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Abstract
We demonstrate that the property of being Alexandrov immersed is preserved along
mean curvature flow. Furthermore, we demonstrate that mean curvature flow tech-
niques for mean convex embedded flows such as noncollapsing and gradient estimates
also hold in this setting. We also indicate the necessary modifications to the work of
Brendle–Huisken to allow for mean curvature flow with surgery in the Alexandrov
immersed, 2-dimensional setting.
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1 Introduction

One of the major breakthroughs in mean convex mean curvature flow is the notion of
α-noncollapsedness, which may be viewed as a “quantitative embeddedness” and has
played a vital role many of the recent advances in Mean Curvature Flow (MCF). Orig-
inating in the work of White [34] and Sheng andWang [33], an elegant and influential
proof of α-noncollapsedness was given by Andrews [2]. This idea has led to numerous
important results in the singularity theory of noncollapsedMCF, key amongst them are
Haslhofer and Kleiner’s gradient estimates [26] and Brendle’s improved estimates on
the inscribed radius [10]. These developments contributed to Brendle and Huisken’s
notion of surgery for embedded mean convex MCF of surfaces [13], extending the
surgery results of Huisken–Sinestrari [30] (which only hold for dimensions n ≥ 3).
A second approach to mean curvature flow with surgery was described by Haslhofer
and Kleiner [27] which also makes extensive use of noncollapsing quantities. The
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property of being α-noncollapsed continues to play a vital role in many of the recent
mean curvature flow developments, see for example [5, 6, 11, 12, 14–21, 23, 32].

In this paper we demonstrate that in several of the above results we may weaken
the initial embeddedness requirement to the property of being Alexandrov immersed.
Indeed, we show that this property is preserved by the flow, we demonstrate a notion of
α-noncollapsedness forAlexandrov immersions, andweprovide applications.Wenote
that α-noncollapsing methods have previously been applied to Alexandrov immersed
surfaces in the case of minimal surfaces by Brendle [8], in an extension of his proof
of the Lawson conjecture [9]. We would also like to mention that Brendle and Naff
found a way to do a localized version of noncollapsedness and get that certain ancient
solutions of the MCF are noncollapsed, see [7].

We recall the definition of an Alexandrov immersed hypersurface. This property
goes back to Alexandrov [1] in his work about closed surfaces of constant mean
curvature in Euclidean space1.

Definition 1 An immersion X : Mn → R
n+1 is Alexandrov immersed if there exists

an (n + 1)-dimensional manifold � with ∂� = Mn and a proper smooth immersion
G : � → R

n+1 such that G|∂� also parametrises Im(X).

In this paper we first prove:

The property of being Alexandrov immersed is preserved under the flow, and there is
a suitable notion of comparison solutions.

For full statements, see Proposition 5 and Lemma 7. Next we demonstrate:

For mean convex initial data, there exits a natural notion of α-noncollapsed
Alexandrov immersed mean curvature flow. Noncollapsedness is preserved under the

flow.

See Theorem 8, and also Propositions 13 and 16 for viscosity sub/super-solution equa-
tions for noncollapsing quantities. In particular, the above noncollapsing quantities still
rule out “grim reaper crossR” singularity models, which is one of the major stumbling
blocks for immersed mean curvature flow with surgery in dimension n = 2. Finally
we verify:

Mean convex Alexandrov immersed MCF satisfies gradient estimates and Brendle
and Huisken’s surgery may be extended to this setting

These final results are extensions of existing results requiring only minor modifica-
tions, but they confirm the applicability of the Alexandrov immersed property as a
natural extension to embedded property for MCF. We note that surgery in dimensions
n ≥ 3 for immersed surfaces is already known by the work of Huisken–Sinestrari
[30]. We verify the above claims in Theorems 18, 19 and 20.

1 Note that the definition of being Alexandrov immersed in [1] does not carry this name, of course. Also,
the property of G being an immersion is missing in this paper (there, only the expression smooth mapping
is used). But it is meant to be part of the definition as it is used in the proof.
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2 Notation

Let Mn be an n-dimensional, closed, connected manifold. Throughout this paper we
will consider a smooth one-parameter family of immersions X : Mn×[0, T ) → R

n+1

which satisfies mean curvature flow, that is,

∂X

∂t
= −Hν

where we use the convention that hi j = −〈∂i∂ j X , ν〉 are the local coefficients of the
second fundamental form A, and H = ∑

gi j hi j is the mean curvature. We will write
the principal curvatures as

κmin = κ1 ≤ κ2 ≤ . . . ≤ κn = κmax.

At any given point we will take e1, . . . , en to be an orthonormal basis of principal
directions corresponding to the κi . Unless otherwise stated, we will assume that on
the considered time interval

|A|2 ≤ CA,0 (1)

which implies by standard methods (see e.g. [22, Proposition 3.22]) that

|∇ p A|2 ≤ CA,p (2)

where we are also assuming that the initial immersion is smooth. At no point will the
values ofCA,0 andCA,p be important, and so all theoremswill carry through arbitrarily
close to singularities.Wewill follow the usual mean curvature flow definitions, writing
Mt = Im(X(·, t)).

We suppose that � is an n + 1 dimensional manifold with compact boundary
such that ∂� is diffeomorphic to Mn . We take M0 to be Alexandrov immersed with
immersion G0 : � → R

n+1 and choose ν(x, t) to be the unit vector at X(x, t)
which is continuous in space and time for which the pullback G∗

0(ν(x, 0)) points
out of �. Note that any Alexandrov immersed submanifold is orientable and two
sided: VolR

n+1
(ν, ·, . . . , ·) restricted to M defines a nonzero volume form on M . Two-

sidedness then follows as orientable submanifolds of orientable manifolds are two-
sided.

Definition 2 For some 0 < T ≤ T , a parabolic Alexandrov immersion starting from
G0 along the flow is a one parameter family of smoothly varying immersions

G : � × [0, T ) → R
n+1

so thatG(·, 0) = G0(·) and for each t ∈ [0, T ), X(·, t) andG(·, t) satisfy Definition 1.
Wewill see in the next section that such aG always exists given a starting immersion as
in Definition 1. For any given flow G is highly nonunique, for example by composing
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Fig. 1 A situation, where a curve is Alexandrov immersed with a non-compact set �

with any smooth isotopy of �. In fact, given initial data and compact �, a parabolic
Alexandrov immersion in unique up to isotopy:

Lemma 1 Suppose that � is compact and G1,G2 are parabolic Alexandrov immer-
sions such that G1(x, 0) = G2(x, 0). Then there exists a smooth isotopy � :
� × [0, T ) → � such that G1(�(x, t), t) = G2(x, t).

Proof We construct � : � × [0, T ) → � by applying Picard-Lindelöf to solve

{
�(·, 0) = id

d�
dt (x, t) = DG−1

1 |(�(x,t),t)

(
dG2
dt |(x,t) − dG1

dt |(�(x,t),t)

)

locally in time. Then we see that while � exists, G1(�(x, t), t) = G2(x, t). For
short time this is a smooth isotopy. In fact it remains an isotopy for as long as G2
is an immersion as if at (x, t), D�(V ) = 0 for some V 
= 0 then DG2(V ) =
DG1 ◦ D�(V ) = 0. Therefore a smooth isotopy continues to exist while the G1 and
G2 are smooth. �

Remark 1 An identical uniqueness up to isotopy argument holds for noncompact �

with additional assumptions. For example, suppose that we are given an R > 0 such
that for all t ∈ [0, T ), Mt ⊂ BR(0). Then an identical statement to Lemma 1 holds if
we additionally assume that G1(x, t) = G2(x, t) for G1(x, t) ∈ R

n+1 \ BR(0). The
proof is almost identical to the above and so is omitted. In Figure 1 the reader can find
a drawing of a situation where � is not compact.

