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Recursive Constrained Sine Second-Order Error

Promoting Adaptive Algorithm
Yong Chen,Yingsong Li, Senior Member, IEEE, Yongchun Miao, Yuriy Zakharov, Senior Member, IEEE,

Zhixiang Huang, Senior Member, IEEE

Abstract—This brief proposes a recursive constrained sine
second-order error promoting adaptive (RCSSOEPA) algorithm.
Compared with classical recursive method, the RCSSOEPA algo-
rithm can achieve better steady state performance in impulsive-
noise. In general, the sine second-order error (SSOE) is con-
structed to devise a new recursive constrained adaptive-filtering
within the least-squares framework for solving linear constrained
optimization problems. The mean-square (MS) stability of the
RCSSOEPA and its theoretical instantaneous MS deviation under
Gaussian and non Gaussian noise are analyzed, numerically in-
vestigated and discussed in detail. Simulated results are reported
to give a comfirmation of the theoretical analysis, and show
that the RCSSOEPA outperforms recent developed constrained
adaptive filtering algorithms in the estimation misalignment and
when used for system identification under impulsive-noise.

Index Terms—mpulsive-noisempulsive-noiseI, Recursive con-
strained adaptive filtering (RCAF), Sine second-order error
(SSOE).

I. INTRODUCTION

IN the field of signal processing in wireless communica-

tion, array signal processing, interference suppression and

system identification, the parameter vector estimation is often

gotten by using adaptive filters [1], [2] and is subject to

linear constraints. To solve the above problem, the constrained-

adaptive-filtering (CAF) algorithms have been proposed and

well developed in recent years [3], [4]. The greatest advantage

of a CAF algorithm lies in its error correction property avoid-

ing error accumulation and thus achieving good performance.

The second-order error (SOE) criterion is widely used in

adaptive filtering (AF) since it results in low complexity and

simple structure algorithms [5], and it is typically an optimal

criterion under the Gaussian assumption. The constrained-

least-mean-square (CLMS) algorithm, which is a classical

CAF constructed based on the SOE criterion [6], can achieve

high robustness in Gaussian noise. However, in practice, there

are various non-Gaussian noise scenarios, where the behaviors

of the CLMS will decrease, especially when it is used in

impulsive-noise with heavy-tail distributions (such as alpha-

stable noise [7] and Cauchy noise [8]).

In order to effectively combat the adverse effects of non-

Gaussian noises, the maximum-correntropy-criterion (MCC)

is reported [9], [10], which is a non-linear measure used to

maximize the correlation between outputs of the unknown
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system and the AF algorithm to combat the local similarity

in non Gaussian noise. In addition, continuous hybrid p-norm

algorithm and constrained minimum M -estimation algorithm

are presented in [11], [12]. Using the MCC criterion instead of

the SOE criterion, the constrained MCC (CMCC) algorithm

[13] achieves high robustness under non-Gaussian noise by

maximizing the correlation. Then, using the matrix-inversion

theorem [14], the recursive-CMCC (RCMCC) is presented to

get a faster convergence and a stronger performance in non-

Gaussian noise than the basic CMCC.

Here, we propose a recursive constrained sine second-

order error promoting adaptive (RCSSOEPA) algorithm. The

sine second-order error (SSOE) criterion used for developing

the algorithm helps in suppressing large errors caused by

impulsive-noise . The MS stability of the RCSSOEPA and its

theoretical instantaneous mean-square-deviation (MSD) under

Gaussian and non-Gaussian noises are analyzed. Simulation

results illustrated to give a confirmation of the theoretical

analysis show that the RCSSOEPA outperforms other recent

developed constrained adaptive filtering algorithms in the

estimation misalignment when used for system-identification

under impulsive-noises.

The brief is structured below. Section II presents the

RCSSOEPA whose convergence and instantaneous MSD are

analyzed in Section III. In Section IV, we present simulation

results and compare them with that of known CAF algorithms.

Section V concludes this brief.

Notation: We use plain font letters as scalars, and we also

use capital bold and lowercase bold letters to represent matri-

ces and vectors, respectively. All vectors are column-vectors.

The inverse, transpose, expectation, and trace operators are

expressed as (·)
−1

, (·)
T

, E (·), and tr (·), respectively.

