

This is a repository copy of Application of pyrite trace-metal and S and Ni isotope signatures to distinguish sulfate- versus iron-driven anaerobic oxidation of methane.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/id/eprint/213243/</u>

Version: Supplemental Material

Article:

Chen, C., Wang, J., Algeo, T.J. et al. (5 more authors) (2024) Application of pyrite tracemetal and S and Ni isotope signatures to distinguish sulfate- versus iron-driven anaerobic oxidation of methane. Chemical Geology, 662. 122211. ISSN 0009-2541

https://doi.org/10.1016/j.chemgeo.2024.122211

© 2024 Published by Elsevier B.V. This is an author produced version of an article published in Chemical Geology. Uploaded in accordance with the publisher's self-archiving policy. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supplementary Material

For "Application of pyrite trace-metal and S and Ni isotope signatures to distinguish sulfate- versus iron-driven anaerobic oxidation of methane" by Can Chen et al.

Contents:

Supplementary Figure S1. Crossplot of Ba vs Al.

Supplementary Figure S2. MREE/MREE* and Eu/Eu* data

Supplementary Figure S3. Crossplots of MREE/MREE* and Eu/Eu* vs Al₂O₃ (wt%)

Supplementary Figure S4. Crossplots of pyrite geochemistry vs. bulk-rock geochemistry.

Supplementary Table S1. Uncertainties (2σ) in the data for selected elemental concentrations in pyrite aggregates from SC03.

Supplementary Table S2. Major element oxide contents (wt.%) of bulk sediments. Supplementary Table S3. Trace elements (ppm), rare earth elements (ppm), Y/Ho, Ni_{EF} , Ba_{bio} (ppm), $Mn \times Co$ (wt.% × ppm), Eu/Eu^* , and $MREE/MREE^*$ of bulk

sediment at Site SC03.

Supplementary Table S4. Pyrite framboidal overgrowth width, nucleus diameter and the overgrowth fractions in SC03.

Fig. S1. Crossplot of Ba vs Al. The majority of samples plot above a line that passes through the origin, which is assumed to represent the detrital component of Ba. A strong positive relationship is shown by these data (r = +0.90, p < 0.01, n = 20). Two samples (open symbols) show distinct excess Ba.

Fig. S2. (A) MREE/MREE*; (B) Eu/Eu*. These ratios do not exhibit any discernible change with depth.

Fig. S3. Crossplots of MREE/MREE* and Eu/Eu* vs Al₂O₃ (wt%). These ratios do not exhibit any discernible change with clay content.

Fig. S4. Crossplots of pyrite geochemistry vs. bulk-rock geochemistry. No discernible correlation is observed.

