
This is a repository copy of How much context does my attention-based ASR system 
need?.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/213154/

Version: Preprint

Preprint:
Flynn, R. and Ragni, A. orcid.org/0000-0003-0634-4456 (Submitted: 2023) How much 
context does my attention-based ASR system need? [Preprint - arXiv] (Submitted) 

https://doi.org/10.48550/arXiv.2310.15672

© 2023 The Author(s). This preprint is made available under a Creative Commons 
Attribution 4.0 International License. (https://creativecommons.org/licenses/by/4.0/)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



HOW MUCH CONTEXT DOES MY ATTENTION-BASED ASR SYSTEM NEED?

Robert Flynn, Anton Ragni

Department of Computer Science, The University of Sheffield, United Kingdom
{rjflynn2, a.ragni}@sheffield.ac.uk

ABSTRACT

For the task of speech recognition, the use of more than 30 sec-

onds of acoustic context during training is uncommon, and under-

investigated in literature. In this work, we examine the effect of

scaling the sequence length used to train/evaluate (dense-attention

based) acoustic and language models on speech recognition perfor-

mance. For these experiments a dataset of roughly 100,000 pseudo-

labelled Spotify podcasts is used, with context lengths of 5 seconds

to 1 hour being explored. Zero-shot evaluations on long-format

datasets Earnings-22 and Tedlium demonstrate a benefit from train-

ing with around 80 seconds of acoustic context, showing up to a

14.9% relative improvement from a limited context baseline. Fur-

thermore, we perform a system combination with long-context trans-

former language models via beam search for a fully long-context

ASR system, with results that are competitive with the current state-

of-the-art.

Index Terms— speech recognition, long-context, cross-utterance,

self-attention

1. INTRODUCTION

Performance on sequence based tasks, has seen a consistent bene-

fit from the introduction of methods that enable the modelling of

longer range dependencies [1, 2]. The transformer architecture [2]

is a distinct example of this, demonstrating benefits from training

on sequences of 1000s of tokens on language modelling tasks [3].

However, for the task of automatic speech recognition (ASR) there is

limited work exploring the effect of using longer acoustic sequences.

In part, this may be due to the format of many academic datasets,

which are typically provided as a series of short (typically 1-20s) ut-

terances. This therefore hurts the development of methods that aim

to utilise larger amounts of context or learn to segment a recording

in a purely end-to-end fashion.

Previous work on utilising cross-utterance acoustic context still

deals with fairly short sequences of 20-30s [4, 5, 6]. The often stated

reason for limiting the context window used by self-attention based

models is their quadratic complexity with respect to the sequence

length. However, it is also not clear whether this current modelling

paradigm is capable of utilising truly long sequences of minutes

or hours in duration. For instance, in the task of language mod-

elling, [3] finds that transformers struggle gaining any benefit from

sequences longer than 1024, when trained on their target dataset.

While long-context acoustic models (AMs) are fairly underin-

vestigated, there is ample work [7, 8, 9] on utilising cross-utterance

context within the language modelling component of ASR systems.

This work was supported by the CDT in Speech and Language Tech-
nologies (SLT) and their Applications funded by UKRI [grant number
EP/S023062/1]. This research was supported by funding from Meta.

Fig. 1. Relative WER reduction from a baseline with 5 seconds of

context, for AMs with 10-320s of context

However, we argue this is not optimal, as an assumption of indepen-

dence between utterances is still made at the acoustic-level. Conse-

quently, the long-context language model may not recover informa-

tion lost by the utterance-level AM, and the system is only able to

adapt to linguistic aspects of the data based on the context.

As such, in this work, we investigate the benefit of extending

the context length of both the AM and language model (LM) com-

ponents of transformer based speech recognition systems. A break-

down of our contributions is given as follows: 1. An investigation

is conducted on the effect of training/evaluation context length on

speech recognition, with results demonstrating an optimal context

length of around 80s. 2. We demonstrate training of dense-attention

based AMs with maximum context lengths of up to 1 hour through

the application of a sequence length warmup and various efficiency

adaptions from prior work. 3. An overlapping decoding scheme is

introduced to reduce context fragmentation, and the optimal amount

of overlap to use is investigated.

The rest of this work is ordered as follows: Section 2 details the

training and evaluation adaptions that were made in order to fairly

investigate and compare a range of context sizes for both the AM

and LM components of the ASR system. Section 3 overviews the

experimental details. Section 4 presents and analyses the results,

with the conclusion given in section 5.

