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ABSTRACT This paper presents a novel method for addressing the challenge of dq-transformation in fractional-slot machines 

with star-delta connected concentrated windings. These machines have no neutral point, preventing direct measurement of 

mutual inductance between phases. This complicates the calculation of d- and q-axis inductances, which are crucial for modern 

control techniques such as field-oriented and sensorless control. The proposed method derives d- and q-axis inductances as 

functions of individual star and delta coil inductances, which can easily be measured. Moreover, it demonstrates that the d- 

and q-axis inductances can be calculated using measurements from just two adjacent coils. The method begins with 

constructing a decomposed coil-by-coil inductance matrix, separating each phase winding into individual star and delta coil 

inductances. This matrix is then transformed into the dq-frame using a three-step process: firstly, summing individual flux 

linkages to derive line flux linkage based on circuit configuration; secondly, decomposing 3-phase abc supply currents into 

individual currents within the star and delta coils to address phase shift and amplitude differences; and finally, transforming 

line flux linkage into the dq-frame using a modified power-invariant Park transformation. The proposed method is validated 

by simulations and experiments on both surface mounted and interior permanent magnet machines. 

INDEX TERMS dq analysis, concentrated windings, fractional-slot, star-delta connection. 

I. INTRODUCTION 

achines equipped with fractional-slot concentrated 

windings (FSCW) offer substantial advantages in 

manufacturing and torque performance over traditional 

integer-slot distributed windings [1]. However, they have the 

disadvantage of large space harmonics in the armature 

winding MMF [2]. These large space harmonics lead to 

increased vibrations and torque ripple as well as increased 

rotor loss and PM eddy current loss [3-5]. The latter is a 

particular problem for machines operating under high current 

loading where the increased PM eddy current losses lead to 

excess heating [6]. This excess heating can cause irreversible 

demagnetization of the PMs and so methods to mitigate these 

MMF space harmonics are very attractive [7-10]. There is a 

wealth of recent research investigating the application of 

hybrid star-delta windings in FSCW machines as a method 

for space harmonic elimination [11-15]. In this winding 

topology one phase group of coils are connected in star, but 

instead of connecting at the neutral point the ends are 

connected to the junctions between coils in a delta-connected 

winding. This configuration creates a 30 elec. deg. phase shift 

between the two windings that can be used to eliminate 

unwanted harmonics. Various configurations of hybrid star-

delta windings have been proposed in literature that reduce or 

eliminate unwanted armature MMF harmonics. Abdel-Khalik 

et al demonstrated the application of this type of winding 

connection to m-phase machines in [11]. In this work a 

12s/10p 3-phase star-delta wound machine has been 

investigated and compared with a conventional star winding. 

It is demonstrated that the star-delta wound machine can 

eliminate the 1st subspace harmonic while also improving the 

amplitude of the working (5th) harmonic by 3.5%. This yields 

a machine with improved torque performance and reduced 

rotor loss. Hybrid star-delta windings have been extended to 

a multitude of electrical machine applications including 

interior permanent magnet (IPM) machines [16] and 

synchronous reluctance machines [17, 18]. Designing 

electrical machines to reduce unwanted harmonics and thus 

improve performance is of vital importance. However, 

understanding how to control these machines is also critical 

to their application in the real world. The dq-transformation 

[19] is fundamental to many modern control methodologies 

including field-oriented control [20] and sensorless control 

[21, 22]. Although star-delta winding structures possess many 

advantages such as reduced harmonics and losses, it is 

difficult to get the dq-axis parameters such as Ld and Lq 

needed for these control schemes. This will be the main focus 

of this paper.  

From an electromagnetic design perspective, a star-delta 

winding machine can be viewed as a pseudo dual-3-phase 

machine owing to the phase shift between the currents in the 

two winding sets. There is a large amount of work on dq-

analysis of dual 3-phase machines [23]. Many of these 

methods use a double synchronous reference frame for 

current control of each winding set based on two individual 

dq-axis models [24-26]. These methods work for steady-state 

control, however the two individual reference frames may 

develop instability if there is a large amount of cross-coupling 

between the winding sets [27]. Therefore, the two dq-frames 

must be decoupled from one another for optimum current 

control. A general decoupled dq-model is proposed in [28] 

for a PM synchronous generator with isotropic rotor. This 

method considers the dependence of self- and mutual 

inductances on rotor position and greatly simplifies the 

analysis by decoupling the two winding sets. In [29] a simple 

diagonalization matrix is introduced that can perform the 

decoupling and takes into account the harmonic content of 

no-load flux linkages. This provides a general decoupled dq-

model for dual 3-phase machines but does not account for 

rotor anisotropy. Finally, work carried out by Kallio et al 

presents a decoupled dq-model for dual 3-phase interior 

M 
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permanent magnet (IPM) machines that considers the 

influence of rotor saliency [30]. This work describes the 

simple transformations that can be carried out to allow for dq-

control of dual 3-phase IPM machines with general angle 

displacements between the winding sets. This approach can 

then be used to determine inductance parameters for 

decoupled dq-models [31], and to develop high-performance 

control for dual 3-phase PM machines in different reference 

frames [32]. 

These prior works are all very useful. However, they cannot 

be applied in the case of a hybrid star-delta wound machine. 