II. THE PROPOSED RCSSOEPA ALGORITHM

A. Channel Model

An unknown system output at time l is

d (l) = hT
0 u (l) + η (l), where the system vector is

h0 = [h1, h2, · · · , hM ]
T

, u (l) = [u1, u2, · · · , uM ]
T

represents the input-vector at l, η (l) is the background noise

with variance σ2
η , and the estimation error is defined as
e (l) = d (l)− hT (l − 1)u (l) , (1)

where h (l − 1) denotes the system vector estimate at l − 1.

The SSOE cost function is defined as

J (e) =

{

4sin2
(

e
2c

)

if |e| ≤ πc

4 otherwise
, (2)
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where c is a positive constant. The SSOE function is

introduced into the CAF scheme to develop a CSSDA

algorithm, by solving the following problem:

min
h

E
[

4sin2
(

e
2c

)]

s.t. g = STh, (3)

where S represents constraint matrix, having an size of

M ×K and M > K, and g represents an K × 1 constraint

vector. Utilizing the Lagrange-method, the cost-function for

the CSSDA is obtained as

JCSSDA (e) = E
[

4sin2
( e

2c

)]

+ γT
[

g − STh
]

, (4)

where γ is the K × 1 Lagrange multiplier.

B. Optimal Solution

Considering the constraint g = STh and taking
∂JCSSDA

∂h
= 0 into consideration, the CSSDA algorithm for

finding the optimized weight-vector hopt can be derived as

follows

E
[

2
c
sin

(

e(l)
c

)

u(l)
]

+ Sγ = 0,

⇒ E [w (e (l)) e (l)u (l)] + Sγ = 0,

⇒ E
[

w (e (l))
(

d (l)− hT
opt (l)u (l)

)

u (l)
]

+ Sγ = 0,

⇒ E
[

w (e (l))u (l)uT (l)
]

hopt = E [w (e (l)) d (l)u (l)] + Sγ,

⇒ Rwhopt = pw + Sγ,

⇒ hopt = R−1
w pw +R−1

w Sγ,
(5)

where w (e(l)) =
2 sin( e(l)

c )
ce(l) , Rw = E

[

w (e (l))u (l)uT (l)
]

,

pw = E [w (e (l)) d (l)u (l)]. Thereby, the constraint vector

g = STh is represented as

g = SThopt,

⇒ g = ST
[

R−1
w pw +R−1

w Sγ
]

,

⇒ γ =
(

STR−1
w S

)

−1 (
g − STR−1

w pw

)

.
(6)

Using (6), hopt in (5) is updated to

hopt = R−1
w pw+R−1

w S
(

STR−1
w S

)−1 (
g − STR−1

w pw

)

. (7)

We use the following approximations of Rw and pw,

respectively:

R̂w =
1

l

l
∑

i=1

w (e (i))u (i)uT (i), (8)

p̂w =
1

l

l
∑

i=1

w (e (i))d (i)u (i), (9)

which can be recursively computed as

R̂w (l) = R̂w (l − 1) + w (e (l))u (l)uT (l) ,
p̂w (l) = p̂w (l − 1) + w (e (l)) d (l)u (l) . (10)

Thus, we finally obtain the system vector estimate

h (l) =
(

1
l
R̂w (l)

)

−1
1
l
p̂w (l) +

(

1
l
R̂w (l)

)

−1

S

×

(

ST
(

1
l
R̂w (l)

)

−1

S

)

−1 (

g − ST
(

1
l
R̂w (l)

)

−1
1
l
p̂w (l)

)

= R̂−1
w (l) p̂w (l) + R̂−1

w (l)S
(

ST R̂−1
w (l)S

)

−1

×
(

g − ST R̂−1
w (l) p̂w (l)

)

.

(11)

C. RCSSOEPA Algorithm

Using matrix-inversion lemma [15], from (10), we get

R̂−1
w (l) = R̂−1

w (l − 1)− R̂−1
w (l − 1)u (l)

(

w−1 (e (l))

+ uT (l) R̂−1
w (l − 1)u (l)

)

−1

uT (l) R̂−1
w (l − 1) .

(12)

Define

n (l) = R̂−1
w (l − 1)u (l)

(

w−1 (e (l))

+ uT (l) R̂−1
w (l − 1)u (l)

)

−1

.
(13)

Then, we can write

n (l) = w (e (l)) R̂−1
w (l − 1)u (l)

− n (l)w (e (l))uT (l) R̂−1
w (l − 1)u (l)

= w (e (l))
(

R̂−1
w (l − 1)− n (l)uT (l) R̂−1

w (l − 1)
)

u (l)

= w (e (l)) R̂−1
w (l)u (l) .