Finally, we release all trained model checkpoints and code.1

1https://github.com/robflynnyh/long-context-asr

ar
X

iv
:2

31
0.

15
67

2v
1 

 [
cs

.C
L

] 
 2

4 
O

ct
 2

02
3



Probabilities from overlapping

sub-segments are averaged

Fig. 2. Depiction of overlapping window inference.

2. ADAPTIONS FOR LONG-CONTEXT ASR

2.1. Architecture

Model Duration (min) Runtime (tokens/s)

Conformer 9 / 23 30,200 / 57,300

FastConformer 18 / 70 57,650 / 80,900

Table 1. Maximum context possible on 1 A100 during training with

batch size of 1. Without/With Flash Attention.

Conformer [10] based AMs, trained with connectionist temporal

classification (CTC) [11], are used as the basis for this investigation.

These architectures typically utilise some form of subsampling. Re-

cent work [12] explores increasing the level of subsampling from

4× to 8×, as a simple method of decreasing the sequence length and

hence reducing the compute and memory complexity of the model.

Additionally, the standard convolution blocks in the subsampling

module are replaced with depthwise separable convolutions with a

smaller feature dimension than the rest of the model. This configura-

tion is referred to as FastConformer, with results demonstrating simi-

lar or improved results over the standard Conformer setup. As shown

in table 1, when pairing the FastConformer with flash-attention [13]

(an efficient algorithm for computing attention on the GPU without

approximations), it becomes possible to train on recordings of over

1 hour in length on 1 80GB A100 GPU.

2.2. Context Fragmentation

Typically, in ASR, a long-format dialogue is segmented into a set

of utterances based on silences, and these utterances are transcribed

independently. As a consequence, frames near the start and end of

an utterance have a fragmented context. For the case of autoregres-

sive language modelling, [3] demonstrated that many long-context

LMs benefit from a reduction in the positions where the context is

fragmented as the context window is enlarged, rather than from the

utilisation of longer distance dependencies. We posit that this is also

the case for many long-context methods in ASR.

2.3. Overlapping Window Inference

To reduce the impact of context fragmentation and enable fairer com-

parison between different context lengths, recordings are processed

using an overlapping decoding scheme. Specifically, the input is pro-

cessed in segments S ∋ (s0...sN ) and for a given context length c
and overlap percentage o i.e 87.5% the starting position of the ith

segment si is given by: i · c · (1− o/100). Probabilities from overlap-

ping sub-segments are averaged to obtain predictions for the overall

sequence. A depiction of two overlapping segments is shown in fig-

ure 2.

2.4. Beam Search Decoding

Due to their independence assumption, CTC based AMs are typi-

cally combined with an external LM. For this system combination,

the beam search algorithm can be used with a neural LM. This is

preferred to rescoring in terms of use of context [8], as it does not

rely on the use of limited context n-gram model. We use the method

described in [8] for combining the ASR CTC and LM probabilities,

which defines the overall score (used to rank a hypothesis) of a given

vocabulary index i at time-step t as Score(it) = ScoreAM (it) +
ScoreLM (it). Due to the overlapping decoding scheme, there exists

k instances of AM probabilities for a given timestep from each over-

lapping segment s, hence as discussed, the AMs score/contribution

is attained through an average over segments as depicted in Eq. 1.

ScoreAM(it) = log

k∑

s

PAM (ist )

k
(1)

2.5. Sequence Length Warmup

Gradually increasing the sequence length throughout training has

been investigated in prior work for the purposes of reducing training

time [3], and training instability caused by gradient variance [14].

This can be seen as a form of curriculum learning [15]. In this work,

we find this gradient variance to be particularly destructive for the

AM when the context is greater than 40s, with these models often

failing to train without a sequence length warmup.