3 Preservation of Being Alexandrov Immersed

For anAlexandrov immersionG as inDefinition 1, we define gαβ(x) to be the pullback
of the Euclidean metric onRn+1 to� along G. For x ∈ ∂�we define γ (x, s) to be the
unit speed geodesic with respect to g starting at x and going into � (for s > 0), with
starting direction g-orthogonal to ∂� (i.e. the geodesic with initial velocity G∗(−ν)).
Using this we define the injectivity radius to be

inj := sup{λ > 0 | γ : ∂� × [0, λ) is injective}.
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When we have a parabolic Alexandrov immersion with time-varying G(·, t) we refer
to the corresponding injectivity radius as inj(t).

Note that the injectivity radius only depends on the choice of G at time t = 0 - for
times t > 0, different choices of G will give the same value above by Lemma 1 as
geodesics of a metric do not depend on the parametrisation. We also observe that, due
to focal points, inj(t) ≤ κ−1

max where κmax is the largest positive principal curvature (if
it exists, and has a positive sign). In the arguments below, we will be interested in the
case inj(t) < κ−1

max.
It will be useful to have canonical charts of an Alexandrov immersion initially, and

the following describes one way of constructing them.

Lemma 2 (Canonical charts) Suppose that M0 is compact and Alexandrov immersed
by G : � → R

n+1 such that the curvature bound (1) holds. Then we may construct a
finite atlas of canonical charts φi : Wi → Si of � where Wi ⊂ � and Si ⊂ R

n+1 are
simply connected open sets such that on each subset Si , DG̃ = Id and the pullback
metric is the Euclidean metric δαβ .

Proof We construct an explicit manifold �̃ diffeomorphic to � (or equivalently, an
atlas of charts of �) in the following way. We will first assume that � is compact.

Take the pullback metric w.r.t. G on�, and consider balls Br (x) of radius r centred
at x ∈ �. For r < (10CA,0)

−1, we now show that G restricted to Br (x) must be a
diffeomorphism onto its image:

The only thing to check is injectivity. Suppose thatG(p) = G(q) for p, q ∈ Br (x).
In this case the � distance between p and q is realised by a C1 curve (which is C2

almost everywhere) made up of segments of geodesics and curves in ∂�. By definition
this curve has length less than r = (10CA,0)

−1 and, almost everywhere, curvature less
than CA,0. Therefore G(γ ) cannot self intersect, a contradiction.

Taking a finite cover {Br (xi )}1≤i≤N of � by these balls and defining Si :=
G(Br (xi )), we define charts by G|Br (xi ) : Br (xi ) → Si , and note that by definition G
is the identity in these coordinates.

Now suppose that � is noncompact. As M0 is compact and so lies in some (n+1)-
ball BR(0) for some R. We may divide � into two pieces C := G−1(BR(0)) and
N := � \ C . For any point p outside this ball, G−1(p) is a finite number of points
(by properness of the mapping) and this number is a constant, m (by inverse function
theorem), that is, N is an m-cover of Rn+1\BR(0). We define two sets H±

R := {x ∈
R
n+1| ± xn+1 > − R

2 } ⊂ R
n+1, and note that, for each of these sets, G−1(H±

R ) is m
disjoint simply connected open sets, each of which is mapped by differomorphism to
H±

R . This yields the charts as above for N . We may now treat C as in the compact
case. �


The following simple differential topology Lemma holds for general smooth flows
which satisfy (1) and (2).

Lemma 3 Suppose that M0 is Alexandrov immersed, and for t ∈ [0, T ), Mt is a smooth
flow such that the curvature bounds (1) and (2) hold and suppose that on M0,

inj(0) > ε. (3)
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Then there exists a constant τ = τ(ε,CA,0,CA,1) such that Mt remains Alexandrov
immersed for all t ∈ [0, τ ). Furthermore, Mt forms a parabolic Alexandrov immersion
on this time interval.

Proof At time t = 0 we work in the canonical coordinates as described in Lemma 2
which we now denote by G̃ : � → R

n+1. We take X(·, 0) = G̃|∂�, which we flow to
get X(·, t). We write the pullback of the Euclidean metric with respect to G̃ as g̃, and
quantities calculated with respect to this fixed metric will be denoted with a tilde.

For 3δ ≤ ε, we define

�δ = � \ γ̃ (∂� × [0, 2δ])

where γ̃ are inward pointing geodesics as above. Let � : � \ �δ → � be the smooth
function defined by �(γ̃ (x, ρ)) = x . Let χ be a cutoff function with χ(v) = 0 for
v ≥ δ and χ(v) = 1 for v ≤ δ

2 . We define ρ(x) = d̃(x, ∂�) where d̃(x, y) is the
metric space distance arising from g̃. For y ∈ �, we define G to be G̃, modified in a
tubular region about ∂�:

G(y, t) = χ ◦ ρ(y)(X(�(y), t) − ρν(�(y), t)) + (1 − χ ◦ ρ(y))G̃(y). (4)

Here,we have abused notation to arbitrarily extend� to�.Wewrite gt for the pullback
metric coming from G(·, t).

For δ small enough (depending on the curvature bound) at t = 0 we have that for
any unit vector v,

g0 ≥ 1

6
Id

and so this is a parametrisation. Indeed, using G̃ to locally identify � with R
n+1 for

Y a Euclidean unit vector orthogonal to the line γ̃ , we have that,

D�(Y ) = 1

1 − ρh(Y ,Y )
Y ,

DG(·, 0)(Y ) =
[

χ ◦ ρ(
1

1 − ρh(Y ,Y )
− ρh(Y ,Y )) + (1 − χ ◦ ρ)

]

Y ,

where we have used that the part where χ ◦ ρ is differentiated vanishes because
X(�(y), 0) − ρν(�(y), 0) = G̃(y) in our canonical representation of G̃. For Z , a
unit vector in direction ∂γ̃ (x,s)

∂s , we have that

DG(·, 0)(Z) = Z .

By picking coordinates in line with the principal directions we have that g is the
identity matrix and the rest given by

(

χ ◦ ρ

(
1

1 − ρκi
− ρκi

)

+ 1 − χ ◦ ρ

)2

.
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For δ < min{ 1
2CA,0

, 1
3ε}, this may be estimated by 1 − 5

6χ ◦ ρ ≥ 1
6 , see [24, p. 354]

for similar calculations.
As the curvature of the flowing manifold is bounded, we may also crudely estimate

that

|D(Xt (�(y), t) − X0(�(y))|g̃ < C1(CA,0)t

and

|D(νt (�(y), t) − ν0(�(y))|g̃ < C2(CA,0,CA,1)t

using standard means. As Xt is the only part of Gt which depends on time, we may
estimate that for any g̃ unit vector v

|gt (v, v) − g0(v, v)| ≤ C3(CA,0,CA,1)t

and so

gt (v, v) ≥ 1

6
− C3t .

Therefore we see that there exist a time τ depending only onCA,0,CA,1 and ε such that
G remains a parametrisation and Mt remains Alexandrov immersed. Our constructed
G is smooth in time, therefore Mt forms a parabolic Alexandrov immersion on [0, τ ].
�

Corollary 4 If M0 is Alexandrov immersed and Mt is a smooth flow satisfying the
estimate (1) and (2) then if Mt ceases to be Alexandrov immersed for the first time at
time T ′ ≤ T then as t → T ′, inj(t) → 0. Furthermore, there exist time dependent
immersions G up to time T ′ which are smooth on any compact interval [0, T ′′] ⊂
[0, T ′) with the property that G|∂�(x, t) = X(x, t).