In such a machine, although the winding sets behave as if 

driven by two converters, they are connected in series. This 

means that there is only one converter used to drive the 

windings and so two decoupled dq-reference frames cannot 

be employed. A control scheme must be generated that 

accounts for the phase shift in the two winding sets but still 

produces only a single dq-frame for dq-analysis. There is 

presently no literature investigating the dq-inductances and 

therefore dq-analysis of star-delta machines. This could be 

due to the fact that the bulk of literature on star-delta 

machines is applied to non-salient pole rotors. In this case 

there is no rotor anisotropy which causes complex cross-

coupling between individual coils. Thus, in such machines a 

simple star-delta transformation of fundamental inductance 

could be applied to generate a simplified dq-inductance. 

However, in an IPM machine the inductance becomes a 

function of rotor position. This can also be the case for some 

of the surface mounted permanent magnet (SPM) machines 

when the saturation induced saliency is accounted for. If there 

is a phase-shift between coils within the same phase as well 

as between phases, then the mutual inductance between each 

coil must be expressed independently. Furthermore, this 

simplification would produce dq-inductances as a function of 

phase self- and mutual-inductance. In a star-delta wound 

machine there is no neutral point, and so measuring these 

inductances is not possible. Therefore, a decomposed 

inductance matrix, which can then be translated to the dq-

frame is required that allows measurement of individual coil 

self- and mutual-inductances. 

In this paper, a method for dq-transformation of a star-delta 

wound machine is proposed. An IPM machine is used as 

example, but the same theory can be applied to an SPM 

machine to account for the saliency caused by saturation. A 

demonstration of this dq-transformation process for obtaining 

dq armature flux linkage based on supplied dq currents can 

be seen in Fig. 1. The process begins with the generation or 

measurement of a decomposed coil-by-coil stator inductance 

matrix (LYΔ) that accounts for the mutual inductance between 

individual star and delta coils. The d- and q-axis currents are 

transformed to the abc frame by the inverse Park transform 

(𝑻𝑷𝑻), and then decomposed into individual star and delta coil 

currents using a circular matrix (B). The coil inductance 

matrix is then multiplied by the individual coil currents to 

provide individual star and delta coil flux linkages. These are 

then summed in such a way to provide the line flux linkage 

using a matrix (A). The line flux linkage is then transformed 

to a pseudo dq ‘line’ flux linkage with the Park transform (TP) 

before a final matrix (C) transforms it to the final dq armature 

flux linkage. This process can be applied to give the dq-

voltage equation that can be used for dq-control of the star-

delta machine, as well as calculation of the d- and q-axis 

inductances. 

II. STAR-DELTA WINDING MACHINE 

A. Star-Delta Connected Windings 

The inherent phase shift between the star and delta coil 

currents can be used to eliminate the unwanted first subspace 

harmonic. To exploit this property, the ends of the star 

windings are connected to the junctions of the delta windings 

and the difference between a conventional star winding and 

the star-delta winding can be seen in Fig. 2(a) and Fig. 2(b). 

The voltage phasors for the star and delta winding sets can be 

seen in Fig. 2(c), demonstrating the 30 elec. deg. phase shift 

that exists between the two windings. 

It has been demonstrated in literature that this phase shift 

can be applied to a 12s/10p FSCW machine to eliminate the 

1st subspace harmonic while increasing the amplitude of the 

working (5th) harmonic by 3.5% [11]. In this paper both IPM 

and SPM machines are investigated, but emphasis on the IPM 

machine is used in the equation derivations as the influence 

of rotor saliency on star-delta coil mutual inductance is more 

significant. The example IPM star-delta machine, as well as 

the harmonic spectra of the winding MMF, can be seen in Fig. 

3 with machine specifications given in TABLE I. The 

combination of eliminated 1st subspace harmonic and 

increase of 3.5% in the amplitude of the 5th leads to a 

reduction in rotor losses and improved torque performance. 

However, the added complexity of the winding arrangement 

requires reconsideration of the inductances if the machines is 

to be controlled in the dq-frame. Fig. 1. Flowchart describing process for obtaining dq armature flux 

linkages. 

  
(a) (b) 

 
(c) 

Fig. 2. 3-phase winding connections. (a) Conventional 3-phase 

windings, (b) star-delta windings, and (c) star-delta winding voltage 

vectors. 
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(a) 

 
(b) 

 
(c) 

Fig. 3. Comparison of 3-phase 12s/10p machines. (a) Conventional star 

winding, (b) star-delta winding, and (c) armature MMF harmonics. 

TABLE I: SIMULATED MACHINE SPECIFICATIONS 

Stator outer radius (mm) 50 Air-gap length (mm) 1 

Rotor outer radius (mm) 27.5 Tooth width (mm) 7 

Stack length (mm) 50 Tooth tip height (mm) 2.5 

Turns/phase - Star 64 Turns/phase - Delta 112 

Stator yoke height (mm) 3.7 Magnet thickness (mm) 3 

IPM Magnet width (mm) 13 Magnet remanence (T) 1.24 

B. Simplified Inductance Model 

A simple way to try and obtain the d- and q-axis inductances 

of the star-delta wound machine would be to transform the 

delta inductances to an equivalent ‘star’ inductance. With an 
equivalent star winding inductance matrix, the general Park 

transformation can be applied which would provide 

approximations for d- and q-axis inductance. Electrical 

properties, such as resistance or inductance of the delta-

windings, can be transformed to those of an equivalent ‘star’ 
winding using Ohm’s Law. Inductors in series add up while 

those in parallel are the reciprocal of the sum of the individual 

inductance reciprocals. For this method the equivalent star 

inductances can be calculated from the delta inductances to 

generate an equivalent inductance model as shown in Fig. 4. 