For this method several hyperparameters are employed, namely:

a minimum sequence length s0 that is used at the start of train-

ing, which is then doubled every n recordings/steps r, until a max-

imum sequence length sm is reached. Hence, the sequence length

at a given recording sr is shown as follows: sr = min(s0 + s0 ·
⌊r/n⌋, sm)

3. EXPERIMENTAL CONFIGURATION

3.1. Data

As investigating long-context models may require larger amounts of

long-format data than typical ASR datasets provide, the collection

of Spotify podcasts provided in [16] is selected for the AMs training

data. Podcasts in this dataset last on average 33 minutes, with many

going over one hour. In total, this amounts to 58,000 hours of train-

ing data. This data is not human-labeled and instead is provided with

pseudo-labels produced using Google’s speech API. Tedlium [17]

and Earnings-22 [18] are used as evaluation datasets, which were

selected due to their long-format. Tedlium is composed of single-

speaker TED talks lasting around 14 minutes in duration. Tedlium’s

dev and test sets total 1.6 and 2.6 hours respectively. As Tedlium

contains segments of untranscribed speech such as adverts, these

portions of the spectrogram are set to zero for overlapping inference.

Earnings-22 consists of earning report meetings lasting up to 2 hours

with multiple speakers and a diverse range of accented speech. As

no official dev/test splits are provided, the partitions given in [19] are

used, which feature 5.5/5.6 hours for dev/test splits.

All audio data is converted to 16khz, and 80-band Mel spectro-

grams (with a window length of 400 and hop length of 160) are used

to train the model. Mean and standard deviation statistics across

each audio file i.e. podcast/meeting/talk are used for spectrogram

normalisation. For text tokenization, the sentencepiece tokenizer is

used with the “nmt nfkc cf” normalisation rule. As the model is not

able to adapt to dataset specific transcription styles, normalisation is

applied to any model outputs and the reference transcript. The text

normaliser from Whisper [6] is used.



For language model training data, subsets of the following

datasets are used: OpenSubtitles [20], OpenWebText [21], YouTube

Subtitles [21], PG-19 [22], Books3 [21] and Spotify Podcasts [16].

These subsets were filtered to remove documents that contain more

than 1% OOV tokens according to a tokenizer trained on the Spotify

corpus. In total, this amounts to around 4.5 billion words.

3.2. Model Configuration

The AM uses the FastConformer [12] subsampling configuration

with 8x downsampling using depthwise separable convolutions with

a hidden dimension of 256, followed by 6 Conformer layers [10]

with a hidden dimension of 768. The model is trained using SC-

CTC [23], without intermediate losses. Batch normalisation [24]

is swapped out with batch renormalisation [25], and Convolutional

modules feature a reduced kernel size of 9. Rotary embeddings [26]

are used as the positional encoding method. Each attention layer

features 6 heads, and the flash attention algorithm [13] is used to

compute attention. In total, the AM has 90 million parameters.

For beam search decoding, a transformer is used as the external

LM. This model features 6 layers with a hidden dimension of 1024.

QKNorm [27] multi-query attention [28] is used with 16 heads for

the queries. RMSnorm [29] is used in-place of Layer norm [30]. For

positional encoding, the dynamic position bias proposed in [31] is

used. The LM has 72M parameters.

All models share the same vocabulary composed of 4095 BPE

tokens learnt from the Spotify corpus using the sentencepiece to-

kenizer with an additional blank token for the AM. Additionally,

GEGLU [32] layers with an expansion factor of 4 are used for feed-

forward modules. We make use of fused kernels for these modules.

3.3. Training Configuration

During training of the AMs, to ensure all context sizes receive the

same number of optimization steps, the total duration of each mini-

batch is kept fixed at around 1 hour of audio. As the training data is

provided with word level timesteps, the podcasts can be chunked into

inputs of arbitrary length and the text corresponding to each chunk

can be retrieved for training. A separate AM is trained for each se-

quence length reported on, which is repeated 3 times using different

random seeds.

The LM is trained using Transformer-XL style key-value

caching [33, 3]. Here, documents are processed sequentially in

chunks of a given sequence length, while attending to a key-value

cache from prior sequences. A model trained with a sequence length

of 512, and a maximum cache of 1280 tokens is used for all evalua-

tions. There was no degradation observed from evaluating the model

at sequences shorter than seen during training, compared to models

trained at that length for the LM, hence the same model is used for

varying context sizes for consistency.

The Madgrad optimizer [34] is used for all training runs with

gradient clipping, and a learning rate warmup followed by a co-

sine annealing schedule. For models trained with a sequence length

warmup, 5s is used as the initial sequence length s0, which is dou-

bled every 5K recordings. All models are trained for one epoch only

unless otherwise specified, and no regularisation is used.

Training of the AMs is performed on 1 A100 GPU taking around

15–24 hours, for context lengths below 3 minutes. Training with a

maximum context length of 1 hour took 65 hours. The LM is trained

on 4 A4500s, taking 2 days.