Proof Suppose first that� is compact. The proof of Lemma 3 implies that there exists
a τ1(CA,0,CA,1, inj(0)) such that a suitable smooth G exists on an interval [0, τ1). Let
T be the maximal time interval on which G may be extended to a smoothly varying
Alexandrov immersion, and suppose (for a contradiction) that on [0, T ), inj(t) > ε.
Then, Lemma 3 and Remark 1 implies that there exists an τ2(CA,0,CA,1, ε) so that
we may find a smooth immersion Ĝ : � × [T − τ2

2 , T + τ2
2 ) with starting immersion

G|t=T− τ2
2
. As in the proof of Lemma 1, on the time interval [T − τ2

2 , T ) there is a

smooth isotopy � such that �|t=T− τ2
2

= id and Ĝ(�(x, t), t) = G(x, t). We now

choose a smooth bounded function λ : [T − τ2
2 , T ] → R such that λ(t) = t on

[T − τ2
2 , T − 2τ2

6 ] and λ(t) = T − τ2
2 on [T − τ2

6 , T ]. We now define a smooth
extension of G, Gex, by writing

Gex(x, t) :=
{
G(x, t) for t ∈ [0, T − τ2

2 )

Ĝ(�(x, (λ(t)), t) for t ∈ [T − τ2
2 , T + τ2

2 ).
(5)
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This is a contradiction and so maximum time on which the flow remains Alexandrov
immersed is the time on which inj(t) → 0. G exists up to this time, and we may use a
similar contradiction argument as above to see that G|∂�(x, t) = X(x, t) on [0, T ′).

For noncompact �, we note that due to (1), there exists an R > 1 such that
Mt ⊂ BR(0) throughout the flow. In Lemma 3, there exists a K such that extensions
will not change G(x, t) for G(x, t) ∈ R

n+1\BK (0). We construct G(x, t) such that
G(x, t) = G0(x) for G(x, t) ∈ R

n+1 \ B2K (0). A version of Lemma 1 now holds via
remark 1. An identical construction to the compact case now yields the Corollary in
this case. �

Proposition 5 Given any compact Alexandrov immersed M0, mean curvature flow
remains Alexandrov immersed until the first singular time.

Proof We prove that the flow remains Alexandrov immersed while (1) and (2) hold.
From the previous Corollary, for the flow to cease to be Alexandrov immersed at

time T we must have that inj(t) → 0 as t → T .
By compactness, at any given time t , we may find p(t), q(t) which realise inj(t).

That is, a point p(t) and a point q(t) such that γt (p(t), inj(t)) = γt (q(t), inj(t)).
In fact, there is an unbroken unit speed geodesic γ starting at p(t) and end-
ing at q(t) of length 2inj(t) and 〈ν(p, t), X(p, t) − X(q, t)〉 = −2inj(t) =
〈ν(q, t), X(q, t) − X(p, t)〉 (as otherwise we may find a geodesic which contradicts
the definition of inj(t)).

Taking a sequence of times ti → T . Then for (pi , qi ) := (p(ti ), q(ti )), as above,
there exists a subsequence which converges to some (p, q) ∈ Mn × Mn as i → ∞,
where p and q are distinct. We consider Mt ∩ Br (X(p, t)) where r < 1

2C
−1
A,0. For t

close enough to T , the connected component of Mt ∩ Br (X(p, T )) which contains
X(p, T ) may be written as a graph in graph direction ν(p, T ). Furthermore, an open
region about X(q, t) may also be written as a graph in direction ν(p, T ) (in fact,
ν(q, T ) = −ν(p, T )). These graphs are initially disjoint andmust remain so until time
T (due to the curvature bound and the nonzero injectivity). However, this contradicts
the strong maximum principle for the difference between the two graph functions, and
so we must have that injt > 0 for all time.

Now, as the constant in (1) and (2) were arbitrary, we see that the Proposition holds.
�


The above shows the following:

Corollary 6 A compact flowing manifold with bounds on the curvature (1) and
(2) may only loose the property of being Alexandrov immersed at time T if
there exist points p, q(t) ∈ Mn so that |X(p, t) − X(q(t), t)| goes to zero
with 〈ν(p, t), ν(q(t), t)〉 = −1 and where 〈ν(p), X(q(t), t) − X(p, t)〉 < 0 and
〈ν(q, t), X(p, t) − X(q(t), t)〉 < 0 for T − δ < t < T .

We now consider the idea of a comparison solution for Alexandrov immersions.

Definition 3 Suppose that � is compact and we have a larger compact (n + 1)-
dimensional manifold with smooth boundary � such that � ⊂ �. Suppose that
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(a) At time t = 0, G(·, 0) may be extended to G : � → R
n+1.

(b) There is a family of immersions, smooth in time and space, G : � × [0, T ) →
R
n+1. We write the image of ∂� under G to be Nt , and we assume that this is

a smoothly varying manifold. We write its outward unit normal as μ and write a
local parametrisation of Nt as Y .

(c) We assume that Nt satisfies a barrier condition, namely that

〈
∂Y

∂t
, μ(x, t)

〉

≥ −HN .

Then Nt will be called an Alexandrov comparison solution for Mt .

We note that ∂� is embedded in � at time t = 0 and we may view the pullback of Mt

as an initially embedded mean curvature flow with respect to g(·, t), starting from ∂�.
For a short time, we may therefore identify � with the closure of a time-dependent
domain �̂t ⊂ � which has smooth boundary such that G|∂�̂t

parametrises Mt . The
following proposition is therefore a minor embellishment on the standard comparison
Lemma for mean curvature flow.

Lemma 7 (Comparison solutions) Suppose that Definition 3(a), 3(b), 3(c) above hold.
We identify � with the closure of a moving domain �̂t ⊂ � with smooth boundary
so that G|∂�̂t

parametrises Mt (while this is possible). Then, for g the pullback of the

Euclidean metric with respect to G, writing d = distg(∂�, ∂�), d is non-decreasing.
Furthermore, ∂�̂t remains embedded in �, and we may continue to identify the flow
with the moving domain �̂t ⊂ � until the first singular time.

Proof As ∂�̂0 is embedded inside �, this is essentially the standard proof, see [31,
Theorem 2.2., p28]. If ∂�̂t hits ∂�, then we again get a contradiction to the strong
maximum principle for local graphs of mean curvature flow. The only modifications
here is that we have allowed barriers - it is quick to check that these do not affect the
inequalities which lead to the required contradiction. Similarly, by considering a time
of first intersection of ∂�̂t with itself, we see that ∂�̂t remains embedded in � as
otherwise we again contradict the strong maximum principle. �


4 Preservation of Noncollapsedness

We take g to be the time dependent metric on � given by pulling back the Euclidean
metric. In all of this section we will take curvatures calculated with respect to the
outward unit normal of Mt .

Definition 4 Suppose that α > 0. An Alexandrov immersed, strictly mean convex
manifold is inner α-noncollapsed if � is compact and at every x ∈ Mn = ∂� there is
a closed geodesic ball (w.r.t. g) Bx

r ⊆ � of radius r = α
H(x) with x ∈ ∂Bx

r .

Clearly the inside of the domain plays an important role here, and this is not available
in the outer noncollapsing case. We instead use an Alexandrov outer comparison
solution, as in Definition 3. Essentially this replaces Rn\� in the embedded case. We
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define the closed set χ t = �\
◦
�t and, as previously, we may pull back the Euclidean

metric to get a time dependent metric g on χ t . In the following definition applies to
stationary manifolds at any fixed t and t subscripts are therefore dropped.