(14)

By defining the unconstrained optimal solution as

hunc (l − 1) = R̂−1
w (l − 1) p̂w (l − 1) ,

eunc (l) = d (l)− hT
unc (l − 1)u (l) ,

(15)

and substituting (10), (12) and (14) into (11), the updated

RCSSOEPA recursion is given by

h (l) = R̂−1
w (l) [p̂w (l − 1) + w (e (l)) d (l)u (l)]

+ R̂−1
w (l)Sγ (l)

= hunc (l − 1) + eunc (l)n (l) + R̂−1
w (l)Sγ (l) ,

(16)

where

γ (l) =
(

ST R̂−1
w (l)S

)

−1
(

g − ST (hunc (l − 1)

+eunc (l)n (l))) .
(17)

From the iteration of the proposed RCSSOEPA algorithm in

(16), it has a complexity of o(M2).

III. THEORETICAL ANALYSIS OF CONVERGENCE AND

MSD OF THE RCSSOEPA ALGORITHM

A. Assumptions

To obtain theoretical analysis convergence and MSD of the

proposed RCSSOEPA, the following assumptions are adopted

to simplify the analysis [8], [16].

(1) The noise η (l) is an i. i. d. non-Gaussian with zero-mean

(ZM), and it is independent of any other signals.

(2) The prior error ec (l), defining later, is ZM Gaussian.

(3) u (l) is an i. i. d. ZM Gaussian process with positive

definite covariance-matrix Ru = E
[

u (l)uT (l)
]

.

(4) When the system operates in its steady-state, w (e (l))
is uncorrelated with ∥u (l)∥

2
.

B. Mean Square Stability

Based on assumption (4), we obtain an approximation

R̂−1
w (l) =

[

l

[

1
l

l
∑

i=1

w (e (i))u (i)uT (i)

]]−1

≈ 1
l

[

E
[

w (e (l))u (l)uT (l)
]]

−1

= b
l
R−1

u ,

(18)

where b = 1/E [w (e (l))].
Using the above definitions of e (l) and eunc (l) and

substituting (14) and (18) into (16), we obtain
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eunc (l)− e (l) = uT (l)h (l − 1)− uT (l)hunc (l − 1)
= uT (l) (h (l − 1)− hunc (l − 1))

= uT (l) R̂−1
w (l − 1)Sγ (l − 1) .

(19)

Substituting (14) and (19) into (16), we obtain

h (l) = h (l − 1) + w (e (l)) e (l) R̂−1
w (l)u (l)

+ R̂−1
w (l)S (γ (l)− γ (l − 1))

= h (l − 1) + w (e (l)) e (l) R̂−1
w (l)u (l)

+ R̂−1
w (l)S

(

ST R̂−1
w (l)S

)

−1

×
(

g − ST
(

h (l − 1) + w (e (l)) e (l) R̂−1
w (l)u (l)

))

.

(20)

Combining with (18), we arrive at

h (l) ≈ h (l − 1) + b
l
w (e (l)) e (l)R−1

u u (l)

+R−1
u S

(

STR−1
u S

)

−1

×
(

g − ST
(

h (l − 1) + b
l
w (e (l)) e (l)R−1

u u (l)
))

= T
[

h (l − 1) + b
l
w (e (l)) e (l)R−1

u u (l)
]

+ r,
(21)

where T = I − R−1
u S

(

STR−1
u S

)

−1
ST and r =

R−1
u S

(

STR−1
u S

)

−1
g.

Using d (l) = hT
0 u (l)+η (l) and assumption (1), we obtain

w (e (l)) d (l)u (l) = w (e (l))u (l)uT (l)h0

+ w (e (l)) η (l)u (l)
⇒ pw = Rwh0

⇒ h0 = R−1
w pw.

(22)

The following two error measures are introduced to simplify

the analysis:

h̃ (l) = h (l)− hopt, ec (l) = (h0 − h (l))
T
u (l) , (23)

where ec (l) and h̃ (l) represent prior error and weighted

error vectors, respectively. We also define

ζh = h0 − hopt. (24)

Based on the above analysis, ζh in (24) can be written as

ζh = R−1
u S

(

STR−1
u S

)−1 (
STh0 − g

)

. (25)

Subtracting hopt from both sides of (21) and using

e (l) = d (l)− uT (l)h (l − 1), we obtain

h̃ (l) = T
[

h (l − 1) + b
l
d (l)w (e (l))R−1

u u (l)

− b
l
w (e (l))R−1

u u (l)uT (l)h (l − 1)
]