Sample	Depth	FeS ₂	Со	Ni	Cu	Zn	As
No.	(mbsf)	(wt.%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
1-01	44.37	1.02	0.81	7.94	0.43	0.43	10.21
1-02	44.37	0.73	0.37	3.88	0.12	0.23	3.13
1-03	44.37	0.82	0.65	2.75	0.05	0.34	8.63
2-01	45.22	1.53	0.45	1.15	1.09	5.02	54.06
2-02	45.22	2.89	1.07	2.22	2.13	8.41	120.14
2-03	45.22	1.50	0.63	1.38	1.55	4.92	37.84
8-01	48.43	0.86	2.90	8.24	0.30	0.58	37.05
8-02	48.43	1.19	3.99	13.75	0.13	0.45	19.05
8-03	48.43	1.05	1.87	8.05	0.10	0.36	9.58
4-01	92.69	1.87	2.21	9.43	1.45	1.26	15.01
4-02	92.69	1.39	1.79	8.08	0.26	0.73	12.94
4-03	92.69	1.55	3.22	12.42	0.20	0.83	12.82
9-01	96.46	0.74	0.91	3.33	0.05	0.28	7.80
9-02	96.46	0.77	1.79	5.98	0.04	0.26	3.34
9-03	96.46	0.77	1.71	5.23	0.04	0.29	11.39
7-01	132.40	1.33	2.50	9.37	0.10	1.74	11.10
7-02	132.40	1.18	2.46	7.04	0.18	2.95	5.14
7-03	132.40	1.34	3.24	12.28	0.14	1.34	8.78
6-01	135.31	0.77	1.80	6.20	0.08	0.65	8.10
6-02	135.31	0.65	2.23	7.13	0.09	0.38	8.53
6-03	135.31	0.68	2.07	10.65	0.11	0.32	5.85
5-01	138.13	1.87	6.77	23.98	0.21	0.51	26.43
5-02	138.13	1.25	4.00	14.22	0.24	0.51	26.92
5-03	138.13	1.57	4.95	14.50	0.14	8.14	50.41
10-01	138.18	2.35	1.27	1.94	0.97	5.06	77.44
10-02	138.18	1.80	1.02	1.77	1.17	5.06	38.05
10-03	138.18	2.13	1.19	1.65	1.21	5.95	113.62
11-01	138.65	2.34	3.83	10.63	0.19	0.66	21.93
11-02	138.65	2.10	2.60	9.07	0.13	0.52	15.26
11-03	138.65	1.81	7.91	22.85	0.27	0.55	20.35
12-01	139.29	1.15	1.70	7.09	0.10	0.43	8.64
12-02	139.29	0.81	0.33	2.50	0.04	0.24	3.46
12-03	139.29	0.73	0.59	3.78	0.04	0.26	5.41
13-01	145.74	0.85	3.39	13.19	0.18	1.21	8.31
13-02	145.74	0.85	1.80	7.61	0.07	0.24	6.32
13-03	145.74	0.86	1.76	7.07	0.09	0.77	5.23
17-01	146.70	1.92	1.08	1.43	0.50	1.33	32.48
17-02	146.70	1.17	0.96	0.98	0.68	1.69	12.53
17-03	146.70	2.10	2.30	2.33	0.61	2.46	27.34
14-01	147.24	0.98	1.85	4.68	0.14	0.25	2.27

Table S1. Uncertainties (2σ) in the data for selected elemental concentrations in pyrite aggregates from SC03.

14-02	147.24	1.20	1.46	4.18	0.11	0.27	61.93
14-03	147.24	0.87	2.00	7.13	0.13	0.29	4.57
15-01	147.86	0.89	0.49	2.45	0.07	0.71	4.05
15-02	147.86	0.76	0.89	3.88	0.12	0.34	3.74
15-03	147.86	0.76	0.69	3.13	0.14	33.59	4.16
18-01	152.19	0.74	0.10	1.13	0.04	0.24	5.88
18-02	152.19	0.82	0.51	3.18	0.05	0.26	3.62
18-03	152.19	1.14	2.95	10.84	0.07	2.11	8.61
19-01	159.65	1.45	4.25	6.10	0.11	2.29	115.91
19-02	159.65	0.84	1.52	3.59	0.14	0.99	24.96
19-03	159.65	1.29	3.78	6.82	0.19	4.52	70.97
21-01	161.67	1.62	4.20	6.78	0.18	10.76	41.18
21-02	161.67	1.24	2.43	5.38	0.20	4.03	42.82
21-03	161.67	0.97	2.74	4.09	0.11	4.90	75.41
20-01	160.93	1.07	2.53	5.79	0.15	4.10	42.63
20-03	160.93	0.88	2.92	3.92	0.21	4.95	22.23
22-01	169.12	1.32	2.92	12.84	0.26	3.64	11.64
22-02	169.12	1.16	0.67	3.28	0.19	0.49	5.24
22-03	169.12	0.96	0.99	4.29	0.10	0.60	5.21
23-01	169.62	1.55	0.56	2.53	0.09	0.60	8.64
23-02	169.62	0.72	0.23	0.90	0.12	0.56	4.85
23-03	169.62	1.07	0.32	0.86	0.10	0.75	4.08
24-01	170.13	0.85	1.95	7.91	0.09	0.57	7.40
24-02	170.13	0.82	1.62	6.66	0.06	0.38	6.50
24-03	170.13	0.83	1.63	6.16	0.10	0.35	5.04
25-01	172.21	0.75	0.26	2.28	0.20	0.42	2.79
25-02	172.21	0.70	0.34	2.17	0.08	0.29	3.19
25-03	172.21	1.19	0.70	4.03	0.17	0.49	5.16
26-01	175.72	0.89	0.55	3.25	0.25	0.42	3.09
26-02	175.72	0.74	1.03	5.37	0.13	0.29	6.45
26-03	175.72	1.11	1.86	14.42	0.35	0.62	8.31
27-01	177.89	0.85	1.16	8.67	0.10	0.25	2.06
27-02	177.89	0.84	1.09	5.63	0.04	0.24	1.44
27-03	177.89	1.05	1.38	6.73	0.10	0.41	3.51
29-01	188.82	0.92	1.89	16.09	0.10	0.43	7.01
29-02	188.82	1.06	2.03	12.29	0.10	0.80	7.36
29-03	188.82	0.79	1.93	8.99	0.13	0.33	5.37
16-01	192.32	0.81	5.33	16.86	0.21	0.26	13.82
16-02	192.32	0.79	2.82	11.96	0.06	0.35	11.59
16-03	192.32	0.70	2.58	9.67	0.06	0.37	6.63
28-01	195.45	0.81	0.23	0.27	0.28	0.61	0.82
28-02	195.45	0.65	0.26	0.63	0.29	2.50	1.56
28-03	195.45	1.09	0.24	1.39	0.37	1.81	2.23
30-01	209.88	0.83	2.66	5.78	0.06	0.57	9.69