Definition 5 Suppose α > 0. An Alexandrov immersed, strictly mean convex mani-
fold is outer α-noncollapsed (with respect to comparison solution N ) if at every point
x ∈ Mn there is a closed geodesic ball (w.r.t. g) Bx

r ⊆ χ of radius r = α
H(x) with

x ∈ ∂Bx
r .

Note that as we are pulling back the Euclidean metric, the quantities in Definitions
4 and 5 do not depend on our choice of the parabolic Alexandrov immersion for t > 0.
From here on, we will compute using the G constructed in Lemma 3.

Theorem 8 Suppose that M0 is compact, Alexandrov immersed and strictly mean
convex. Then there exist an α, which depends only on M0, such that Mt is inner α-
noncollapsed and there exists an Alexandrov comparison solution Nt such that Mt is
outer α-noncollapsed with respect to Nt .

Proof Inner noncollapsing follows from Proposition 13 and Corollary 14 below.
For outer noncollapsing, we first require a suitable comparison solution which we

now construct. For X0 = G|∂�, we consider Y : ∂� × (−δ, δ] → R
n+1 given by

Y (x, ρ) = X0(x) + ρν(x).

For δ sufficiently small, for −δ < s ≤ 0 we identify (x, s) with γ0(x,−s) ∈ �

(where γ is the geodesic mapping from the beginning of Section 2). This defines a
smooth manifold with boundary �. We define the extension G : � → R

n+1 using
the construction in equation (4) by G(y) = G(y, 0) for y ∈ � and G(x, ρ) = Y
for (x, ρ) ∈ ∂� × (0, δ]. Furthermore, as H > 0 on M0, by restricting δ further we
may assume that N0 has positive mean curvature. As a result, by choosing Nt = N0,
the comparison equation of Definition 3(c) is satisfied. We therefore have a suitable
Alexandrov comparison solution.

Outer noncollapsing with respect to Nt now follows from Proposition 16 and
Corollary 17 below. �

Remark 2 As with embedded MCF, if we start with M0 only weakly mean convex, the
strong maximum principle implies that the flow immediately becomes strictly mean
convex, and, by Proposition 5, remains Alexandrov immersed and so we can apply
Theorem 8.

Remark 3 An alternativemethod to get a comparison solution in the above proofwould
be to run the flow for some small time 0 < τ strictly before the first singular time
and then use M0 as the required comparison solution for outer noncollapsing (or even
Mt−τ for a dynamic comparison solution).

Remark 4 In Definition 4, we do not really need to impose that � compact. If � were
noncompact, then as we are always choosing the outward pointing normal to � and
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that Mt is compact, there is a point on Mt with negative definite second fundamental
form (by comparison with spheres). This means that this setup is not mean convex and
so the α-noncollapsed condition is vacuous in this case.

Rather than attacking α-noncollapsedness directly as in the work of Andrews [2],
we instead follow ideas of Andrews–Langford–McCoy [3] and consider the “interior
and exterior sphere curvature”, that is functions Z(x, t), Z(x, t) which are given by
the principal curvature of the largest round sphere tangent to x which is inside � or χ

respectively. These functions are continuous but not smooth in general, and the aim is
to show that these are a viscosity sub/super solutions of the evolution equation for H .

As in [3] we require the double point function Z : Mn × Mn × [0, T ) → R ∪ ∞
given by

Z(x, y, t) = 2 〈X(x, t) − X(y, t), ν(x, t)〉
|X(x, t) − X(y, t)|2 . (6)

A short calculation implies that this quantity is the principal curvature of the unique
sphere tangent to ∂M at x going through y with a positive sign if the sphere is on
the opposite side of Mt as the normal and a negative sign otherwise. Note that at
self-intersections of X , we get Z = ∞. In order to avoid that while maximising Z
over y we work on the “visible set”. We make this precise in the next section.

4.1 Inner Noncollapsing via Viscosity Solutions

To avoid overlapping regions when maximising Z in (6), we consider all points which
are visible from a point x ∈ Mn inside �. Specifically, we define the visible set for
x ∈ Mn at time t to be

V (x, t) := {y ∈ � : ∃ a geodesic (w.r.t. g),

γ : [0, 1] → �, with γ (0) = x, γ (1) = y}

see Fig. 2 for an illustration. We may identify V (x, t) with G(V (x, t)) - by defini-
tion V (x, t) is isometric to a starshaped region of Euclidean space. Furthermore, by
convexity, any curvature ball Bx

r at x must be contained in V (x, t).

Lemma 9 Let X : ∂� × [0, T ) → R
n+1 be Alexandrov immersions and x ∈ ∂�.

Then there are no points y ∈ V (x, t) ∩ ∂� with y 
= x such that X(x, t) = X(y, t),
i.e. there are no self-intersections of X restricted to the visible set.

Proof Using the canonical charts we see that geodesics γ with respect to ḡ are straight
lines in R

n+1. On the other hand, by using the definition of ḡ as the pullback metric
of the Euclidean metric on the domain �, we see that we need to have a geodesic with
positive length in order to connect a point y ∈ ∂� with x 
= y. But by going back to
the image we see that X(y, t) cannot be connected to X(x, t) = X(y, t) via a straight
line of positive length. So X(x, t) = X(y, t) is not possible for y 
= x on the visible
set. �
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Fig. 2 The visible set of a point x ∈ Mt

We may now define the inscribed interior sphere curvature at (x, t) to be

Z(x, t) := sup{Z(x, y, t) : y ∈ ∂V (x, t) ∩ ∂�, y 
= x}.

Our aim below is to show that we can follow Andrew–Langford–McCoy’s analysis
[3] restricting to the visible region. In particular, this will require checking that there
are no problems with “boundary points” in the maximum principle.

Lemma 10 There exists an interior sphere with principal curvature κ contained in �

tangent to x ∈ Mt iff

sup
y∈∂V (x,t)\{x}

Z(x, y, t) ≤ κ.

Proof Any sphere in � tangent to x is contained in V (x, t) by convexity. Therefore,
there is a sphere of radius r = κ−1 in �, tangent to Mt at x iff for all y ∈ ∂V (x, t),

|X(y, t) − (X(x, t) − rν(x, t))|2 − r2 ≥ 0

or equivalently

|X(y, t) − X(x, t)|2 + 2r 〈ν(x, t), X(y, t) − X(x, t)〉 ≥ 0.

By Lemma 9 we do not have self-intersections on the visible set, so for x 
= y this
is equivalent to

Z(x, y, t) = 2 〈X(x, t) − X(y, t), ν(x, t)〉
|X(x, t) − X(y, t)|2 ≤ 1

r
= κ.
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In particular if there exists an inscribed curvature ball, supy∈V (x,t)\{x} Z(x, y, t) ≤ κ .
Similarly if supy∈V (x,t)\{x} Z(x, y, t) ≤ κ then we have the required inequality for

x 
= y, while for x = y the required inequality holds trivially. Therefore there exists
an inscribed ball. �


We begin by splitting ∂V (x, t) into two sets. For x ∈ Mn and y ∈ V (x, t), let γx,y :
[0, 1] → V (x, t) be the unit speed geodesic starting at x and going to y = γx,y(1).
Let

∂VReg(x, t) := {y ∈ ∂V (x, t) ∩ ∂� : γx,y hits ∂�

for the first time at y and γ ′
x,y(1) /∈ T ∂�}

and

∂VSing(x, t) := ∂V (x, t) \ ∂VReg(x, t).

We note that (by inverse function theorem), ∂VReg(x, t) is open.