3.4. Beam Search

A beam width of 25 is used for beam search. The search is con-

strained to vocabulary indices within a threshold c of the argmax of

the AM probabilities for each timestep. Beams with a score p less

than the top ranked beam are pruned at each time-step. Hyperpa-

rameters: α, β, c and p are tuned on the combined evaluation de-

velopment sets. Additionally, a document from the Spotify podcast

data is included as the initial context/prompt, priming the LM for the

AMs transcription style. Our method is implemented in Python, with

decoding taking roughly 8 and 40 minutes for Tedlium and Earnings-

22, when parallelising over each meeting/talk.

4. EXPERIMENTAL RESULTS

All experiments are repeated 3 times unless otherwise specified and

mean and standard deviation (s.t.d) statistics are reported. The main

results for varying AM context size can be found in table 2. Ex-

cluding table 6, all reported results use greedy decoding, and any

results reported on in the tables for context lengths over 40s utilise a

sequence length warmup.

4.1. Overlapping Window Inference

A comparison of varying percentages of overlap is given in table 4.

As expected, longer context models benefit less from increasing the

overlap percentage, as the increase in context size already reduces

the amount of context fragmentation. Interestingly, an overlap per-

centage of 50% is harmful to performance, which may be due to

small variances in predicted alignments resulting in duplicate out-

puts at overlap boundaries. No meaningful improvements are seen

from extending the overlap percentage beyond 87.5%, hence this set-

ting is used for all the other investigations. Notably, the use of the

overlapping window scheme with a context length of 20s results in

a 6.5% relative word error rate (WER) reduction from using the ut-

terance boundaries provided as part of Tedlium, demonstrating the

impact of context fragmentation, and the efficacy of the method.

4.2. Acoustic Model Context Size

From the experiments given in table 2 and illustrated in figure 1, it

can be observed that it is important to have at least 20s of acoustic

context, with an optimal context length of 80s. Increasing from 5s

to 10s of context brings a 6.5% and 8.1% relative improvement on

Earnings-22 and Tedlium test splits. When increasing from 10s to

20s, we see a further 6.4% and 2.9% improvement. Tedlium ben-

efitted less from the increased context than Earnings-22, with lim-

ited improvements extending past 20s of context, and no meaningful

gains past 40s. While on Earnings-22, there is a sizeable improve-

ment of 3.6% when increasing from 40s to 80s. This discrepancy

may be due to the difficulty of Earning-22, with a higher WER and

a broader range of accents, enabling the model to adapt based on the

additional context information. No meaningful gains are seen from

extending beyond 80s.

Results when using Tedlium’s provided utterance boundaries

(table 3) illustrate the models have difficulty working with sequence

lengths not seen during training. When evaluating each model at

varying context lengths, we find that this is most problematic when

increasing or decreasing the context size by more than a factor of

2. Varying the context sizes used during training may help alleviate

this form of overfitting.

4.3. 1 Hour of Context

As a curiosity, we train a model with up to 1 hour of context and

include it in the results. This model attends over a maximum se-



Dataset Metric 5s 10s 20s 40s 80s 160s 320s 3600s*

Earnings-22
WER 28.7/21.9 27.0/20.5 25.5/19.4 25.2/19.4 24.4/18.7 24.2/18.7 24.1/18.6 24.3/18.8

s.t.d 0.2/0.4 0.1/0.2 0.3/0.2 0.2/0.2 0.1/0.1 0.4/0.3 0.2/0.1 0.1/0.2

Tedlium
WER 8.4/7.4 7.8/6.8 7.4/6.6 7.2/6.5 7.2/6.5 7.3/6.5 7.3/6.5 7.2/6.4

s.t.d 0.2/0.1 0.1/0.2 0.1/0.1 0.1/0.1 0.0/0.1 0.2/0.1 0.1/0.1 0.2/0.1

Table 2. (Dev/Test) Results for each AM context length. *Evaluation context may be shorter depending on the recording duration

Metric 5s 10s 20s 40s

WER 8.7/7.7 8.0/7.2 7.8/7.0 8.0/7.6

s.t.d 0.2/0.1 0.3/0.1 0.1/0.1 0.1/0.0

Table 3. (Dev/Test) Standard utterance-level performance (Tedlium)