+ r− hopt,
(26)

and due to Thopt − hopt + r = 0, (26) is modified to

h̃ (l) = T
[

I− b
l
w (e (l))R−1

u u (l)uT (l)
]

h̃ (l − 1)

+ b
l
w (e (l))T

(

R−1
u u (l) η (l) +R−1

u u (l)uT (l) ζh
)

.
(27)

Owning to the definition of T, we have

Th̃ (l) = h̃ (l) . (28)

Then, (27) can be rewritten as

h̃ (l) =
[

I− b
l
w (e (l))TR−1

u u (l)uT (l)
]

h̃ (l − 1)

+ b
l
w (e (l))

(

TR−1
u u (l) η (l) +TR−1

u u (l)uT (l) ζh
)

.
(29)

Exerting square expectation on both-sides of (29), and

utilizing assumptions (1), (2) and (3), we get

E

[

∥

∥

∥
h̃ (l)

∥

∥

∥

2
]

= E

[

∥

∥

∥
h̃ (l − 1)

∥

∥

∥

2

G(l)

]

+ b2

l2
E
[

w2 (e (l))
]

×

E
[

v2 (l)
]

E
[

uT (l)R−1
u TTTR−1

u u (l)
]

+ b2

l2
E
[

w2 (e (l))
]

ζh

× E [u (l) uT (l) R−1
u TTTR−1

u u (l)uT (l)
]

ζTh ,
(30)

where

G (l) =
[

I− b
l
w (e (l))TR−1

u u (l)uT (l)
]T

×
[

I− b
l
w (e (l))TR−1

u u (l)uT (l)
]

.
(31)

From (30), utilizing Isserlis’ theory [20], we get

E
[

u (l)uT (l)R−1
u TTTR−1

u u (l)uT (l)
]

= 2TTT+ tr
{

TR−1
u TT

}

Ru.
(32)

Then, (31) is modified to

G (l) = I− b
l
w (e (l))

(

TT +T
)

+ b2

l2
w2 (e (l))

×
(

2TTT+ tr
{

TR−1
u TT

}

Ru

)

.
(33)

Since

TRuζh =
(

I−R−1
u S

(

STR−1
u S

)

−1
ST

)

×RuR
−1
u S

(

STR−1
u S

)

−1 (
STh0 − g

)

= 0,
(34)

we get

E

[

∥

∥

∥
h̃ (l)

∥

∥

∥

2
]

= E

[

∥

∥

∥
h̃ (l − 1)

∥

∥

∥

2

G(l)

]

+ b2

l2
E
[

w2 (e (l))
]

E
[

v2 (l)
]

tr
{

TR−1
u TT

}

+ b2

l2
E
[

w2 (e (l))
]

ζThE
[

tr
{

TR−1
u TT

}

Ru

]

ζh.

(35)

Let tj and rj (1 ≤ j ≤ M) be eigenvalues of T and Ru,

respectively. Based on the above analysis, the mean square

stability condition is satisfied if
∣

∣

∣
1− 2b

l
w (e (l)) tj +

b2

l2
w2 (e (l))

×
(

2t2j + tr
{

TR−1
u TT

}

rj
)∣

∣ < 1.
(36)

Therefore, the stability condition is to be

l > max
j

bE
[

w2 (e (l))
] (

2t2j + tr
{

TR−1
u TT

}

rj
)

2tjE [w (e (l))]
. (37)

C. MSD analysis

Consider (34), and assume that Y is an arbitrary M ×M -

symmetric non-negative definite-matrix, then we get

E

[

∥

∥

∥
h̃ (l)

∥

∥

∥

2

Y

]

= E

[

∥

∥

∥
h̃ (l − 1)

∥

∥

∥

2

Q(l)

]

+ b2

l2
E
[

w2 (e (l))
]

E
[

v2 (l)
]

tr
{

YTR−1
u TT

}

+ b2

l2
E
[

w2 (e (l))
]

ζThE
[

tr
{

YTR−1
u TT

}

Ru

]

ζh,

(38)

where

Q (l) =
(

I− b
l
E [w (e (l))]T

)T
Y

(

I− b
l
E [w (e (l))]T

)

+ b2

l2
E
[

w2 (e (l))
] (

2TTYT+ tr
{

YTR−1
u TT

}

Ru

)

− b2

l2
E2 [w (e (l))]TTYT.