30-02	209.88	0.79	1.57	3.79	0.07	0.29	14.97
30-03	209.88	0.61	2.66	5.57	0.08	0.33	11.26
31-01	210.92	0.75	1.29	3.30	0.10	0.82	26.29
31-02	210.92	0.90	1.47	4.18	0.07	0.34	22.18
31-03	210.92	0.97	0.76	2.00	0.05	0.28	52.66
32-01	215.08	0.85	1.54	5.13	0.05	0.23	3.03
32-02	215.08	0.78	1.98	6.02	0.04	0.23	4.37
32-03	215.08	0.61	2.93	4.41	0.16	0.55	28.22
33-01	219.80	1.99	0.27	0.37	0.52	3.42	4.50
33-02	219.80	2.42	0.37	0.62	1.06	3.43	8.60
33-03	219.80	2.17	0.42	0.54	0.88	3.75	10.51
34-01	220.05	0.81	2.21	9.12	0.12	1.44	2.69
34-02	220.05	1.22	1.76	9.03	0.09	1.24	4.69
34-03	220.05	0.79	1.12	4.74	0.04	0.34	3.94
35-01	221.35	0.69	1.29	5.98	0.07	0.32	4.71
35-02	221.35	0.69	1.76	8.51	0.10	3.40	5.71
35-03	221.35	1.03	0.67	3.25	0.12	0.90	4.05
36-01	221.96	0.80	0.04	0.52	0.05	0.20	2.05
36-02	221.96	0.77	0.05	0.47	0.03	0.20	1.21
36-03	221.96	0.93	0.05	0.67	0.05	0.20	1.97