For phase A equivalent star inductance, the transformation 

equation is given by 𝐿𝑎𝑌−𝑒𝑞 = 𝐿𝑎∆𝐿𝑏∆𝐿𝑎∆ + 𝐿𝑏∆ + 𝐿𝑐∆ (1) 

where LaΔ , LbΔ, LcΔ are the delta coil inductances of phases A, 

B and C, respectively. Assuming that all delta inductances are 

equal, and applying the same equation to each phase gives an 

equivalent star inductance of 𝐿∆ 3⁄ . Using this equivalent 

inductance and assuming a mutual inductance of Mph between 

phases, the equations for inductance can be derived. In the 

case of rotor anisotropic magnetic structure, such as the 

example IPM machine, the self- and mutual inductances are 

functions of the rotor position. Assuming the geometric and 

electromagnetic asymmetry of the windings as well as 

material saturation effects are all negligible, the self-

inductance for the 3-phase coils (i, j = a, b, c and i ≠ j) can be 

expressed as 

{𝐿𝑖 = 𝐿𝑌0 + 𝐿∆03 − (𝐿𝑌2 + 𝐿∆23 ) cos 2(𝜃𝑖)𝑀𝑖𝑗 = 𝑀𝑝ℎ0 −𝑀𝑝ℎ2 cos(𝜃𝑖 + 𝜃𝑗)            (2) 

where LY0 and LΔ0 denote the average value of star and delta 

coil self-inductances, respectively. LY2 and LΔ2 are the second-

harmonics (from rotor anisotropy), θi and θj are the electrical 

displacement of the ith or jth winding from the d-axis. These 

equations can then be combined to give a simple 3-phase 

inductance matrix of the star-delta machine, as described by 

𝑳𝒂𝒃𝒄 = ( 𝐿𝐴 𝑀𝐴𝐵 𝑀𝐴𝐶𝑀𝐵𝐴 𝐿𝐵 𝑀𝐵𝐶𝑀𝐶𝐴 𝑀𝐶𝐵 𝐿𝐶 ) (3) 

This is a general 3-phase inductance matrix that can be 

easily transformed to the dq-frame using the power-invariant 

Park transformation given by 

𝑻𝒑 = √23( cos(𝜃) cos (𝜃 − 2𝜋3 ) cos (𝜃 + 2𝜋3 )− sin(𝜃) − sin (𝜃 − 2𝜋3 ) − sin (𝜃 + 2𝜋3 )) (4) 

This results in a final dq-inductance matrix of 𝑳𝒅𝒒 = diag(𝐿𝑑 , 𝐿𝑞) (5) 

with 

{𝐿𝑑 = 𝐿𝑌0 + 𝐿∆03 +𝑀𝑝ℎ0 − 𝐿𝑌22 − 𝐿∆26 −𝑀𝑝ℎ2𝐿𝑞 = 𝐿𝑌0 + 𝐿∆03 +𝑀𝑝ℎ0 + 𝐿𝑌22 + 𝐿∆26 +𝑀𝑝ℎ2  (6) 

It is easy to measure the self-inductance of the individual 

star and delta coils. However, due to the existence of the delta 

connection there is no neutral point in a real star-delta 

machine. Without a neutral point the mutual inductance of 

phases cannot be measured experimentally. Furthermore, this 

simple method does not account for the 30° phase shift 

between currents in the star and delta windings, which could 

influence the mutual inductance between adjacent coils. To 

address the shortcomings of the simplified inductance model, 

a decomposed coil-by-coil model is required to investigate 

and calculate the mutual inductance between phases as a 

 
Fig. 4. Circuit simplification after delta to star transformation. 
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function of the mutual inductances between each star and 

delta coil. This will be detailed in the following section.  

III. DECOMPOSED COIL-BY-COIL MODEL 

To accurately capture the mutual inductance between each 

coil in the dq-model, the voltage equation must be expressed 

in terms of individual coils as 𝒖𝒀∆ = 𝑹𝒀∆𝒊𝒀∆ + 𝑗𝜔𝝍𝒀∆ + 𝑳𝒀∆ 𝑑𝒊𝒀∆𝑑𝑡  (7) 

where the star-delta resistance matrix, current matrix, and 

total linkages are given by the following. {𝑹𝒀∆ = diag(𝑅𝑌,𝑅∆,𝑅𝑌,𝑅∆,𝑅𝑌,𝑅∆)            𝒊𝒀∆ = (𝑖𝑎𝑌 𝑖𝑎∆ 𝑖𝑏𝑌 𝑖𝑏∆ 𝑖𝑐𝑌 𝑖𝑐∆)𝑇 (8) 

𝝍𝒀∆ = 𝑳𝒀∆𝒊𝒀∆ +𝝍𝒑𝒎−𝒀∆ (9) 

The individual star-delta flux linkages are expressed as a 

function of the decomposed inductance matrix and individual 

coil currents, as described by (9), and the PM flux linkage is 

simply a function of rotor positions and can be expressed as 

𝝍𝒑𝒎−𝒀∆ = 𝜓𝑝𝑚
( 
   

cos(𝜃)√3cos(𝜃 − 𝜋/6)cos(𝜃 − 2𝜋/3)√3cos(𝜃 − 2𝜋/3 − 𝜋/6)cos(𝜃 + 2𝜋/3)√3cos(𝜃 + 2𝜋/3 − 𝜋/6)) 
    (10) 

where ψpm is the peak PM flux linkage of a single star phase 

winding. The shift angles in the PM flux linkage matrix 

correspond to the electrical space vector of the individual 

coil, so the delta coils are shifted by 30 elec. deg. with respect 

to the star coils. The √3 accounts for the number of turns in 

the delta coils and is directly proportional to flux linkage. To 

calculate the total star-delta flux linkage in (9) the inductance 

matrix must be derived as a function of rotor position. 

