

<.001<.001–0.067PPV

<.001<.001–0.035Accuracy

<.001<.001–0.500Relative number GS error

<.001<.001–0.268Relative GS duration error

Kheirkhahan (2017)

<.001<.001–0.299Sensitivity

.25.23–0.005Specificity

<.001<.001–0.063PPV

<.001<.001–0.038Accuracy

<.001<.001–0.671Relative number GS error

<.001<.001–0.310Relative GS duration error

aPPV: positive predictive value.
bGS: gait sequence.

Effect of Walking Aids

The frequency of walking aid use depended on the disease group
(Table 2). Walking aid use influenced the accuracy of
wrist-based gait detection (Figure 4). Participants using bilateral

walking aids (rollators, walkers, and 2 crutches) exhibited lower
sensitivity for gait detection. The gait of 5 participants using
unilateral walking aids (CHF: n=2, MS: n=1, and PFF: n=2)
was not as affected and could mostly be estimated as accurately
as for participants without walking aids. For the unilaterally
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used walking aids (1 cane or crutch), 2 of 5 participants wore
the sensor on the same side as they used the walking aid. An
exception was the PFF group, in which low sensitivity has also
been observed for unilateral walking aid use. In total, 3 patients
using no walking aid showed a sensitivity below 0.5, and 2 of

those participants reported to usually use walking aids (but not
in this study), while the third participant showed a low short
physical performance battery score of 4, indicating that walking
might be strongly impaired.

Figure 4. Effect of walking aids on sensitivity for the algorithm Brand (2022) [17]. Each data point represents 1 participant (N=83), the color indicates
the type of walking aid. CHF: congestive heart failure; COPD: chronic obstructive pulmonary disease; HA: healthy older adults; MS: multiple sclerosis;
PD: Parkinson disease; PFF: proximal femoral fracture (hip fracture recovery).

Discussion

Principal Findings

This is the most comprehensive study so far, evaluating
real-world gait detection performance of various algorithms
from a wrist-worn sensor in a heterogenous population including
5 disease cohorts.

Performance Results

The Brand (2022) and Paraschiv-Ionescu (2019) algorithms
exhibited good performance (>0.75) across all disease groups
excluding PFF (moderate performance index of 0.71), while
the first outperformed the latter algorithm especially for the
total estimated walking time and the number of detected GSs.
The Iluz (2014) and Kheirkhahan (2017) algorithms also showed
high performance, except for the PFF group (performance index
of 0.66). A lower performance was generally observed for the
PFF group. This has already been previously reported for the
lower back position [11] and can be attributed to several factors,
which significantly impacts the accuracy of gait detection
algorithms. First, patients with PFF may show altered gait
patterns due to pain, muscle weakness, and impaired mobility.
Second, they may exhibit asymmetrical walking, making it
harder for algorithms to identify consistent patterns. Finally,
the gait of hip fracture recovery patients may vary more widely
even within the same group, which is also reflected, for example,
in the range of number of GSs, which was highest for the PFF
group in this study (Table 2).

Based on those results, we suggest the use of the Brand (2022)
algorithm, which is suitable for gait detection based on
wrist-worn sensors across all investigated disease groups.

Sensitivity and specificity were calculated with regard to the
agreement of gait detection algorithm results to the reference
GSs based on 0.1-second windows for complete 2.5-hour
recordings. Sensitivity was generally lower than specificity,
indicating that not all GSs were detected by all algorithms. On
the other hand, high specificity indicates that only few nongait
activities are misclassified as GSs. Further algorithm
optimization on a larger data set is required to find the optimal
balance between sensitivity and specificity. If the goal is to
subsequently characterize DMOs, a high specificity is needed
to exclude nonwalking periods (including transitions and
shuffling of gait), but at the same time accept a portion of missed
walking periods.