Sample No.	depth	SiO ₂	TiO_2	Al_2O_3	TFe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	LOI
003	42.8	58.9	0.7	11.3	4.3	0.1	2.0	8.2	1.5	2.2	0.1	9.7
008	45.2	62.0	0.7	10.9	4.0	0.1	1.9	7.1	1.4	2.1	0.1	8.7
018	50.2	61.1	0.7	11.0	4.3	0.1	2.0	7.2	1.5	2.2	0.2	8.9
021	92.4	60.8	0.7	11.6	4.5	0.1	2.1	6.8	1.3	2.2	0.2	9.0
036	132.4	60.1	0.8	12.5	4.7	0.1	2.2	6.4	1.4	2.4	0.1	8.8
042	136.2	60.4	0.7	12.1	4.5	0.1	2.1	6.6	1.3	2.3	0.1	9.0
052	145.7	57.7	0.7	12.8	5.0	0.1	2.2	7.1	1.3	2.4	0.2	9.8
060	150.2	57.1	0.7	12.7	5.0	0.1	2.2	7.2	1.4	2.5	0.2	9.9
076	160.3	59.4	0.7	12.1	4.8	0.1	2.2	6.9	1.4	2.4	0.2	9.2
076-1	160.3	59.1	0.7	12.2	4.8	0.1	2.2	6.9	1.4	2.4	0.2	9.2
079	161.1	57.9	0.7	12.6	5.0	0.1	2.2	7.3	1.4	2.5	0.2	9.7
089	171.6	59.0	0.7	12.4	4.8	0.1	2.2	7.0	1.4	2.4	0.1	9.2
104	177.7	59.1	0.7	11.9	4.6	0.1	2.1	7.3	1.3	2.3	0.1	9.4
105	177.9	59.6	0.7	11.7	4.6	0.1	2.1	7.2	1.3	2.2	0.1	9.2
121	192.3	58.1	0.8	12.9	4.9	0.1	2.2	6.9	1.2	2.4	0.1	9.6
133	202.3	58.3	0.8	13.7	5.4	0.1	2.3	5.8	1.3	2.6	0.1	8.9
145	210.9	57.4	0.8	13.4	5.1	0.1	2.3	6.5	1.3	2.6	0.2	9.3
153	215.1	55.7	0.8	14.7	5.6	0.1	2.4	6.4	1.3	2.7	0.1	9.8
156	216.7	56.1	0.8	15.3	5.6	0.1	2.4	5.6	1.4	2.8	0.1	9.4
160	219.8	55.1	0.7	13.8	5.0	0.1	2.2	8.1	1.2	2.5	0.1	10.9
165	221.8	55.2	0.7	13.3	5.1	0.1	2.2	8.0	1.4	2.5	0.1	10.9
165-1	221.8	54.8	0.7	13.4	5.1	0.1	2.2	8.0	1.4	2.5	0.1	11.0

 Table S2. Major element oxide contents (wt.%) of bulk sediments.