A. Decomposed Stator Inductance Matrix 

For the decomposed inductance matrix, the equation for 

self-inductance (2) is split into two equations, one for star coil 

self-inductance and one for delta coil self-inductance (i = a, 

b, c) { 𝐿𝑖𝑌 = 𝐿𝑌0 − 𝐿𝑌2 cos 2(𝜃𝑖)         𝐿𝑖∆ = 𝐿∆0 − 𝐿∆2 cos 2(𝜃𝑖 − 𝜋/6) (11) 

To generate equations for mutual inductance, the coils must 

firstly be decomposed into star-star pairs and delta-delta pairs 

for each phase (i, j = a, b, c and i ≠ j). As before, these mutual 

inductances are comprised of a fundamental component 

(MYY0, MΔΔ0) and a 2nd harmonic component (MYY2, MΔΔ2), as 

described by { 𝑀𝑖𝑌𝑗𝑌 = 𝑀𝑌𝑌0 −𝑀𝑌2 cos(𝜃𝑖 + 𝜃𝑗)         𝑀𝑖∆𝑗∆ = 𝑀∆∆0 −𝑀∆2 cos(𝜃𝑖 + 𝜃𝑗 − 𝜋/6) (12) 

These equations are not dissimilar from a conventional 3-

phase winding when operating in isolation, albeit the delta 

coils are shifted by 𝜋 6⁄  (or 30) elec. deg. from the d-axis. For 

the star-delta winding there exists cross-coupling between 

star and delta coils of each phase group which again is a 

function of rotor position. Furthermore, as can be seen in Fig. 

3(a) each star coil is adjacent to two delta coils, and each delta 

coil is adjacent to two star coils. This results in a different 

equation for mutual inductance depending on which star-delta 

coils are paired. As inductance is inversely proportional to the 

air-gap length, it can be assumed that the second harmonic of 

the mutual inductance is inversely proportional to the number 

of slot pitches, sp, between star-delta coil pairs. Therefore, 

the mutual inductance for star-delta coil pairs for each phase 

(i, j = a, b, c) can be expressed as 𝑀𝑖𝑌𝑗∆ = 𝑀𝑌∆0 cos(𝜃𝑖 + 𝜃𝑗 − 𝜋/6) − 1𝑠𝑝𝑀𝑌∆2 cos(𝛾𝑖𝑗) (13) 

with  

𝛾𝑖𝑗 = { 2(𝜃𝑖 − 𝜋/12) if 𝑖𝑗 =  𝑎𝑌𝑎∆, 𝑏𝑌𝑏∆, 𝑐𝑌𝑐∆2(𝜃𝑖 − 5𝜋/12) if 𝑖𝑗 =  𝑎𝑌𝑏∆, 𝑏𝑌𝑐∆, 𝑐𝑌𝑎∆2(𝜃𝑖 + 𝜋/4) if 𝑖𝑗 =  𝑎𝑌𝑐∆, 𝑏𝑌𝑎∆, 𝑐𝑌𝑏∆ (14) 

where sp is the number of slots between the star-delta coil 

pair. Combining these equations together into a 6x6 matrix of 

decomposed coil self- and mutual inductances gives the final 

LYΔ matrix below. 

𝑳𝒀𝚫 =
[  
   
𝐿𝑎𝑌 𝑀𝑎𝑌𝑎∆𝑀𝑎𝑌𝑎∆ 𝐿𝑎∆ 𝑀𝑎𝑌𝑏𝑌 𝑀𝑎𝑌𝑏∆𝑀𝑏𝑌𝑎∆ 𝑀𝑎∆𝑏∆ 𝑀𝑎𝑌𝑐𝑌 𝑀𝑎𝑌𝑐∆𝑀𝑐𝑌𝑎∆ 𝑀𝑎∆𝑐∆𝑀𝑏𝑌𝑎𝑌 𝑀𝑏𝑌𝑎∆𝑀𝑎𝑌𝑏∆ 𝑀𝑏∆𝑎∆ 𝐿𝑏𝑌 𝑀𝑏𝑌𝑏∆𝑀𝑏𝑌𝑏∆ 𝐿𝑏∆ 𝑀𝑏𝑌𝑐𝑌 𝑀𝑏𝑌𝑐∆𝑀𝑐𝑌𝑏∆ 𝑀𝑏∆𝑐∆𝑀𝑐𝑌𝑎𝑌 𝑀𝑐𝑌𝑎∆𝑀𝑎𝑌𝑐∆ 𝑀𝑐∆𝑎∆ 𝑀𝑐𝑌𝑏𝑌 𝑀𝑐𝑌𝑏∆𝑀𝑏𝑌𝑐∆ 𝑀𝑐∆𝑏∆ 𝐿𝑐𝑌 𝑀𝑐𝑌𝑐∆𝑀𝑐𝑌𝑐∆ 𝐿𝑐∆ ]  

    
(15) 

To validate these equations, an FEA model was built for the 

12s/10p IPM machine investigated. Each coil was excited by 

a current of 1A and the self- and mutual inductances 

calculated for each case. The average values and 2nd harmonic 

components were then used in the above matrix to generate 

analytical waveforms of inductance for comparison with the 

FEA results. Fig. 5(a) shows the self-inductance of coil AY as 

well as the mutual inductances with its adjacent delta coils AΔ 

and BΔ. Fig. 5(b) shows the mutual inductance of coil AY with 

the non-adjacent coils BY, CY, and CΔ. 