Comparison to Lower Back

Due to the high movement variability of the arm during walking,
a performance drop is expected when comparing algorithms
applied to a wrist-worn versus a lower back–worn inertial
sensor. This performance drop is evident in this study.
Sensitivity is lower for the wrist position (sensitivity was
between 0.32 and 0.13 smaller compared to (Iluz 2014) applied
on lower back data, Table 3), which can most likely be attributed
to nonperiodical arm swing with differences in amplitude during
walking. However, specificity is comparably high (>0.7) for
both sensor positions (Figure 2), indicating the general reliability
of correctly rejecting nongait activities.

Algorithm Parameter Optimization

The design of some of the algorithms focused on the lower back
position initially (Table 1). However, in this study, we focused
on implementing methods initially developed for lower back
acceleration signals based on time or frequency methods to
wrist acceleration signals. Where possible, algorithm parameters
were optimized on the optimization data set. Default and
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optimized algorithm parameters differed, and optimization
allowed for achieving higher performances of lower back
algorithms at the wrist position.

A strong advantage of all investigated algorithms is that they
use the 3D accelerometer signal only and do not depend on
gyroscopic sensors, sensors that have high energy consumption.
Thus, they can potentially be used more ubiquitously for other
wearable inertial sensors that acquire accelerometer data only,
allowing for energy-efficient gait detection systems and, thus,
longer assessment periods. In addition, in future work, we will
evaluate the effect of lower accelerometer sampling rates (eg,
30 Hz instead of 100 Hz) on GSD performance. The use of
inexpensive, low-sampling consumer-grade watches in public
health projects may justify reduced performance as observed
in this study.

Walking Aids

Walking aid users move differently due to several factors. Gait
impairment can be observed in various diseases including the
groups assessed within this study; in addition, the use of walking
aids may lead to compensatory gait changes and can influence
gait parameters directly [52,53].

Furthermore, biomechanical constraints when using walking
aids affect wrist-based gait assessment. Bilateral walking aids
such as walkers or rollators may significantly affect the arm
movement and thus the acquired accelerometer signals. On the
one hand, this can be used to construct specific algorithms for
gait assessment when walking aids are used [54]. This, in turn,
may lead to deteriorated performance of algorithms that are not
fit for the purpose of walking aid–based gait assessment.

The results of this study demonstrate that special care must be
taken when defining inclusion and exclusion criteria in studies
based on a wrist-worn sensor for gait assessment. Participants
using rollators, walkers, or 2 crutches may be separately
considered in wrist-based gait assessment. However, the actual
use of walking aids in real-world environments can hardly be
predicted. Unilateral walking aids can potentially be used on
either side and switched during the assessment. Participants
may also not use walking aids continuously but only when they
feel unsafe (depending on the environment) and may also use
other everyday objects (eg, furniture) for increased security,
which may affect the interpretation of sedentary or activity
levels.

Strengths and Limitations

The focus of this study was to investigate the performance of
gait detection algorithms on real-world data, in which full
reference information from the sensor-based INDIP system
including pressurized insoles was available. We see the use of
this multimodal reference system as a unique advantage
compared to data sets used in previous studies, as it allows not
only to assess gait detection very accurately but also to extract
other spatiotemporal gait parameters. The accuracy of this
system has previously been assessed against an optical motion
capture system and has showed excellent absolute agreement
(ICC>0.95) within a laboratory setting [34]. We thus considered
the INDIP system as a reliable method for acquiring reference
data in real-world environments. One can argue that the 2.5-hour

assessment used for validation might not fully represent the full
variability of real-world walking. Nevertheless, our data set is
one of the largest available ones containing full reference
information for a variety of disease indications. Future work
could use longer validation periods. Overall, a diverse set of
disease areas were represented including orthopedic, pulmonary,
cardiovascular, and neurological diseases. Future studies could
extend this work to other disease groups.