(39)

Then, we use the vector correlation property vec (XYZ) =
(

ZT ⊗X
)

vec (Y) and tr
(

XTY
)

= vecT (Y)vec (X),
where vec (·) is the vectorization operating and ⊗ is

Kronecker-product. Utilizing these properties, we get
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E

[

∥

∥

∥
h̃ (l)

∥

∥

∥

2

y

]

= E

[

∥

∥

∥
h̃ (l − 1)

∥

∥

∥

2

F(l)y

]

+ b2

l2
E
[

w2 (e (l))
]

E
[

v2 (l)
]

vecT
(

TR−1
u TT

)

y

+ b2

l2
E
[

w2 (e (l))
]

ζThRuζhvec
T
(

TR−1
u TT

)

y,

(40)

where E

[

∥

∥

∥
h̃ (l)

∥

∥

∥

2

Y

]

= E

[

∥

∥

∥
h̃ (l)

∥

∥

∥

2

y

]

, and

F (l) =
(

I− b
l
E [w (e (l))]T

)T
⊗
(

I− b
l
E [w (e (l))]T

)

+ b2

l2
E
[

w2 (e (l))
]

×
(

2
(

TT ⊗T
)

+vec (Ru)vec
T
(

TR−1
u TT

))

− b2

l2
E2 [w (e (l))]

(

TT ⊗T
)

.
(41)

From [21], MSD(l) is written as E

[

∥

∥

∥
h̃ (l)

∥

∥

∥

2
]

, and the

relationship between MSD(l − 1) and MSD(l) is given by

[14]

E

[

∥

∥

∥
h̃ (l)

∥

∥

∥

2
]

E

[

∥

∥

∥
h̃ (l − 1)

∥

∥

∥

2
] =

l − 1

l
. (42)

Utilizing (41), we rewrite (39) as

E

[

∥

∥

∥
h̃ (l)

∥

∥

∥

2

(I− l

l−1F(l))y

]

= b2

l2
E
[

w2 (e (l))
]

E
[

v2 (l)
]

× vecT
(

TR−1
u TT

)

y + b2

l2
E
[

w2 (e (l))
]

ζThRuζh
× vecT

(

TR−1
u TT

)

y.

(43)

With y =
(

I− l
l−1F (l)

)

−1

vec (I), the MSD is given by

E

[

∥

∥

∥
h̃ (l)

∥

∥

∥

2
]

= b2

l2
E
[

w2 (e (l))
] (

E
[

v2 (l)
]

+ ζThRuζh
)

× vecT
(

TR−1
u TT

)

(

I− l
l−1F (l)

)

−1

vec (I) .

(44)

In the Gaussian-noise case, let e (l) = ec (l)+ v (l). If v (l)
is a ZM Gaussian random number with variance σ2

v , then

e (l) is also a ZM Gaussian with a variance of σ2
e . Using

approximation h (l) ≈ hopt in steady state, we obtain

ec (l) ≈ (h0 − hopt)
T
u (l) = ζTh u (l) . (45)

Based on (44), we have

σ2
e ≈ ζThRuζh + σ2

v . (46)

Under the steady-state, w (e (l)) is approximated as

w (e (l)) ≈ 2
c2

− e2(l)
3c4 using the Taylor expansion. Therefore,

E [w (e (l))] and E
[

w2 (e (l))
]

are respectively represented

by

E [w (e (l))] =
2

c2
−

1

3c4
(

ζThRuζh + σ2
v

)

, (47)

and

E
[

w2 (e (l))
]

= 4
c4

+ e4(l)
9c8 − 4

3c6 e
2 (l)

= 4
c4

+ 1
9c8

(

ζThRuζh + σ2
v

)2
− 4

3c6

(

ζThRuζh + σ2
v

)

.
(48)

In a non-Gaussian noise case, considering Taylor expansions

of w (e (l)) about v (l) and ec (l), we obtain

w (e (l)) = w (ec (l) + v (l)) = w (v (l)) + w′ (v (l)) ec (l)

+ 1
2w

′′ (v (l)) (ec (l))
2
+ o

(

(ec (l))
2
)

.