 
(a) 

 
(b) 

Fig. 5. Comparison of analytical inductances and FEA obtained. (a) 

Self-inductance and adjacent coil mutual inductance and (b) non-

adjacent coil mutual inductance. 
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It can be seen in Fig. 5 that the mutual inductances between 

non-adjacent coils is very small and so can be neglected. This 

can be validated with FEA by plotting the flux lines produced 

by coil AY supplied with a 1A DC current, as displayed in 

Fig. 6. These flux lines only cross through the adjacent coils 

AΔ and BΔ, thus it can be reasonably concluded that mutual 

inductance only needs to be considered for adjacent coils. 

This produces a simplified inductance matrix with only 

adjacent coil mutual inductances LYΔ. 

𝑳𝒀𝜟 =
[  
   
𝐿𝑎𝑌 𝑀𝑎𝑌𝑎∆ 0 𝑀𝑎𝑌𝑏∆ 0 0𝑀𝑎𝑌𝑎∆ 𝐿𝑎∆ 0 0 𝑀𝑐𝑌𝑎∆ 00 0 𝐿𝑏𝑌 𝑀𝑏𝑌𝑏∆ 0 𝑀𝑏𝑌𝑐∆𝑀𝑎𝑌𝑏∆ 0 𝑀𝑏𝑌𝑏∆ 𝐿𝑏∆ 0 00 𝑀𝑐𝑌𝑎∆ 0 0 𝐿𝑐𝑌 𝑀𝑐𝑌𝑐∆0 0 𝑀𝑏𝑌𝑐∆ 0 𝑀𝑐𝑌𝑐∆ 𝐿𝑐∆ ]  

    
(16) 

For further verification, the FEA model was used to 

generate flux linkages for comparison with the results 

obtained from the simplified inductance matrix. After 

aligning the d-axis with coil AY, the machine was spun first 

under open-circuit condition and then supplied with 1A d-

axis current. The resulting flux linkage for coils AY and AΔ 

generated due to armature windings only was then calculated 

using 𝜓𝑐𝑜𝑖𝑙 = 𝜓𝑡𝑜𝑡𝑎𝑙 − 𝜓𝑝𝑚 (17) 

where 𝜓𝑡𝑜𝑡𝑎𝑙 is the flux linkage produced by both PMs and d-

axis current and 𝜓𝑝𝑚 is the open-circuit flux linkage. The 

results were then compared with calculated analytical 

armature flux linkage using the simplified inductance matrix 

(16) and the decomposed star-delta current matrix in (8) and 

can be seen in Fig. 7. There is a very close match between the 

FEA results and the analytical results obtained using the 

simplified inductance matrix. Therefore, it is safe to ignore 

the mutual inductance of non-adjacent coils when translating 

to the dq-frame. 

IV. ABC TO DQ TRANSFORMATION  

To transform the star-delta voltage equation (7) to the dq-

frame, it must first be translated from its YΔ-form to the abc-

frame. As there is no neutral point, the individual coil 

voltages and flux linkages must first be summed to give line 

properties using a matrix A. For dq-analysis, the star-delta 

currents must be expressed as a function of the abc-currents 

using a matrix B. The abc-currents can then be transformed 

into the dq-frame using the Park and inverse Park Transform. 

This gives an equation for the line voltage of the form 𝒖𝒍𝒊𝒏𝒆 = 𝑨𝑹𝒀∆𝑩𝑻𝒑𝑻𝒊𝒅𝒒 + 𝑗𝜔𝑨𝝍𝒀∆ + 𝑨𝑳𝒀∆𝑩𝑻𝒑𝑻 𝑑𝒊𝒅𝒒𝑑𝑡  (18) 

Applying the same logic to the star-delta flux linkages in (9) 

gives an expression for line flux linkage as 𝝍𝒍𝒊𝒏𝒆 = 𝑨𝑳𝒀∆𝑩𝑻𝒑𝑻𝒊𝒅𝒒 + 𝑨𝝍𝒑𝒎−𝒀∆ (19) 

To express the dq-inductance in terms of the decomposed 

star-delta coil inductances the matrices A and B must be 

obtained. 

A. Voltage Transformation Matrix (A) 

The line voltages and flux linkage can be obtained by taking 

the phasor sum of the individual coil voltages or flux linkage 

between two points. For example, the line voltage between A 

and B (VAB) is the sum of individual coil voltages VaY, VbΔ, 

and VbY. As the voltages VbY and VbΔ are shifted by 120 and 

150 elec. deg. from VaY respectively they are multiplied by -1 

in the transformation matrix. The full circuit diagram 

showing how the line voltages are obtained from individual 

coil voltages can be seen in Fig. 8. The same process can be 

applied for flux linkage to give the same matrix. This gives 

the voltage transformation matrix A as 𝑨 = [ 1 0 −1 −1 0 00 0 1 0 −1 1−1 −1 0 0 1 0 ] (20) 

B. Current Transformation Matrix (B) 

To transform the star-delta voltages to the dq-frame, the 

individual coil currents must be expressed as a function of the 

supply (or star coil) currents. As the delta currents are all 

reduced by a magnitude of √3 and shifted by 30° with respect 

to the star currents, there should exist a circular matrix that 

can perform this transformation. This can be expressed in the 

form 𝒊∆ = [𝑥 𝑦 𝑧𝑧 𝑥 𝑦𝑦 𝑧 𝑥] 𝑖𝑌 (21) 

By simply equating the left side of the equation with the right 

gives equation (22) for obtaining the delta currents as 

functions of the star currents with three unknowns x, y, and z. 