					-	1 /																
Sample No.	003	008	018	021	036	042	052	060	076	079	089	104	105	121	133	145	153	156	160	165	003-1	060-1
Depth (mbsf)	42.8	45.2	50.2	92.4	132.4	136.2	145.7	150.2	160.3	161.1	171.6	177.7	177.9	192.3	202.3	210.9	215.1	216.7	219.8	221.8	42.8	150.2
Li	48.8	44.8	44.8	49.4	52.7	49.3	55.1	52.8	50.2	52.1	53.0	48.3	48.6	52.1	57.7	55.5	61.1	64.3	60.9	59.2	45.4	53.6
Be	1.68	1.54	1.67	1.76	1.73	1.89	1.98	2.09	1.91	1.90	1.79	1.63	1.67	1.68	2.29	2.24	2.08	2.37	1.86	1.98	1.95	1.93
Sc	9.75	9.27	9.31	9.96	10.8	9.88	11.1	11.1	10.6	10.8	10.9	9.83	9.83	10.6	11.6	11.6	12.3	12.6	11.3	11.3	9.36	11.1
V	79.5	75.3	77.6	84.6	87.8	81.7	92.5	90.6	88.9	92.1	89.0	81.3	82.0	86.9	96.9	96.4	100	103	95.0	94.7	77.8	92.9
Cr	61.5	58.5	60.6	63.5	66.5	62.2	68.4	69.2	65.5	66.8	69.0	62.7	62.3	65.8	69.9	70.2	74.3	76.1	69.9	69.9	60.3	70.4
Co	10.6	10.3	10.7	10.7	11.3	10.7	11.9	12.1	11.8	11.7	11.7	10.7	10.7	11.1	12.6	12.6	12.9	13.7	11.6	11.7	10.4	11.8
Ni	29.4	28.7	28.9	29.7	31.9	29.7	33.6	33.3	32.5	32.7	33.8	30.5	30.8	31.4	35.0	36.2	37.1	40.2	34.2	35.3	29.6	34.9
Cu	13.4	12.1	13.3	14.8	14.0	13.3	15.8	15.4	15.0	15.6	15.1	13.7	13.6	17.7	15.8	16.3	17.5	17.4	16.3	15.9	13.0	15.5
Zn	68.9	64.1	71.4	72.1	75.9	72.0	77.5	76.7	75.3	77.6	76.3	71.9	72.4	78.7	83.8	81.9	86.9	88.6	90.8	84.0	70.1	80.4
Ga	14.4	13.8	13.9	15.1	16.4	14.7	16.7	16.3	15.5	16.1	16.1	14.9	15.4	16.3	17.7	17.1	18.8	19.2	17.4	17.2	14.2	16.3
Rb	98.7	91.1	93.4	99.7	108	101	110	111	106	110	110	101	102	107	118	116	124	128	120	117	96.1	111
Sr	293	249	251	241	237	235	257	266	244	258	257	262	265	247	227	245	244	228	308	305	288	268
Y	25.3	24.4	25.3	26.6	25.3	24.5	25.3	24.6	24.5	24.2	24.8	24.5	24.4	24.3	25.4	24.1	24.3	24.2	25.0	24.9	24.5	25.3
Zr	213	226	237	231	205	197	195	188	201	190	204	196	198	190	183	177	172	168	169	175	209	186
Nb	14.7	14.4	14.9	15.5	15.8	15.4	15.4	15.1	14.9	15.0	15.2	15.2	15.5	15.4	16.2	15.5	16.1	16.1	15.6	15.6	14.4	15.2
Мо	0.23	0.29	0.50	0.75	0.35	0.35	0.37	0.39	0.36	0.37	0.40	0.47	0.43	0.55	0.36	0.34	0.35	0.61	0.40	0.40	0.26	0.49
Sn	2.64	2.48	2.48	2.74	2.83	3.05	2.78	2.80	2.59	2.72	2.68	2.61	2.54	2.95	2.94	2.88	3.04	3.23	3.30	3.14	2.55	2.93
Cs	6.33	5.81	5.89	6.45	7.15	6.63	7.68	7.63	7.37	7.77	7.51	6.46	6.65	7.34	8.34	8.37	9.01	9.37	8.78	8.60	6.37	7.75
Ba	356	343	354	544	377	366	375	381	375	382	391	358	369	456	396	391	411	407	422	379	347	384