Lemma 11 Suppose that x, y ∈ Mn, x 
= y are such that

max
y′∈∂V (x,t)∩∂�

Z(x, y′, t) = Z(x, y, t) ≥ 0.

Then y ∈ ∂VReg(x, t) or Z(x, y, t) = 0.

Proof We may identify V (x, t) with its image under G and work in R
n+1. Suppose

not, then (wlog) we may assume that y ∈ ∂VSing(x, t) is a point such that the line
from x to y does not intersect any points of ∂� (otherwise we simply observe that if
Z(x, y, t) ≥ 0, by passing to points on the line closer to x we increase Z(x, y, t)) and
such that Z(x, y, t) > 0. In particular, 〈X(x, t) − X(y, t), ν(x, t)〉 > 0. We know by
definition of ∂VSing(x, t) that X(x) − X(y) ∈ TX(y)Mt .

But then, treating x as a constant we have that

Dy
X(x,t)−X(y,t)Z(x, y, t) = Z(x, y, t) > 0 . (7)

We take a unit speed geodesic, γ̃ from y to x is in �, and in a neighbourhood of
y we may project this line in direction ν(y) to Mt to get a smooth curve ã(s) in
Mt . By compactness, we may see that for small s, a(s) stays in ∂V (x, t) (otherwise
we either contradict that there are no other points on the line from x to y or that
〈X(y, t) − X(x, t), ν(x)〉 < 0). Using (7), for small s we have that Z(x, a(s), t) >

Z(x, y, t), a contradiction to the maximality of Z(x, y, t). �

Lemma 12 Let M0 be smooth and Alexandrov immersed. On each compact time
interval in [0, T ) such that Z ≥ 0 we also have that Z is continuous in time and
space.
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Proof By Proposition 5, the flow remains Alexandrov immersed, and so prior to the
singular time, Z is bounded at every point.

We consider a spacetime sequence (xk, tk) → (x∞, t∞) and we aim to show that

lim
k→∞ Z(xk, tk) = Z(x∞, t∞) =: Z∞.

Suppose that lim infk→∞ Z(xk, tk) = Z∞ − 2ε. Then there exists a subsequence
(xk(i), tk(i)) such that lim Z(xk(i), tk(i)) = Z∞ − 2ε. In particular, we may find an
interior ball of radius 1

Z∞−ε
, tangent to Mt(i) at xk(i), and otherwise disjoint from

Mtk(i) by Lemma 10. In this case we also know that Z∞ is not κmax(x∞, t∞) by
continuity of κmax, and so Z∞ must be realised by Z∞ = Z(x∞, y∞, t∞) for some
y∞ ∈ Mt∞ . In particular, y∞ is in the boundary of an inscribed ball of radius 1

Z∞
<

1
Z∞−ε

. However, for i large enough, this contradicts the bound on the curvature as
the manifold must move in at infinite speed to reach y∞, a contradiction. Therefore
lim inf i→∞ Z(xk, tk) ≥ Z∞.

Now suppose that lim supk→∞ Z(xk, tk) = Z∞ + 2ε. Then there exists a subse-
quence (xk(i), tk(i)) such that lim Z(xk(i), tk(i)) = Z∞ + 2ε. In particular, we may
find points yi ∈ Mtk(i) inside an interior ball of radius 1

Z∞+ε
tangent to xk(i). Tak-

ing a further subsequence, the yi converge to y ∈ Mt∞ which is inside the inscribed
ball of radius 1

Z∞+ε
tangent to x∞. But this contradicts the definition of Z(x∞, t∞).

Therefore lim supk→∞ Z(xk, tk) ≤ Z∞. The claim now follows. �

We recall that a continuous function f : Mn×[0, T ) → R is a viscosity subsolution

of
( d
dt − �

)
f = F(x, t, f ,∇ f ) at (x0, t0) ∈ Mn × [0, T ) if for every C2 function

φ on M × [0, T ) such that φ(x0, t0) = f (x0, t0) and φ ≥ f for x in a neighbourhood
of x0 and t ≤ t0, then

( d
dt − �

)
φ ≤ F(x, t, φ,∇φ) at (x0, t0). Given such an f we

will say that
( d
dt − �

)
f ≤ F(x, t, f ,∇ f ) at (x0, t0) in the viscosity sense.

In the proposition below, we work in orthonormal coordinates at a point such that
gi j = δi j and hi j = κiδi j .

Proposition 13 At any (x0, t0) ∈ Mn × [0, T ) such that Z(x0, t0) ≥ 0, Z satisfies

(
d

dt
− �

)

Z ≤ |A|2Z − 2
∑

κi<Z

(∇ei Z)2

Z − κi

in the viscosity sense.

Proof This proof is essentially as in [3, Proof of Theorem 2], modified slightly to
include the additional gradient terms observed by Brendle in [10]. For the convenience
of the reader we provide the proof here.

As V (x, t) is compact so is V (x, t) ∩ Mt and so we have that either Z(x, t) is
realised by Z(x, y, t) for some y ∈ (∂V (x, t) ∩ Mt )\Bε(x) (for some ε > 0) or there
exists a sequence yi ∈ V (x, t), yi → x such that Z(x, t) = limi→∞ Z(x, yi , t). In
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the latter case, applying Taylor’s theorem, we have that

Z = h|(x,t)(v, v)

for some unit vector v ∈ TxMt . We note that for unit vectors v ∈ TpM such that
h|(x,t)(v, v) > 0, we have that expx (λv) ∈ V (x, t) for λ sufficiently small. Writ-
ing κmax(x, t) for the maximum principal curvature at x ∈ Mt , we either have that
Z(x, t) = κmax(x, t) or there exists x 
= y ∈ V (x, t) such that Z(x, t) = Z(x, y, t),
or both.

Pick t0 ∈ [0, T ) and x0 ∈ Mt0 . We now suppose that we have a C2 function φ(x, t)
such that in a neighbourhood of (x0, t0) for t ≤ t0, Z(x, t) ≤ φ(x, t) with equality at
(x0, t0).

As a supremum is taken we know that for (x, t) as above, for any unit vectors
v ∈ TxMt ,

h(v, v)|(x,t) ≤ Z(x, t) ≤ φ(x, t) (8)

and for all y ∈ Mt ∩ ∂V (x, t)

Z(x, y, t) ≤ Z(x, t) ≤ φ(x, t). (9)

Suppose that, at Z(x0, t0) = κmax(x0, t0) = h(v0, v0)|(x0,t0) for some unit vector
v0 ∈ Tx0Mt0 . In this case we may immediately apply the known standard viscosity
subsolution equation for κmax to see that φ satisfies

(
d

dt
− �

)

φ ≤ |A|2φ − 2
∑

κi<φ

(∇ei φ)2

φ − κi
.

See [4, Proposition 12.9, equation (12.17)] for a derivation of the above (in fact
the reference proves the above for barrier subsolutions which imply viscosity
subsolutions).

Suppose now that κmax < Z(x0, t0) = Z(x0, y0, t0) for some x0 
= y0. If Z = 0,
then by assumption we are at a minimum and the required equation follows immedi-
ately from properties of φ at a space-time minimum. Otherwise, applying Lemma 11
we know that y0 ∈ ∂VReg(x0, t0) and inverse function theorem implies that we also
have that there exist ε, δ > 0 such that if x ∈ Bε(x0) then all y ∈ Bδ(y0) ∩ Mt satisfy
that y ∈ ∂VReg(x, t) for all t0 − ε < t ≤ t0. As a result, for such x, y, t , equation (9)
holds, and furthermore, as the above sets are open, wemay differentiate this inequality
in time and space directions at (x0, y0, t0).