Context 0% 25% 50% 75% 87.5% 93.75%

5s 13.7/12.9 11.3/10.3 12.1/11.3 8.5/7.6 8.4/7.4 8.4/7.4

20s 8.7/8.0 8.1/7.4 8.4/7.6 7.4/6.7 7.4/6.6 7.4/6.6

80s 7.5/6.8 7.5/6.7 7.5/6.8 7.2/6.5 7.2/6.5 7.2/6.5

Table 4. (Dev/Test) WERs for different levels of overlap (Tedlium)

quence length of 45K tokens during training. There is no significant

change in results compared to the 80s model, with a small improve-

ment on Tedlium and a small degradation on Earnings-22. Interest-

ingly, when evaluating this model at different context lengths, there

is no meaningful change in WER from 320s up to 1 hour (around

14–20 minutes for Tedlium). From inspecting the attention weights,

the model does attend to the full context, but does not benefit from

it. Overall, this result demonstrates the robustness of our method to

work for arbitrary context sizes without degradation, and highlights

the need for alternative methods of learning from very long contexts.

4.4. Sequence Length Warmup

The use of the sequence length warmup enabled successful training

of models with context windows greater than 40s, where previously

training would not converge. Additionally, we train a model with a

maximum context of 40s using a sequence length warmup, to com-

pare with the results when using a constant sequence length. For this

there is a slight improvement on Earnings-22 with a 0.6% relative

WER reduction, and a small degradation of Tedlium with 1.8% rel-

ative WER increase. Due to the variance in the results, we conclude

that the sequence length warmup did not significantly impact perfor-

mance, but enables training of longer sequence lengths through an

improvement in stability.

4.5. Beam Search Decoding

Dataset 64 128 256 512 1024

Earnings-22 83.4 69.4 62.3 57.6 54.0

Tedlium 98.1 83.1 75.6 71.6 69.7

Table 5. (Test) perplexity for the LM at varying context lengths

Results for the fully long-context ASR system are given in table 6,

with language model perplexities provided in table 5. When decod-

ing the 80s AM with 1024 tokens of LM context, there are large rel-

ative WER reductions compared to the greedy decoding baseline of

22.5% and 25.8% on Earning-22 and Tedlium test splits. Similarly

to the results in table 2 we find that Earnings-22 benefits more from

extending the LM context than Tedlium, with improvements when

using up to 1024 tokens of context compared to 128 for Tedlium.

LM Context (Tokens)

Dataset AM Context 64 128 256 512 1024

Earnings-22
5s 22.9/17.1 22.6/17.0 22.5/16.9 22.5/16.8 22.5/16.7

80s 19.6/14.8 19.3/14.7 19.2/14.6 19.2/14.6 19.1/14.5

Tedlium
5s 5.9/5.4 5.8/5.3 5.8/5.3 5.8/5.3 5.8/5.3

80s 5.2/4.9 5.1/4.8 5.1/4.8 5.1/4.8 5.1/4.8

Table 6. (Dev/Test) WERs when decoding with LM via beam search

for various AM (s) and LM context sizes (number of tokens)

While on both datasets there is around a 1.5-2.5% relative improve-

ment from increasing the LM context from 64 to 1024 tokens. On

average, 1024 tokens will correspond to around 4.5 minutes of audio,

showing that the LM benefits from a longer context than the AM.

When decoding the 5s AM, it can be observed that the LM is

not able to recover information lost due to the limited context of the

AM. This demonstrates the importance of increasing the context for

all components of the ASR system.

Finally, training the 80s context AM for a second epoch (1

repeat) and decoding with the LM using 1024 tokens of context

reduces WERs further to 13.6% and 4.4% on Earnings-22 and

Tedlium, which is competitive with the current state-of-the-art

[35, 6, 36, 19]. Notably, this exceeds the Whisper small.en [6] mod-

els long-form transcription performance on Tedlium of 4.6%, while

using 66% of the parameters and less data/compute.

5. CONCLUSION

Many use-cases for ASR involve long-format data i.e. meetings or

lectures, consequently there is a demand for models that can utilise

the large amount of context information present in these formats. To

better understand the capabilities of current approaches, this work

analysed the effect of altering the amount of context used during

training/evaluation of attention-based ASR systems. We demon-

strate a benefit from training with up to 80s of acoustic context, a

magnitude larger than what is used in literature. Typically, long-

format data is segmented into utterances, which we find harmful

to performance due to context fragmentation, and propose an alter-

native scheme, which rectifies this leading to consistent WER im-

provements. Results for the full long-context system demonstrate

the advantage of increasing the context for all components of the

ASR system, with improvements when using up to 1024 tokens of

LM context with 80s of acoustic context. Our best results achieved

through this system combination are competitive with the current

state-of-the-art, while using a fraction of the compute, demonstrating

the benefit of accounting for long-format data more appropriately.