(49)

Accordingly, we have

E [w (e (l))] =
2

c2
−

1

3c4
E
[

v2 (l)
]

−
1

3c4
ζThRuζh, (50)

E
[

w2 (e (l))
]

= 4
c4

+ 1
9c8E

[

v4 (l)
]

− 4
3c6E

[

v2 (l)
]

+ ζThRuζh
[

−
(

2
c2

− 1
3c4E

[

v2 (l)
])

× 2
3c4+

4
9c8E

[

v2 (l)
]]

.
(51)

IV. SIMULATION RESULTS

In Fig. 1(a), three different non-Gaussian noise distributions,

namely, uniform-noise, binary-noise and impulsive-noise, are

considered to verify the analysis under c = 1.4. It is seen that

theoretical analysis and simulation results match well, which

shows the accuracy of the analysis. Here, the probability for

the uniform noise is f(a) =

{

0.5x,−x ≤ a ≤ x

0, others
with a

zero mean and variance of 0.86, while it for the binary noise

is Pr {a = x} = Pr {a = −x} = 0.5 with zero mean and vari-

ance of 0.9. The impulsive-noise model is given by vj (l) =
p (l)+m (l)φ (l), where p (l) represents white-Gaussian-noise,

and its mean equals to zero, and its variance is σ2
p, respectively.

m (l)φ (l) is a Bernoulli Gaussian process that has a success

probability P [m (l) = 1] = Pr,P [m (l) = 0] = 1 − Pr, and
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Fig. 1: (a) Theoretical and simulated transient MSD of the

proposed RCSSOEPA algorithm under binary noise, uniform

noise and impulsive noise; (b) Convergence of the CSSDA,

RCSSOEPA and mentioned recursive algorithms under

Laplace noise.
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Fig. 2: Convergence of the CSSDA, RCSSOEPA and

mentioned recursive algorithms under impulsive-noise with

two different input signals: (a) Gaussian; (b) AR(1).
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Fig. 3: Convergence of the CSSDA, RCSSOEPA and

mentioned recursive algorithms under alpha-stable and

Cauchy noises.

φ (l) is a ZM-Gaussian process with σ2
φ = dσ2

p (d ≫ 1) [22],

[23]. The parameters S, g and h0 are obtained by referring

to [6]. Herein, Pr equals to 0.3, and variances of the additive

Gaussian noise and φ (l) are 0.08 and 1, respectively. From the

simulation results, the theoretical analysis and simulation re-

sults match very well thus verifying these analysis. In Fig.1(b),

the convergence of the proposed RCSSOEPA algorithm under

Laplace noise [1] is given, where we can see that the proposed

RCSSOEPA is still superior to mentioned algorithms.

Fig. 2 compares the performance of RCSSOEPA and

RCMCC [14], RCLL [16], RCMqR [17], RCLA [18],

RCGMC [19] and CSSDA (CSSDA is obtained by minimizing

(4)) under impulsive-noise with Gaussian and AR(1) input

signals. Variances of the additive Gaussian noise and φ (l) are

0.2 and 9, respectively, and Pr = 0.3. Here, AR(1) signal

is obtained from a first-order process Q (Z) = 1
1−0.8Z−1 ,

and the kernel-width for RCMCC and CMCC are 10. Adjust

the step-sizes to make the initial convergence for the CMCC,

CLMS and CSSDA the same. Simulation results show that the

RCSSOEPA algorithm can get faster convergence and achieve

lower MSD than mentioned algorithms.

We now consider two nonGaussian noise (Cauchy

and Alpha-stable) with the probability density

functions of f (v) = 1
π(1+v2) and q (v) =

exp {jδv − ρ|v|
α
[1 + jβsgn (v)U (v, α)]}, respectively

[7], [8], where U (v, α) =

{

tan
(

απ
2

)

, α ̸= 1,
2
π
log |v| , α = 1.

, and

we define the four parameters α, β, ρ and δ as parameter

vector τ = (α, β, ρ, δ), where α is characteristics factor, β

is symmetry factor, ρ is dispersion factor and δ is location

parameter. Since the CLMS algorithm is not suitable for

processing Cauchy and Alpha-stable noises, only CMCC,

CSSDA, RCMCC and RCSSOEPA algorithms are compared

in Fig. 3. In this simulation, the Cauchy noise parameter

v is 0.5, Alpha-stable noise parameter vector is written as

τ = (1, 0, 0.5, 0), and c = 2.5 for CSSDA and RCSSOEPA.

From the simulated results, the proposed RCSSOEPA

algorithm provides the lowest MSD.

V. CONCLUSION

This brief has proposed a recursive constrained sine second-

order error promoting adaptive (RCSSOEPA) algorithm by

constructing the SSOE cost function. The convergence and

MSD have been theoretically analyzed and numerically in-

vestigated to verify the analysis. The simulated results have

shown that the analysis matches very well to simulations, and

the devised RCSSOEPA has a smaller MSD and faster con-

vergence compared to other algorithms under various noises.
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