Following [3], by writing d = |X(x, t) − X(y, t)|, w = d−1(X(x, t) − X(y, t))
we have that at (x0, y0, t0),

0 = ∂

∂ yi
(φ − Z) = 2

d2
〈
∂
y
i , ν(x0, t0) − dZw

〉

0 = ∂

∂xi
(φ − Z) = ∂φ

∂xi
− 2

d
(hxpi

〈
w, ∂x

p

〉
− Z

〈
w, ∂x

i

〉
)
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We note that the first of these implies that ν(x0, t0)−dZw is orthogonal to TyMt , and
a short calculation implies that this is a unit vector. Indeed, as the inscribed ball has
center X(x, t) − Z−1ν(x, t) = X(y, t) − Z−1ν(y, t), we may rearrange to get that

ν(y, t) = ν(x, t) − Zdw. (10)

Using this and the above identities we have that at (x0, y0, t0)

∂2

∂ yi∂ y j
(φ − Z) = 2

d2
(Zδi j − hy

i j )

∂2

∂x j∂ yi
(φ − Z) = − 2

d2

(
Zδ

p
j − hxpj

) 〈
∂
y
i , ∂x

p

〉
− 2

d

∂φ

∂x j

〈
w, ∂

y
i

〉

∂2

∂xi∂x j
(φ − Z) = 2

d2
(Zδi j − hxi j ) + Zhxjpδ

pqhxqi − 2

d
∇ph

x
i jδ

pq
〈
w, ∂x

q

〉
− Z2hxi j

+ 2

d

∂φ

∂x j

〈
w, ∂x

i

〉 + 2

d

∂φ

∂xi

〈
w, ∂x

j

〉
+ ∂2φ

∂xi∂x j

∂

∂t
(φ − Z) = ∂φ

∂t
+ 2H(x)

d2
− 2H(y)

d2
− 2

d
〈w,∇H(x)〉 − Z2H(x)

and so as (x0, y0, t0) is a minimum of φ − Z , we have that at that point (after some
substitution),

0 ≤ − ∂

∂t
(φ − Z) + gi j

(
∂

∂xi
+ ∂

∂ yi

) (
∂

∂x j
+ ∂

∂ y j

)

(φ − Z)

= −
(
d

dt
− �

)

φ + Z |A|2 + 4

d
δi j

∂(φ − Z)

∂x j

〈
w, ∂x

i − ∂
y
i

〉

+ 4

d2

(
Zδ j p − hxpj

)
[δ j p −

〈
∂
y
j , ∂

x
p

〉
+ 2

〈
w, ∂x

j

〉 〈
w, ∂

y
p − ∂x

p

〉
] .

We now estimate the last term - we note that at this point all the above calculations
are valid regardless of choice of parametrisation (and therefore ∂x

i , ∂
y
i ) and we now

choose this to minimise the last term. We know that Z > κmax (as otherwise we are in
the first case), and as in [3, Lemma 6], we now pick our coordinates so that we may
see that the matrix in square brackets is the claimed nonpositive gradient term:

If TxM ⊥ w, then using the above relations (and the fact that ν(x, t) − Zdw is a
unit vector) then TyM ⊥ w. In this case we pick ∂x

i = ∂
y
i for an orthonormal basis

{∂x
i }1≤i≤n of TxMt . In this case, both the square bracket and ∂φ

∂xi
= 0 and so the

claimed equation holds. The same holds if TyM ⊥ w.
Now we suppose that the projections of w onto both TyM and TxM are nonzero.

By choosing an orthonormal basis ∂x
1 , . . . , ∂ x

n−1 spanning w⊥ ∩ TxMt and ∂
y
i = ∂x

i
for 1 ≤ i ≤ n − 1, we see that we only need to deal with j = p = n and we may
choose that

∂x
n = w − 〈w, ν(x, t)〉 ν(x, t)

√
1 − 〈w, ν(x, t)〉2
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∂
y
n = −w − 〈w, ν(y, t)〉 ν(y, t)

√

1 − 〈w, ν(y, t)〉2
= − (1 − 2 〈ν(x, t), w〉2)w + 〈w, ν(x, t)〉 ν(x, t)

√
1 − 〈w, ν(x, t)〉2

where we used (10). Writing a = 〈w, ν(x, t)〉, so that

〈
∂
y
n , ∂x

n

〉 = −(1 − 2a2) − a2 + a2(1 − 2a2) + a2

1 − a2
= 2a2 − 1,

〈
∂x
i , w

〉 =
√
1 − a2 = − 〈

∂
y
i , w

〉
1 − 〈

∂
y
n , ∂x

n

〉 + 2
〈
w, ∂x

n

〉 〈
w, ∂

y
n − ∂x

n

〉

= 1 + 1 − 2a2 − 4(1 − a2) = −2(1 − a2) < 0

and so we see that

4

d2

(
Zδ j p − hxpj

) [
δ j p −

〈
∂
y
j , ∂

x
p

〉
+ 2

〈
w, ∂x

j

〉 〈
w, ∂

y
p − ∂x

p

〉]

= − 8

d2

(
Z |w�|2 − h(w�, w�)

)
.

As Z > κmax, we have that

4

d2

(
Z |w�|2 − h(w�, w�)

)
= − 2

d2
∂φ

∂xn
〈∂n, w〉 =

n∑

i=1

(∇eiφ
)2

φ − κi

and so

(
d

dt
− �

)

φ ≤ |A|2φ − 2
n∑

i=1

(∇iφ)2

φ − κi
,

as required. �

Corollary 14 If M0 is initially Alexandrov immersed and strictly mean convex, then
there exists an α = α(M0) > 0 such that for all time, Mt is inner α-noncollapsed.

Proof We have that Z
H is a viscosity subsolution of the heat equation on Mt . By

compactness, and Lemma 12 there exists an 0 < α such that Z
H (x, 0) ≤ α−1 for all

x ∈ Mn . The statement now follows as in [3, Proof of Corollary 3]. �


4.2 Outer Noncollapsing Estimates via Viscosity Solutions

We now repeat the above argument, but for outer noncollapsing. In this section we
will take �, χ as in definitions 3 and 5.

We now define the outer visible set at x ∈ Mn at time t (w.r.t. � t ) as follows:

W (x, t) := {y ∈ χ : ∃ a geodesic (w.r.t. g), γ : [0, 1] → χ,with γ (0) = x, γ (1) = y}.
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Similarly to the previous section, we will consider

Z(x, t) := inf{Z(x, y, t) : y ∈ ∂W (x, t) ∩ ∂χ, y 
= x}

where here we are extending the definition of Z(x, y, t) to allow y ∈ ∂�.
We now consider the function Z(x, y, t) as in (6). As the normal is now pointing

into χ t , wemay replace Lemma 10 by the statement that there exists an exterior sphere
in χ at x with principal curvature κ iff

inf
y∈∂W (x,t)\{x} Z(x, y, t) ≥ −κ.

As the proof is identical to Lemma 10, we do not include it here.
As previously, we split the boundary of W (x, t). For x ∈ Mn and y ∈ V (x, t),

let γx,y : [0, 1] → V (x, t) be the unit speed geodesic starting at x and going to
y = γx,y(1). Let

∂WReg(x, t) := {y ∈ ∂V (x, t) : γx,y hitsMt ∪ Nt for the first time at y and

γ ′
x,y(1) /∈ T (Mt ∪ Nt )}

and

∂WSing(x, t) := ∂W (x, t) \ ∂WReg(x, t).

We now observe the equivalent of Lemma 11.

Lemma 15 Suppose that x ∈ Mn and y ∈ Mn ∪ Nn are such that

min
y′∈∂W (x,t)∩∂�

Z(x, y′, t) = Z(x, y, t) ≤ 0.