While this work investigates a range of context sizes, these re-

sults are attained from a fixed model architecture. Altering various

factors such as the number of layers could potentially affect the use

of context, which we plan to explore in future work. Finally, results

exploring the use of an entire hour of context illustrate a potential

limit to performance gains from increasing the context for attention

based ASR models. Different modelling paradigms may need to be

investigated or developed in order to benefit from truly long-contexts

of entire meetings/talks.



6. REFERENCES

[1] S Hochreiter and J Schmidhuber, “Long short-term memory,”

Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[2] A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, A N

Gomez, L Kaiser, and I Polosukhin, “Attention is all you need,”

NeurIPS, vol. 30, 2017.

[3] O Press, N A Smith, and M Lewis, “Shortformer: Bet-

ter language modeling using shorter inputs,” arXiv preprint

arXiv:2012.15832, 2020.

[4] T Hori, N Moritz, C Hori, and J L Roux, “Advanced long-

context end-to-end speech recognition using context-expanded

transformers,” arXiv preprint arXiv:2104.09426, 2021.

[5] Zhiyun L, Y Pan, T Doutre, P Haghani, L Cao, R Prabhavalkar,

C Zhang, and T Strohman, “Input length matters: Improving

rnn-t and mwer training for long-form telephony speech recog-

nition,” arXiv preprint arXiv:2110.03841, 2021.

[6] A Radford, J W Kim, T Xu, G Brockman, C McLeavey, and

I Sutskever, “Robust speech recognition via large-scale weak

supervision,” in ICML. PMLR, 2023, pp. 28492–28518.

[7] G Sun, C Zhang, and P C Woodland, “Transformer language

models with lstm-based cross-utterance information represen-

tation,” in ICASSP. IEEE, 2021, pp. 7363–7367.

[8] R Flynn and A Ragni, “Leveraging cross-utterance context for

asr decoding,” arXiv preprint arXiv:2306.16903, 2023.

[9] SH Chiu, TH Lo, FA Chao, and B Chen, “Cross-utterance

reranking models with bert and graph convolutional networks

for conversational speech recognition,” in APSIPA ASC. IEEE,

2021, pp. 1104–1110.

[10] A Gulati, J Qin, CC Chiu, N Parmar, Y Zhang, J Yu, W Han,

S Wang, Z Zhang, Y Wu, et al., “Conformer: Convolution-

augmented transformer for speech recognition,” arXiv preprint

arXiv:2005.08100, 2020.

[11] A Graves, S Fernández, F Gomez, and J Schmidhuber, “Con-

nectionist temporal classification: labelling unsegmented se-

quence data with recurrent neural networks,” in ICML, 2006.

[12] D Rekesh, S Kriman, S Majumdar, V Noroozi, H Huang,

O Hrinchuk, A Kumar, and B Ginsburg, “Fast conformer

with linearly scalable attention for efficient speech recogni-

tion,” arXiv preprint arXiv:2305.05084, 2023.

[13] T Dao, D Y Fu, S Ermon, A Rudra, and C Ré, “Flashattention:

Fast and memory-efficient exact attention with io-awareness,”

2022.

[14] C Li, M Zhang, and Y He, “The stability-efficiency dilemma:

Investigating sequence length warmup for training gpt mod-

els,” NeurIPS, vol. 35, pp. 26736–26750, 2022.

[15] Y Bengio, J Louradour, R Collobert, and J Weston, “Curricu-

lum learning,” in ICML, 2009, pp. 41–48.

[16] A Clifton, S Reddy, Y Yu, A Pappu, R Rezapour, H Bonab,

M Eskevich, G Jones, J Karlgren, B Carterette, and R Jones,

“100,000 podcasts: A spoken English document corpus,” in

COLING. Dec. 2020, pp. 5903–5917, ICCL.

[17] F Hernandez, V Nguyen, S Ghannay, N Tomashenko, and

Y Esteve, “Ted-lium 3: Twice as much data and corpus repar-

tition for experiments on speaker adaptation,” in SPECOM.