Using trigonometric identities, it is possible to expand these 

equations to provide a simplified set of equations that can be 

used to obtain the unknown variables, x = 1/2, y = 1/6 and z = 

 
Fig. 6. Flux lines produced by coil AY supplied by a 1A DC current.  

 
Fig. 7. Armature flux linkage comparison of simulated and analytical 

results using simplified inductance matrix. 

 
Fig. 8. Line Voltage summation. 
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-1/6. Combining these values into the identity matrix gives a 

circular matrix B that can decompose the supply abc-frame 

currents into individual star and delta coil currents. 

𝑩 =
[  
   11 2⁄ 01 6⁄ 0−1 6⁄0−1 6⁄ 11 2⁄ 01 6⁄01 6⁄ 0−1 6⁄ 11 2⁄ ]  

   
← 𝑖𝑎𝑌← 𝑖𝑎∆← 𝑖𝑏𝑌← 𝑖𝑏∆← 𝑖𝑐𝑌← 𝑖𝑐∆

 (23) 

C. Line Flux-Linkage to dq-Frame 

To transform voltages from abc-frame to dq-frame the 

power-invariant Park transformation (4) is used. However, 

the Park transform is for use with phase voltages and flux 

linkages. Therefore, the line flux linkage must be expressed 

in terms of phase flux linkage before transforming to the dq-

frame. For this, (19) is first expressed as a function of phase 

flux linkage as described by 

𝝍𝒍𝒊𝒏𝒆 = (𝜓𝑎0 − 𝜓𝑏0𝜓𝑏0 − 𝜓𝑐0𝜓𝑐0 − 𝜓𝑎0) = (𝜓𝑎0𝜓𝑏0𝜓𝑐0) − (0 1 00 0 11 0 0)(𝜓𝑎0𝜓𝑏0𝜓𝑐0) (24) 

With the phase flux linkage separated, the Park and inverse 

Park transformations can be applied to obtain the dq-axis flux 

linkages. These can then be summed and inversed to give an 

expression for dq-frame flux linkages as a function of the abc 

line flux linkages, as demonstrated in equations (25a-d). 

𝑻𝒑𝝍𝒍𝒊𝒏𝒆 = 𝑻𝒑 (𝜓𝑎0𝜓𝑏0𝜓𝑐0) − 𝑻𝒑 (0 1 00 0 11 0 0)𝑻𝒑𝑻𝑻𝒑 (𝜓𝑎0𝜓𝑏0𝜓𝑐0) (25a) 

𝑻𝒑𝝍𝒍𝒊𝒏𝒆 = 𝝍𝒅𝒒 − 12 ( −1 √3−√3 −1)𝝍𝒅𝒒 
(25b) 

𝑻𝒑𝝍𝒍𝒊𝒏𝒆 = √32 (√3 −11 √3)𝝍𝒅𝒒 (25c) 

𝝍𝒅𝒒 = 12√3(√3 1−1 √3)𝑻𝒑𝝍𝒍𝒊𝒏𝒆 (25d)  

Applying this transformation together with the matrices A 

and B, an expression for dq-frame flux linkages can be 

obtained, which is based on the decomposed stator inductance 

matrix and matrix C. 𝝍𝒅𝒒 = 𝑪𝑻𝒑𝑨𝑳𝒀∆𝑩𝑻𝒑𝑻𝒊𝒅𝒒 + 𝑪𝑻𝒑𝑨𝝍𝒑𝒎−𝒀∆ (26) 

with 𝑪 = 12√3 (√3 1−1 √3) (27) 

Finally, this can be used to obtain the d- and q-axis 

inductances and PM flux linkages such as 𝑳𝒅𝒒 = (𝐿𝑑 00 𝐿𝑞) = 𝑪𝑻𝒑𝑨𝑳𝒀∆𝑩𝑻𝒑𝑻 (28) 

𝝍𝒅𝒒−𝒑𝒎 = 𝑪𝑻𝒑𝑨𝝍𝒑𝒎−𝒀∆ = (√6𝜓𝑝𝑚0 ) (29) 

with 

{ 
 𝐿𝑑 = 𝐿𝑌0 + 𝐿∆03 + 2𝑀𝑌∆0 − 𝐿𝑌22 − 𝐿∆26 − 2𝑀𝑌∆2√3𝐿𝑞 = 𝐿𝑌0 + 𝐿∆03 + 2𝑀𝑌∆0 + 𝐿𝑌22 + 𝐿∆26 + 2𝑀𝑌∆2√3  (30) 

The fundamental components of d- and q- axis inductances 

are the same as in (6), with Mph0 being equal to 2MYΔ0. The 

2nd harmonic components of the star-delta coil mutual 

inductance Mph2 has been found to equal 2𝑀𝑌∆2 √3⁄ . 

Therefore, it has been demonstrated that to obtain the d- and 

q-axis inductances of a star-delta machine, the inductances of 

individual star and delta coils must be measured in addition 

to the mutual inductance of an adjacent star-delta coil pair. 