La	34.9	34.6	35.1	35.9	36.2	35.0	36.0	34.7	34.7	34.4	36.6	34.4	35.4	35.3	37.8	36.0	37.2	37.8	36.7	36.9	35.3	36.5
Ce	68.7	67.5	69.6	70.9	71.5	68.5	71.1	68.6	69.0	68.1	73.1	67.5	69.6	68.3	73.8	69.5	72.6	73.0	70.7	71.3	68.1	69.8
Pr	7.92	7.83	7.91	8.14	8.21	7.90	8.13	7.92	7.98	7.85	8.41	7.81	8.06	8.02	8.58	8.08	8.42	8.51	8.15	8.11	7.78	8.08
Nd	28.3	27.9	29.2	29.0	29.2	27.9	29.2	28.5	28.4	27.8	29.9	27.5	28.4	28.0	30.3	28.9	29.9	29.9	28.6	29.1	27.9	29.3
Sm	5.83	5.71	6.03	5.76	5.85	5.58	5.99	5.49	5.75	5.67	6.12	5.57	6.01	5.70	6.09	5.84	5.71	5.89	5.56	5.69	5.54	5.64
Eu	1.15	1.07	1.20	1.22	1.19	1.12	1.16	1.11	1.13	1.11	1.19	1.09	1.15	1.15	1.18	1.17	1.16	1.15	1.18	1.11	1.15	1.13
Gd	5.09	4.82	5.02	5.22	5.03	4.78	5.10	4.80	4.79	4.80	5.05	4.73	4.82	4.84	5.20	5.03	4.94	5.05	4.93	5.12	4.94	5.21
Tb	0.76	0.74	0.78	0.80	0.76	0.74	0.77	0.76	0.74	0.74	0.79	0.74	0.79	0.76	0.83	0.73	0.79	0.81	0.79	0.79	0.77	0.77
Dy	4.92	4.53	4.77	5.03	4.94	4.74	4.81	4.70	4.77	4.73	4.82	4.62	4.62	4.57	4.97	4.65	4.62	4.82	4.78	4.68	4.51	4.66
Но	0.93	0.91	0.91	1.00	0.92	0.88	0.93	0.87	0.89	0.88	0.96	0.92	0.91	0.93	0.95	0.92	0.95	0.91	0.92	0.93	0.92	0.95
Er	2.58	2.45	2.41	2.71	2.52	2.50	2.53	2.53	2.47	2.43	2.55	2.63	2.51	2.58	2.65	2.43	2.54	2.61	2.55	2.60	2.59	2.73
Tm	0.38	0.38	0.38	0.41	0.38	0.37	0.40	0.37	0.38	0.36	0.37	0.38	0.37	0.37	0.39	0.38	0.37	0.38	0.39	0.37	0.38	0.38
Yb	2.55	2.52	2.56	2.81	2.64	2.49	2.61	2.46	2.49	2.40	2.50	2.41	2.41	2.45	2.56	2.49	2.47	2.49	2.54	2.60	2.43	2.56
Lu	0.37	0.38	0.37	0.41	0.39	0.37	0.38	0.38	0.37	0.36	0.39	0.37	0.37	0.37	0.38	0.36	0.38	0.37	0.37	0.37	0.36	0.37
Hf	5.88	6.22	6.55	6.38	5.85	5.59	5.65	5.41	5.81	5.48	5.94	5.55	5.78	5.40	5.36	5.18	5.01	4.82	4.92	4.94	5.91	5.25
Та	1.11	1.07	1.10	1.17	1.17	1.11	1.14	1.14	1.09	1.08	1.10	1.13	1.20	1.16	1.23	1.14	1.16	1.18	1.18	1.23	1.08	1.14
Tl	0.51	0.47	0.50	0.54	0.60	0.57	0.60	0.62	0.60	0.62	0.66	0.61	0.58	0.62	0.68	0.64	0.72	0.69	0.66	0.60	0.50	0.55
Pb	15.1	14.1	15.6	17.1	17.4	15.9	18.1	17.8	17.0	17.9	16.7	15.1	15.3	17.6	19.5	19.3	20.3	21.3	22.1	18.3	14.9	18.7
Th	12.2	11.8	12.1	12.6	13.2	12.3	13.3	12.7	12.6	13.4	13.1	12.3	12.2	13.0	14.3	13.4	14.1	14.3	14.1	13.8	11.8	12.7
U	2.41	2.34	2.44	2.48	2.48	2.43	2.52	2.52	2.47	2.48	2.56	2.45	2.51	2.40	2.65	2.46	2.62	2.57	2.79	2.66	2.38	2.61
Y/Ho	27.2	26.7	27.7	26.7	27.5	27.9	27.0	28.2	27.6	27.4	25.8	26.8	26.9	26.2	26.7	26.3	25.5	26.6	27.1	26.9	26.7	26.7