Then y ∈ ∂WReg(x, t) or Z(x, y, t) = 0.

Proof This is identical to the proof of Lemma 11. �

Proposition 16 Suppose that Nt satisfies

〈
∂Y
∂t , μ

〉 ≥ −HN . Then, at any (x0, t0) ∈
Mn × [0, T ) such that Z(x0, t0) ≤ 0, Z satisfies

(
d

dt
− �

)

Z ≥ |A|2Z + 2
∑

κi>Z

(∇i Z
)2

κi − Z

in the viscosity sense.

Proof At an arbitrary point x0 ∈ Mt0 , we have three possibilities for realising Z :

(a) There is a sequence yi ∈ Mt such that yi → x and Z(x, t) = limi→∞ Z(x, yi , t)
(b) There exists a y ∈ (∂W (x, t) ∩ Mt )\{x} such that Z(x, t) = Z(x, y, t).
(c) There exists a y ∈ ∂W (x, t) ∩ Nt such that Z(x, t) = Z(x, y, t).
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This time, we assume that we have aC2 function φ(x, t) such that in a neighbourhood
of (x0, t0), for t ≤ t0, Z(x, t) ≥ φ(x, t) with equality at (x0, t0).

In the first two cases above we may follow exactly the proof of Proposition 13 with
the inequalities the other way around. Correspondingly, we only need consider the
final case. In this case we know that for all y ∈ Nt ∩ ∂W (x, t),

Z(x, y, t) ≥ Z(x, t) ≥ φ(x, t). (11)

The main difference here is the sign of the normal. This time, ν(x0, t0) points into χ

while ν(y0, t0) points out of χ . Recalling that Z is negative, we have that the center
of the inscribed ball is given by

X(x, t) − Z−1ν(x0, t0) = Y (y0, t0) + Z−1μ(y, t)

so

μ(y0, t0) = Zdw − ν(x0, t0).

Now calculating at x0, y0, t0 in local orthonormal coordinates,

0 = ∂

∂ yi
(φ − Z) = 2

d2
〈
∂
y
i , ν(x0, t0) − dZw

〉

0 = ∂

∂xi
(φ − Z) = ∂φ

∂xi
− 2

d
(hxpi

〈
w, ∂x

p

〉
− Z

〈
w, ∂x

i

〉
) .

Using these identities we have that

∂2

∂ yi∂ y j
(φ − Z) = 2

d2
(Zδi j + Nhy

i j )

where the sign change is from the change in normal direction. The other second
derivatives remain unchanged:

∂2

∂x j∂ yi
(φ − Z) = − 2

d2

(
Zδ

p
j − hxpj

) 〈
∂
y
i , ∂x

p

〉
− 2

d

∂φ

∂x j

〈
w, ∂

y
i

〉

∂2

∂xi∂x j
(φ − Z) = 2

d2
(Zδi j − hxi j ) + Zhxjpδ

pqhxqi − 2

d
∇ph

x
i jδ

pq
〈
w, ∂x

q

〉
− Z2hxi j

+ 2

d

∂φ

∂x j

〈
w, ∂x

i

〉 + 2

d

∂φ

∂xi

〈
w, ∂x

j

〉
+ ∂2φ

∂xi∂x j

Meanwhile, for the time derivative

∂

∂t
(φ − Z) = ∂φ

∂t
+ 2H(x)

d2
+ 2

d2

〈
∂Y

∂t
(y, t), ν(x0, t0) − Zdw

〉

− 2

d
〈w,∇H(x)〉 − Z2H(x)
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= ∂φ

∂t
+ 2H(x)

d2
− 2

d2

〈
∂Y

∂t
(y, t), μ(y0, t0)

〉

− 2

d
〈w,∇H(x)〉 − Z2H(x)

As a result, as (x0, y0, t0) is a maximum of φ − Z , we have that

0 ≥ − ∂

∂t
(φ − Z) + gi j

(
∂

∂xi
+ ∂

∂ yi

) (
∂

∂x j
+ ∂

∂ y j

)

(φ − Z)

= −
(
d

dt
− �

)

φ + Z |A|2 + 2

d2

[〈
∂Y

∂t
(y0, t0), μ(y0, t0)

〉

+ HN
]

+ 4

d
δi j

∂(φ − Z)

∂x j

〈
w, ∂x

i − ∂
y
i

〉

+ 4

d2

(
Zδ j p − hxpj

)
[δ j p −

〈
∂
y
j , ∂

x
p

〉
+ 2

〈
w, ∂x

j

〉 〈
w, ∂

y
p − ∂x

p

〉
].

As this time we may assume that Z(x, y, t) < κmin(x, t) (where κmin is the smallest
principal curvature at x ∈ Mt ), we may again obtain a positive gradient term from the
final term above. We now check this. This time we have that for j = p = n and we
may choose that

∂x
n = w − 〈w, ν(x, t)〉 ν(x, t)

√
1 − 〈w, ν(x, t)〉2

∂
y
n = − (1 − 2 〈ν(x, t), w〉2)w + 〈w, ν(x, t)〉 ν(x, t)

√
1 − 〈w, ν(x, t)〉2

.

Writing a = 〈w, ν(x, t)〉,
〈
∂x
n , ∂

y
n
〉 = 2a2 − 1,

〈
∂x
n , w

〉 =
√
1 − a2 = − 〈

∂
y
n , w

〉

1 − 〈
∂
y
n , ∂x

n

〉 + 2
〈
w, ∂x

n

〉 〈
w, ∂

y
n − ∂x

n

〉 = −2(1 − a2).

The result now follows as before as we may see that

4

d2

(
Zδ j p − hxpj

)
[δ j p −

〈
∂
y
j , ∂

x
p

〉
+ 2

〈
w, ∂x

j

〉 〈
w, ∂

y
p − ∂x

p

〉
]

= 8

d2
(h(w�, w�) − Z |w�|2)

= 2
∑

i

(∇eiφ
)2

κi − φ
.

�

As in Lemma 12, while Z ≤ 0, Z is continuous. We therefore have the following.
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Corollary 17 If M0 is initially Alexandrov immersed and strictly mean convex and Nt

is an Alexandrov comparison solution. Then there exists an α = α(M0) > 0 such that
for all time, Mt is outer α-noncollapsed.

Proof This follows as in the proof of Corollary 14. �


5 Applications

We can now extend existing two-dimensional mean curvature flowwith surgery results
to the Alexandrov immersed setting.

We may do this quickly and efficiently as, in Theorem 8, we showed that there was
a larger stationary comparison domain � with a flat metric such that we may consider
Mt as an embedded flow, as in Lemma 7. Indeed, by mean convexity, writing �̂t ⊂ �

as the moving domain such that Mt = G(∂�̂t ), we have �̂t ⊂ �̂0 by Lemma 7. We
define

r0 := sup

{

r ∈ R+ : ∀x ∈ �0, B
g
r (x) ⊂

◦
�

}

. (12)

We have that r0 > 0 depends only on the initial data, and we also have that any ball
in � of radius r0 and centre in �̂0 may be identified (via G) with a subset of Rn+1,

and Mt ∩ Br0(x) is an embedded, noncollapsed, mean convex flow with an interior
determined by �̂t . Therefore, using the terminology of Haslhofer–Kleiner [26], we
may always locally considerMt as an α-Andrews flow in a parabolic cylinder of radius
r0 about any point in �. As a result, the local regularity theory in [26] also holds here,
with the minor addendum that we also need the parabolic cylinders to be sufficiently
small depending only on r0.