Comparing these equations with what would be expected for 

a conventional 3-phase machine, the 2nd harmonic of mutual 

inductance is multiplied by a factor of 2 √3⁄  (or 1.15). As this 

value is subtracted to the d-axis inductance and added to the 

q-axis inductance, it is expected that this winding topology 

will improve the difference between d- and q-axis 

inductances. Applying the same process to the resistance 

matrix given in (8), the dq-frame resistances can be obtained. 𝑹𝒅𝒒 = 𝑪𝑻𝑷𝑨𝑹𝒀∆𝑩𝑻𝒑𝑻 (31) 

𝑹𝒅𝒒 = diag(𝑅𝑌 + 𝑅∆3 , 𝑅𝑌 + 𝑅∆3 ) (32) 

The dq-voltage equation can be obtained by applying the 

same process to the differential current term in (18), resulting 

in (33) that can be used for dq-analysis of star-delta wound 

machines.  𝒖𝒅𝒒 = 𝑹𝒅𝒒𝒊𝒅𝒒 + 𝑗𝜔𝝍𝒅𝒒 + 𝑳𝒅𝒒 𝑑𝒊𝒅𝒒𝑑𝑡  (33) 

D. Comparison with Conventional Winding Connection 

Both the star-delta connected IPM and SPM machines 

specified in TABLE I were modelled in FEA and compared 

with an identical machine with star connected windings. The 

Park and inverse Park transformations were applied to the 3-

phase machines with conventional winding connection to 

obtain d- and q-axis inductances, and (28) was used to obtain 

the d- and q-axis inductances for the star-delta wound 

machines. The results are plotted for one electrical period in 

Fig. 9 and inductances directly compared in TABLE II. 

 
(a) 

{   
   𝑖𝑎∆ = 1√3 cos (𝜃 − 𝜋6) =𝑥 cos(𝜃) +  𝑦 cos (𝜃 − 2𝜋3 ) +  𝑧 cos (𝜃 + 2𝜋3 )          𝑖𝑏∆ = 1√3 cos (𝜃 − 2𝜋3 − 𝜋6) =𝑧 cos(𝜃) +  𝑥 cos (𝜃 − 2𝜋3 ) +  𝑦 cos (𝜃 + 2𝜋3 )𝑖𝑐∆ = 1√3 cos (𝜃 + 2𝜋3 − 𝜋6) =𝑦 cos(𝜃) +  𝑧 cos (𝜃 − 2𝜋3 ) +  𝑥 cos (𝜃 + 2𝜋3 )

 (22) 
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(b) 

Fig. 9. dq-frame inductance comparison between 3-phase star winding 

and star-delta winding. (a) IPM, and (b) SPM. 

TABLE II DQ-FRAME INDUCTANCE COMPARISON 

 Ld (mH) Lq (mH) Lq/Ld 

3-phase IPM 3.366 4.662 1.389 

Star-delta IPM 3.505 4.969 1.418 

3-phase SPM 2.304 2.790 1.211 

Star-delta SPM 2.426 2.9719 1.225 

 

For both the IPM and SPM machines, their d- and q-axis 

inductances are slightly increased by employing a hybrid star-

delta winding. Furthermore, the harmonic elimination 

property of the star-delta winding appears to reduce the ripple 

within the dq-inductance waveforms. This could lead to 

reduced reluctance torque ripple of the IPM machine. Finally, 

for both the IPM and SPM machines the saliency ratio of the 

inductances has been increased. For the IPM machine the 

increase is 2.1% and for the SPM machine it is 1.2%. 

Although these are not incredibly large values, they could 

increase the reluctance torque capability for the IPM machine 

and sensorless control capability of the SPM machine. 

V. EXPERIMENTAL VALIDATION 

A. Experimental Setup 

A dual 3-phase 24s/10p machine with two sets of star-delta 

windings was manufactured for experimental validation of 

the inductance calculations and transformations. This 

prototype has a coil pitch of 2 and so the inductances will not 

exactly match those in Section III. However, each of the two 

3-phase winding sets is identical to the layout of Fig. 3 (b). 

The dq-transformation proposed relies only on the winding 

structure and is independent of slot-pole number or coil pitch. 

Therefore, with only one winding set studied, this 

experimental validation will still demonstrate the 

applicability of this method. Additionally minor modification 

was made to the IPM rotor that was investigated 

experimentally. Any updates to the dimensions of the 

machine are given in TABLE III, with all other properties 

remaining the same as given in TABLE I. The star-delta 

winding layout, IPM rotor, and test setup can be seen in Fig. 

10. 

B. Impact of Coil Location 

As highlighted previously, the number of turns in the delta 

coils is √3 times the number of turns in the star coil. As 

inductance is proportional to the square of coil turns, it was 

expected that the delta coil inductance would be 3 times 

larger than the star coil inductance. During the investigation, 

it was found to be only approximately 2.5 times larger. This 

has been found to be attributed to the location of the coils 

within the stator slots. As evident in Fig. 10, the double-layer 

winding has been constructed with coils placed radially 

within the slots, and specifically all star coils were wound 

first and placed at the slot bottom. This meant that all delta 

coils were wound towards the top of the slot, and so are more 

subject to slot leakage thus reducing their self-inductance. 

This has been validated using FEA by investigating the slot 

leakage of a star and delta coil respectively, as shown in Fig. 

11. Here, 1A dc is supplied and the PMs have been removed. 

C. DQ-frame Inductances 

The individual star and delta coil inductances, as well as 

mutual inductances, were measured while rotating the 

machine through one electrical period to obtain rotor 

position-based inductances. These were then compared 

against simulated results and are plotted in Fig. 12 (a) and 

Fig. 13 (a) for the IPM and SPM machines respectively. The 

inductance matrix in (16) was then composed using each 

simulated and measured inductance waveform, and using 

(28), the d- and q-axis inductances can also be compared, as 

shown in Fig. 12 (b) and Fig. 13 (b). It can be seen in both 

cases that the measured inductances are slightly higher than 

the simulated ones. This is due to the end-winding inductance 

that is present in the real machine but not accounted for in 2D 

simulation. However, this difference is generally very small, 

so a more time-consuming 3D simulation is deemed 

unnecessary.  