Table S3. Trace elements (ppm), rare earth elements (ppm), Y/Ho, Ni_{EF}, Ba_{bio} (ppm), Mn×Co (wt.% × ppm), Eu/Eu*, and MREE/MREE* of bulk sediment at Site SC03

Ni _{ef}	0.82	0.83	0.83	0.81	0.80	0.77	0.83	0.82	0.84	0.82	0.86	0.81	0.83	0.76	0.81	0.85	0.80	0.83	0.78	0.83	0.82	0.86
$\operatorname{Ba}_{\operatorname{bio}}$	55.6	54.6	64.3	-	46.3	46.3	36.2	44.2	53.3	48.3	62.9	43.8	59.5	-	33.8	35.8	22.6	2.0	55.9	26.0	46.8	46.5
$\mathrm{Mn} imes \mathrm{Co}$	0.46	0.41	0.44	0.51	0.54	0.49	0.65	0.68	0.68	0.68	0.55	0.43	0.43	0.47	0.70	0.77	0.90	1.04	0.55	0.54	0.45	0.67
Eu/Eu*	1.04	0.99	1.05	1.08	1.07	1.05	1.02	1.04	1.04	1.03	1.03	1.02	1.01	1.05	1.01	1.07	1.05	1.00	1.08	1.00	1.06	1.03
MREE/MREE*	9.3	8.9	9.5	9.2	9.3	9.0	9.3	9.0	9.1	9.2	9.7	8.9	9.4	9.2	9.7	9.4	9.5	9.6	9.3	9.3	9.2	9.2

0						
Comula No	$\delta^{34}S$	Overgrowth	Nucleus	Overgrowth	Mean	
Sample No.	(VCDT‰)	width (µm)	diameter (µm)	fraction	fraction	
		1.1	6.8	0.14		
025	-33.8	1.5	6.8	0.18	0.15	
		0.4	2.7	0.13		
		1.6	5.2	0.24		
0(5	0.0	2.1	6.1	0.26	0.29	
065	-0.9	1.8	4.8	0.27	0.28	
		2.2	4.0	0.35		
		2.2	4.1	0.35		
		3.8	6.2	6.2 0.38		
		3.9	6.0	0.39		
067	10.8	2.8	4.1	0.41	0.40	
		3.5	5.1	0.41		
		4.5	6.0	0.43		
		3.7	4.3	0.46		
		2.6	6.9	0.27		
075	-12.2	1.6	6.6	0.20	0.23	
		2.6	9.6	0.21		
		4.5	10.4	0.30	0.15 0.28 0.28 0.20 0.23 0.23 0.29 0.22 0.22 0.22	
		3.6	10.7	0.25		
000	()	3.8	11.9	0.24	0.00	
080	-6.2	2.8	4.8	0.37	0.29	
		5.2	12.1	0.30		
		2.7	7.4	0.27		
		3.3	8.5	0.28		
002	17.0	3.3	11.5	0.22	0.02	
083	-17.8	2.4	11.7	0.17	0.23	
		3.6	11.4	0.24		
		1.3	5.2	0.20		
084	-7.0	1.6	4.7	0.25	0.22	
		1.5	5.5	0.21	-	
		1.3	9.9	0.12		
		1.8	10.3	0.15	-	
		2.3	13.3	0.15		
000	26.1	1.7	10.0	0.15	0.17	
009	-20.1	1.8	7.0	0.20	0.17	
			1.9	7.0	0.21	
				1.7	11.4	0.13
		2.7	9.7	0.22		
125	-32.6	0.9	6.7	0.12	0.18	

Table S4 Pyrite framboidal overgrowth width, nucleus diameter, and the ratio of overgrowth width to nucleus diameter at Site SC03.