It is worth noting that the optimization set used for this study
was relatively small and comprised a population that differed
from the validation set in terms of age and health condition. It
was based on a healthy young adult group that did not rely on
the use of walking aids, which might bias the optimal parameter
choice. Algorithm performance could likely be improved using
disease-specific samples including walking aid users or tuning
even based on individual participants. Future studies should,
thus, focus on optimizing gait detection algorithms specifically
tailored for participants with gait disturbances related to the
disease groups of interest. The methodology of this paper can
serve as a reference for achieving this.

Real-world data are naturally imbalanced, with a significantly
larger number of nongait segments (majority class) compared
to gait segments (minority class). This inherent imbalance can
introduce bias in supervised models, resulting in low sensitivity.
Consequently, further analyses should focus on addressing this
problem by using techniques such as upsampling from the
minority class or generating artificial samples.

We acknowledge that the list of included algorithms might not
be exhaustive. Our choice was driven by practical considerations
including code availability and applicability on wrist-worn
accelerometer data. However, the algorithms cover a broad
spectrum of different domains using time and frequency domain,
template matching, and machine learning methods. Future work
may compare further, also proprietary, algorithms to the
presented results. In addition, the Mobilise-D technical
validation data set as well as the used validation methodology
might provide a blueprint for future validation studies.

This paper only validated the first step of a complete gait
analysis pipeline. Future work will need to show whether
subsequently extracted DMOs such as cadence, stride length,
and walking speed can reliably be estimated for those identified
GSs in comparison to the lower back.

Conclusions

To conclude, we identified algorithms that can extract GSs
based on a wrist-worn sensor using accelerometer data. In
general, the performance for detecting GSs as regions of interest
of further gait parameter extraction and quantification of gait
duration is lower than for the lower back position. However,
the omnipresence of wrist-worn sensors and their easier
operationalization and better ergonomics in longitudinal clinical
trials may justify some level of lower gait quantification
performance for the sake of higher acceptance and more data.
Identifying GSs in continuous long-term inertial sensor
recordings is the first step that will allow extracting additional
DMOs (eg, spatiotemporal parameters such as walking speed
in disease cohorts [21,22]).
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Our work is a step toward quantifying the limitations of
wrist-worn devices for digital mobility analysis and contributes
to the evidence needed by researchers, clinical trial teams, and
health care professionals in deciding if a lower back inertial
sensor is required or a wrist-worn sensor is sufficient. The data
presented here should be considered as one part of further
opportunities offered by wrist-worn inertial sensors. To assess

a comprehensive movement picture of patients, different
algorithms can, for example, measure further DMOs related to
mobility analysis, including spatiotemporal parameters and
physical activity. Quantification of continuous GSs may be a
DMO on its own that can be explored in diseases with reduced
physical performance.
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Multimedia Appendix 1

Weights used for calculating the performance index.
[XLSX File (Microsoft Excel File), 11 KB-Multimedia Appendix 1]

Multimedia Appendix 2

Gait sequence detection performance metrics and overall performance index for the wrist sensor position (optimized versions, if
available). Values are provided as mean and [5%, 95%] quantiles or as mean and limit of agreement (LoA).
[XLSX File (Microsoft Excel File), 22 KB-Multimedia Appendix 2]
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Multimedia Appendix 3

Gait sequence detection performance metrics and overall performance index for the lower back sensor position. Values are
provided as mean and [5%, 95%] quantiles or as mean and limit of agreement.
[XLSX File (Microsoft Excel File), 14 KB-Multimedia Appendix 3]

Multimedia Appendix 4

Gait sequence detection metrics for each 2.5 h recording per sensor position, algorithm, and participant.
[XLSX File (Microsoft Excel File), 351 KB-Multimedia Appendix 4]
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Abbreviations

CHF: congestive heart failure
DMO: digital mobility outcome
FN: false negative
FP: false positive
GS: gait sequence
GSD: gait sequence detection
HA: healthy older adult
ICC: intraclass correlation coefficient
INDIP: inertial module with distance sensors and pressure insoles
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MS: multiple sclerosis
PFF: proximal femoral fracture
TN: true negative
TP: true positive
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