For a direct comparison of the simulated and measured 

results, two methods were used to obtain the d- and q-axis 

inductances. Method 1 uses the simulated and measured self-

inductances for coils AY and AΔ, as well as their mutual 

inductance. These values are then used with (30) to calculate 

the d- and q-axis inductances. Method 2 uses the complete 

  
(a) (b) 

 
(c) 

Fig. 10. 24s/10p star-delta wound prototype machine. (a) Stator with 

winding layout, (b) 10-pole IPM rotor, and (c) experimental setup. 

TABLE III PROTOTYPE MACHINE MODIFICATIONS 

Turns/phase - Star 32 IPM air-gap length (mm) 2.5 

Turns/phase - Delta 56 IPM rotor outer radius (mm) 26 

Tooth width (mm) 3.5 IPM magnet width (mm) 14 

  

  
(a) (b) 

Fig. 11. Flux lines showing slot leakage under 1A excitation for (a) star 

coil, and (b) delta coil. 
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transformation (28) after obtaining all coil inductances and 

mutual inductances. The average value of d- and q-axis 

inductance is then calculated over one electrical period. The 

comparison of the results for these two methods can be seen 

in TABLE IV for both the IPM machine and SPM machine. 

It is also found that the measured inductances are about 10% 

larger than the simulated inductances for both machines. 

Again, this is expected due to the end-winding inductance 

presented in the real machine. However, there is very good 

agreement between Method 1 for d- and q-axis inductance 

calculation and calculating the inductances with Method 2, 

validating equation (30). Thus, demonstrating that the d- and 

q-axis inductances for a star-delta wound FSCW machine can 

be obtained using only the self-inductances of an individual 

star and delta coil, as well as their mutual inductance. 

VI. CONCLUSION 

In this paper a method for transformation of abc-reference 

frame parameters in star-delta wound synchronous machines 

to the dq-reference frame is presented. This allows for dq-

analysis of such machines. The proposed method uses a 

decomposed coil-by-coil inductance matrix that accounts for 

the dependence of inductance on rotor position as well as 

phase shift of currents between the two series connected star 

and delta coils. This transformation solves the problem of 

there being no neutral point in a hybrid star-delta wound 

machine, which prevents measurement of the phase mutual 

inductances. This work demonstrates that the d- and q-axis 

inductances can instead be calculated using only coil self-

inductance and the mutual inductance between an adjacent 

star-delta coil pair. 

This method has been first applied to an IPM machine with 

rotor anisotropy and analytical equations used in the matrices 

are corroborated by FEA simulations. Both an IPM and SPM 

machine are then investigated, and it is found that the star-

delta winding structure can increase the saliency ratio of both 

machine types. Thus, enhancing the reluctance torque and 

sensorless control capability of these FSCW machines. The 

work is then further validated experimentally using a 24s/10p 

3-phase star-delta wound machine. It is found that the 

calculated inductances closely match that of the prototype. 

Both simulated and measured inductances are transformed to 

the dq-frame, and it is proven that the d- and q-axis 

inductances for a star-delta wound machine can be obtained 

by only measuring the self- and mutual inductances of an 

adjacent star-delta coil pair. 

Acknowledgement 

This work is supported by the UK EPSRC Prosperity 

Partnership “A New Partnership in Offshore Wind” under 
Grant No. EP/R004900/1. 

For the purpose of open access, the author has applied a 

Creative Commons Attribution (CC BY) licence to any 

Author Accepted Manuscript version arising. 

VII. REFERENCES 

[1] A. M. El-Refaie, "Fractional-slot concentrated-windings synchronous 

permanent magnet machines: Opportunities and challenges," IEEE 

Trans. Ind. Electron., vol. 57, no. 1, pp. 107-121, Jan. 2010. 

[2] N. Bianchi, S. Bolognani, M. D. Pre, and G. Grezzani, "Design 

considerations for fractional-slot winding configurations of 

synchronous machines," IEEE Trans. Ind Appl, vol. 42, no. 4, pp. 997-

1006, July 2006. 

[3] D. Ishak, Z. Q. Zhu, and D. Howe, "Comparative study of permanent 

magnet brushless motors with all teeth and alternative teeth windings," 

presented at the Second IEE International Conference on Power 

Electronics, Machines and Drives, Edinburgh, UK, Mar., 2004. 

[4]  K. Atallah, D. Howe, P. H. Mellor, and D. A. Stone, "Rotor loss in 

permanent magnet brushless ac machines," in IEEE International 

Electric Machines and Drives Conference. IEMDC'99. Proceedings, 

1999: IEEE.  

[5] N. Bianchi and E. Fornasiero, "Impact of mmf space harmonic on rotor 

losses in fractional-slot permanent-magnet machines," IEEE Trans. 

Energy Convers., vol. 24, no. 2, pp. 323-328, June 2009. 

 
(a) 

 
(b) 

Fig. 12. IPM rotor inductance comparison. (a) Star and delta coil 

inductances and adjacent coil mutual inductance, and (b) d- and q-axis 

inductances. 

 
(a) 

 
(b) 

Fig. 13. SPM rotor inductance comparison. (a) Star and delta coil 

inductances and adjacent coil mutual inductance, and (b) d- and q-axis 

inductances. 

TABLE IV SIMULATED AND MEASURED Ld AND Lq  μ   
  Ld 

simulated 
Ld 

measured 
Lq 

simulated 
Lq 

measured 

IPM 
Method 1 838.61 942.94 903.94 1023.8 
Method 2 840.38 931.87 903.85 987.37 

SPM 
Method 1 557.42 610.62 655.89 727.83 
Method 2 587.54 611.96 629.44 670.67 
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