		0.9	4.4	0.17	
		0.9	4.6	0.16	
		1.0	4.4	0.19	
		1.1	5.6	0.16	
		1.3	5.1	0.20	
		1.0	3.8	0.21	
		1.5	7.6	0.16	
		1.0	4.2	0.19	
		1.4	6.3	0.18	
		0.7	4.3	0.14	
		1.0	4.6	0.18	
		1.5	6.2	0.19	
		1.1	4.4	0.20	
		6.6	12.9	0.34	
128	6.0	7.7	16.0	0.32	0.34
		8.9	17.1	0.34	
		4.0	11.6	0.26	
		8.6	30.8	0.22	
		3.6	8.0	0.31	
		3.0	7.6	0.28	
		4.4	15.0	0.23	
		6.6	20.6	0.24	
137	-10.4	4.3	12.6	0.25	0.25
		2.6	10.0	0.21	
		3.4	11.4	0.23	
		3.1	6.9	0.31	
		3.1	12.9	0.19	
		6.3	17.1	0.27	
		5.4	18.9	0.22	
		3.4	9.4	0.27	
120	1.0	3.0	6.3	0.32	0.20
158	4.0	2.4	6.3	0.28	0.30
		3.0	6.2	0.33	
		4.1	13.9	0.23	
		4.5	15.1	0.23	
		4.4	14.2	0.24	
		3.0	9.3	0.24	
120	2.5	1.4	4.2	0.25	0.29
139	-2.3	4.5	13.1	0.26	0.28
		3.9	10.3	0.27	
		2.8	7.2	0.28	
		3.9	9.9	0.28	
		5.6	13.4	0.29	

		3.4	7.9	0.30		
		4.2	9.6	0.30		
		3.9	8.5	0.31		
		3.4	6.9	0.33		
		5.8	11.7	0.33		
		3.6	7.2	0.33		
		4.6	16.8	0.21		
		4.2	11.8	0.26		
		3.6	15.1	0.19		
		3.9	15.3	0.20		
		2.8	5.9	0.32		
		2.1	5.9	0.26		
		3.1	8.0	0.28		
140	-5.3	2.3	8.7	0.21	0.25	
		3.5	9.3	0.27		
		3.1	8.0	0.28		
		4.7	11.6	0.29		
		3.1	10.0	0.24		
		5.9	21.2	0.22		
		4.4	14.4	0.23	0.25	
		4.0	10.0	0.29		
		2.4	3.5	0.41		
141	4.1	3.8	5.1	0.43	0.40	
		3.9	6.6	0.37		
		1.1	5.5	0.17		
		1.7	3.7	0.31		
		1.7	4.8	0.26		
		2.5	5.4	0.32		
		1.5	4.1	0.27		
		1.7	6.3	0.21		
		1.7	3.8	0.31		
		1.4	4.4	0.24		
		1.9	3.9	0.33		
147	-9.7	1.4	5.9	0.19	0.27	
		1.3	4.1	0.24		
		1.1	2.1	0.34		
		1.5	3.3	0.31		
		1.4	3.7	0.27		
		1.9	5.9	0.24		
		1.5	3.5	0.30		
		1.7	4.5	0.27		
		1.9	5.6	0.25		
		1.5	3.6	0.29		

		1.5	3.4	0.31			
		0.8	3.9	0.17			
		1.4	11.5	0.11			
		3.0	13.5	0.18			
		2.2	12.5	0.15			
		2.8	10.0	0.22			
160	10.4	2.1	10.5	0.17	0.16		
100	-18.4	2.0	12.6	0.14	0.10		
		3.6	19.6	0.16			
		2.1	12.3	0.15			
		2.8	11.4	0.20			
		2.5	12.7	0.16			
		1.9	8.6	0.18			
		5.8	0.41				
		5.4	8.2	0.40			
		5.2	6.3	0.45			
		3.5	5.2	0.40			
		3.6	5.2	0.41			
		4.3	6.0	0.42			
		3.5	6.0	0.37			
		5.5	8.3	0.40			
164	16.1	4.7	8.3	0.36	0.41		
101	10.1	5.6	8.0	0.41	0.11		
		5.4	8.1	0.40			
		5.4	7.0	0.44			
		4.2	5.7	0.42			
		5.1	6.7	0.43			
		3.2	5.2	0.38			
		5.8	8.3	0.41			
		6.1	9.5	0.39			
		7.3	8.6	0.46			