Theorem 18 (Gradient estimate for Alexandrov immersed flows) Suppose that M0 is
compact, Alexandrov immersed and strictly mean convex and let r0 be as in (12). Then
there exists ρ > 0 and Cl > 0 depending only on M0 such that: Given any 0 < r < r0
and any p ∈ Mt such that Br (p) ⊂ �t ′ for some t ′ ∈ [0, T ) and H(p, t) < r−1, then

sup
Br (p)

|∇l A| ≤ Clr
−(l+1)

for all T − r2 < t ≤ T .

Proof As in the above discussion, on P(p, t, r) the flow is an α-Andrews flow and
the above is just a rewrite of [26, Theorem 1.8’]. �

Remark 5 As in [26, Remark 2.3] we note that the condition Br (p) ⊂ �t ′ may be
assumed at every blowup sequence after discarding a finite number of terms.

Next we need the noncollapsedness improvement of Brendle [10].

Theorem 19 Suppose that M0 is compact, Alexandrov immersed and strictly mean
convex. Then for any δ > 0 there exist a σ(δ),C(δ) > 0 such that Z ≤ (1 + δ)H +
CH1−σ .

123



  268 Page 22 of 25 B. Lambert, E. Mäder-Baumdicker

We will follow the original proof of Brendle [10] and but we note that for the above
statement alone we could also simply apply the elegant proof of Haslhofer and Kleiner
[25] (as in the proof of Theorem 18) to get the same statement. However, in Theorem
20 we need a proof which can be easily modified to flows with surgery (see also [10,
Comment before section 2]), and so we briefly describe the integral estimate proof.

Proof By an identical proof as in [10, Proposition 2.1] we see that Z is also Lipschitz
continuous and semi-convex. We have already demonstrated [10, Proposition 2.3] in
Proposition 13 and so [10, Corollary 6] also holds. The auxiliary equation of [10,
Proposition 3.1, Corollary 3.2] now follow in an identical manner (where we note
that Huisken and Sinestrari’s convexity estimates [29] hold for immersed surfaces, so
we may still apply these estimates). The proof now follows entirely analogously via
Stampacchia iteration. �


As mentioned previously, for n ≥ 3 Huisken–Sinestrari [29] demonstrated surgery
techniques which are applicable to MCF. We now sketch the minor adjustments to
Brendle and Huisken’s MCF of surfaces with surgery.

Theorem 20 (Alexandrov immersed MCF with surgery) There exists a notion of
Alexandrov immersed mean curvature flow with surgery as in [13].

Proof (Proof sketch) We recall that in [13] surgery occurs when the maximum mean
curvature hits H3 > H2 >> H1, while the surgery happens at a scale of approximately
H1 on a neck of length L0 (after rescaling bymean curvature). The choices of the values
of H1, H2, H3 are the final parameter choices and H1 may be made arbitrarily large
(see [13, bottom of page 624]). We additionally stipulate that

H1 >
106L0�

r0

which is enough to ensure that any neck we will want to apply surgery to will be
strictly contained in a ball of radius r0, and therefore may be viewed as embedded in
R
n+1 locally. We may therefore apply Brendle–Huisken’s surgeries, as described in

[13, Section 6]. Furthermore, we will see below that in all proofs where embeddedness
methods are used, we can replace this with local embeddedness via the assumption on
H1.

Next, we observe that all auxiliary results in [13, Section 2] still hold for an
Alexandrov immersed flow given the above choice of H1, using local embeddedness:

• The pseudolocality result [13, Theorem 2.2] holds for immersed surfaces.
• The modified outward-minimising gradient estimate, [13, Theorem 2.3] will only
be applied on (rescalings of) balls of radius strictly less than r0, and so we may
simply apply this theorem unchanged. After replacing variations in R

n+1 with
variations in the stationary outer comparison domain �, the work of Head [28,
Lemma 5.2] still indicates that the outward minimising property holds and is
preserved regardless of surgeries (in modifying this, we are using that necks are
in Euclidean embeddable balls).
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• Properties of surgery [13, Theorem 2.5] may still be applied almost unchanged,
due to the above considerations. However, we do need to extend the definition
of surgery to include possible change of topology of the Alexandrov immersion
domain. If Ti is the surgery time then there is a well-defined smooth final pre-
surgery domain �̂T−

i
⊂ �. We now explicitly describe the construction of the

post-surgery domain �̂T+
i

⊂ � from this. As usual, surgery will involve removing
either a cylindrical neck or a neck ending in a convex cap, before glueing in a
suitable lower mean curvature cap at the end or ends respectively. On a neck
region Ni , �̂T−

i
is a very small perturbation of a solid cylinder, and we remove

such cylinders. In a glueing region, we leave unchanged away from the surgery
region while in the surgery region, we shrink �̂T−

i
so that it is modified to be the

interior of Brendle–Huisken’s surgery convex caps. This process gives �T+
i

and

we take GT+
i

(·, Ti ) : �T+
i

→ R
n+1 to be G ◦ Id. We leave � and G the same

through surgery. As all of the above surgery steps occurred in small balls, as in [13,
Theorem 2.5], G(∂�T+

i
) is (Alexandrov) α-noncollapsed with α = α(M0). We

may now apply Theorem 5 to see that this is preserved until the next singularity.
We remark that ∂�T+

i
is smooth (and in fact uniformly C5, [13, Remark after

Proposition 6.5]) but explicit quantitative regularity estimates are not required on
∂� to apply the above noncollapsing estimates.

• In Proposition 2.7we need tomodify the conclusion of the theorem to the statement
that dist�(x0, x1) > α

1000H
−1
1 where dist� is the induced distance on �. The

proofs of Propositions 2.7, 2.8 in [13] still hold by local embeddedness due to our
choice of H1.

• [13, Proposition 2.9] then follows from Propositions 2.7, 2.8.
• [13, Propositions 2.10–2.12] do not need to be modified at all.
• The inscribed radius estimate [13, Proposition 2.13] is a modified version of Bren-
dle’s Stampaccia inscribed radius estimate. The exact same modification applied
to Theorem 19 yields the same result.

• The proofs of Neck Detection Lemmas [13, Theorems 2.14, 2.15] involves a con-
tradiction argument blowing up flows on small balls. By our choice of H1 the flow
is embedded on the balls and the proof still goes through.

• The proof of Proposition 2.16 still goes through due to our choice of H1 (note
that in this proof, due to the remark after the statement of the pointwise derivative
estimate [13, Proposition 2.9], H(p1, t1) must be close to H1 and so we are again
in a region which we may view to be embedded in R

n+1).
• [13, Proposition 2.17] holds for immersed surfaces with a gradient estimate.
• [13, Proposition 2.18] is only required in the embedded setting, see below.

As a result of this,we now see that the proof of [13, Proposition 3.1] (which is used to
find an initial neck given sufficiently large curvature) still holds by applying previously
verified auxiliary statements. Finally, almost all of the proof of the Neck Continuation
Lemma [13, Proposition 3.2] immediately follows, until the final contradiction to get
a convex cap. Here we need to be careful in the application of [13, Proposition 2.18]
(which requires an embedded cylinder). We apply this Proposition after rescaling by
H = 2H1

�
, where H1 has been chosen above so that after rescaling the may again view
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the flow as locally embedded on a sufficiently large ball. As a result, [13, Proposition
2.18] may be applied unchanged and the contradiction argument goes through and the
Neck Continuation Lemma still holds.

As a result, Brendle and Huisken’s surgery procedure goes through as claimed. �

Remark 6 The authors expect that it is also possible to modify the alternative surgery
procedure of Haslhofer and Kleiner [27] to the Alexandrov immersed setting.
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