Springer, 2018, pp. 198–208.

[18] M Del Rio, P Ha, Q McNamara, C Miller, and S Chandra,

“Earnings-22: A practical benchmark for accents in the wild,”

arXiv preprint arXiv:2203.15591, 2022.

[19] S Gandhi, P Von Platen, and A M Rush, “Esb: A bench-

mark for multi-domain end-to-end speech recognition,” arXiv

preprint arXiv:2210.13352, 2022.

[20] P Lison and J Tiedemann, “Opensubtitles2016: Extracting

large parallel corpora from movie and tv subtitles,” 2016.

[21] L Gao, S Biderman, S Black, L Golding, T Hoppe, C Foster,

J Phang, H He, A Thite, N Nabeshima, S Presser, and C Leahy,

“The Pile: An 800gb dataset of diverse text for language mod-

eling,” arXiv preprint arXiv:2101.00027, 2020.

[22] J W Rae, A Potapenko, S M Jayakumar, C Hillier, and T P

Lillicrap, “Compressive transformers for long-range sequence

modelling,” arXiv preprint, 2019.

[23] J Nozaki and T Komatsu, “Relaxing the conditional indepen-

dence assumption of ctc-based asr by conditioning on interme-

diate predictions,” arXiv preprint arXiv:2104.02724, 2021.

[24] S Ioffe and C Szegedy, “Batch normalization: Accelerating

deep network training by reducing internal covariate shift,” in

ICML. pmlr, 2015, pp. 448–456.

[25] S Ioffe, “Batch renormalization: Towards reducing minibatch

dependence in batch-normalized models,” NeurIPS, 2017.

[26] J Su, Y Lu, S Pan, A Murtadha, B Wen, and Y Liu, “Roformer:

Enhanced transformer with rotary position embedding,” arXiv

preprint arXiv:2104.09864, 2021.

[27] A Henry, P R Dachapally, S Pawar, and Y Chen,

“Query-key normalization for transformers,” arXiv preprint

arXiv:2010.04245, 2020.

[28] N Shazeer, “Fast transformer decoding: One write-head is all

you need,” CoRR, vol. abs/1911.02150, 2019.

[29] B Zhang and R Sennrich, “Root mean square layer normaliza-

tion,” NeurIPS, vol. 32, 2019.

[30] J L Ba, J R Kiros, and G E Hinton, “Layer normalization,”

arXiv preprint arXiv:1607.06450, 2016.

[31] Wenxiao Wang, Wei Chen, Qibo Qiu, Long Chen, Boxi Wu,

Binbin Lin, Xiaofei He, and Wei Liu, “Crossformer++: A

versatile vision transformer hinging on cross-scale attention,”

arXiv preprint arXiv:2303.06908, 2023.

[32] N Shazeer, “Glu variants improve transformer,” arXiv preprint

arXiv:2002.05202, 2020.

[33] Z Dai, Z Yang, Y Yang, J Carbonell, Q Le, and R Salakhut-

dinov, “Transformer-XL: Attentive language models beyond

a fixed-length context,” in ACL. July 2019, pp. 2978–2988,

Association for Computational Linguistics.

[34] A Defazio and S Jelassi, “Adaptivity without compromise: a

momentumized, adaptive, dual averaged gradient method for

stochastic optimization,” J Mach Learn Res, vol. 23, 2022.

[35] V Srivastav, S Majumdar, N Koluguri, A Moumen, S Gandhi,

et al., “Open automatic speech recognition leaderboard,”

https://huggingface.co/spaces/hf-audio/

open_asr_leaderboard, 2023.

[36] T Likhomanenko, Q Xu, V Pratap, P Tomasello, J Kahn,

G Avidov, R Collobert, and G Synnaeve, “Rethinking eval-

uation in asr: Are our models robust enough?,” arXiv preprint

arXiv:2010.11745, 2020.


	 Introduction
	 Adaptions for Long-Context ASR
	 Architecture
	 Context Fragmentation
	 Overlapping Window Inference
	 Beam Search Decoding
	 Sequence Length Warmup

	 Experimental Configuration
	 Data
	 Model Configuration
	 Training Configuration
	 Beam Search

	 Experimental Results
	 Overlapping Window Inference
	 Acoustic Model Context Size
	 1 Hour of Context
	 Sequence Length Warmup
	 Beam Search Decoding

	 Conclusion
	 References

