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Global expansion of tropical cyclone
precipitation footprint

Lianjie Qin 1,10, Laiyin Zhu 2,10 , Baoyin Liu 3, Zixuan Li 4, Yugang Tian5,
Gordon Mitchell 6, Shifei Shen1, Wei Xu 7,8,9 & Jianguo Chen 1

Precipitation from tropical cyclones (TCs) can cause massive damage from
inland floods and is becoming more intense under a warming climate. How-
ever, knowledge gaps still exist in changes of spatial patterns in heavy TC
precipitation. Here we define a metric, DIST30, as the mean radial distance
from centers of clustered heavy rainfall cells (> 30mm/3 h) to TC center,
representing the footprint of heavyTCprecipitation. There is significant global
increase in DIST30 at a rate of 0.34 km/year. Increases of DIST30 cover 59.87%
of total TC impact areas, with growth especially strong in the Western North
Pacific, Northern Atlantic, and Southern Pacific. The XGBoost machine learn-
ingmodel showed that monthly DIST30 variability is majorly controlled by TC
maximum wind speed, location, sea surface temperature, vertical wind shear,
and total water column vapor. TC poleward migration in the Northern Hemi-
sphere contributes substantially to the DIST30 upward trend globally.

Tropical cyclones (TCs) have a large area footprint and strong
destructive power which threatens lives and property1–3. TC impact is
mainly due to strong winds, storm surges in coastal areas, and heavy
precipitation4,5. Future climate model projections generally indicate a
decrease in the global average frequency of TCs and an increase in the
global average intensity of TCs6. An increased TC rainfall rate is
expected with a warming climate due to the Clapeyron–Clausius
scaling of water vapor in the atmosphere7–11. However, recent studies
based on satellite rainfall measurements12,13 demonstrate that the TC
rainfall rate shows a decreasing trend in the inner-core of the rainband
with increases in the outer bands. This reverse pattern could be
associated with both atmospheric stability and the higher availability
of water vapor triggered by warmer sea surface temperature (SST)12,13.
TC rainfall area is another key factor to affects TC rainfall distribution,
which increaseswith increasing relative SST14, defined as thedifference
between the local SST and the average SST over the tropical oceans.
Although many prior studies12,13,15–17 discuss the changes in TC rainfall

rates and accumulated TC precipitation, we still needmore knowledge
of the spatial structure of TCs and their connection with climate
change. Rainfall is controlled by different mechanisms in different
parts of the TC.While convective rainfall dominates in the inner coreof
the TC driven by atmospheric updraft, the outer TC bands generally
have stratiform precipitation18. Recent studies19,20 also find that TC
precipitation in the inner core and outer region is controlled by TC
intensity and environmental conditions. In addition, themajority of TC
precipitation research uses rainfall metrics (e.g., mean or median)
based on arbitrary radii (e.g., 100 km and 500 km) from the TC
center6,10,15. However, different definitions of TC rainfall rate can be
challenging for multi-model comparisons10. Furthermore, the within
radii averaging approachmay not be an accurate description of the TC
rainfall risk because of the high spatial variabilities in TC rainfall in both
the core and outer band areas21,22.

While there is consensus that the TC rainfall rate will increasewith
a warmer climate following the Clausius-Clapeyron equation, the
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actual fractional rainfall increase varies above or below the 7% °C−1

theoretical ratewith SSTwarming amongdifferentmodels23,24. There is
an urgent need to understand mismatches between models and
observations, particularly how the fractional rainfall increase will likely
change when one moves from the TC center by certain distances10.
Therefore, here we define a TC rainfall metric DIST30 as the mean
radial distance from centers of clustered heavy rainfall cells (> 30mm/
3 h) weighted by their rainfall rate (see Methods) to the TC center. As
compared with the existing spatial metrics25–27 for TC rainfall, the
DIST30 has a more generalized description of the distance from the
center of clustered heavy rainfall cells to each TC center. It provides a
more direct approach to understanding the potential major inland
flood risk caused by heavy TC rainfall. DIST30 is constructed based on
a 41-year quality controlled high-resolution global precipitation data
set (MSWEP). Our results indicate that DIST30 has increased at an
average rate of 0.34 km/year globally, with stronger increases
observed in ocean-land boundary areas and mid-latitudes in the
northern hemisphere. Based on our interpretable machine learning
algorithm (XGBoost), the TC maximum sustained wind speed (central
pressure), location of the TC, SST, vertical wind shear, and total col-
umn water vapor are the most important factors. DIST30 shows a
particularly strong positive relationship with vertical wind shear in
mid-latitudes which explains the recent global increasing trend in
DIST30.

Results
Global increases in distance fromTC center and extreme rainfall
Besides high interannual and interdecadal variabilities, the global
annual mean DIST30 (Fig. 1a) demonstrates a statistically significant
increasing trend (at a 95% significance level) with a slope of 0.34 km/
year between 1980 and 2020. In addition, we calculated and compared
the frequency of extreme TC rainfall (30mm/3 h) within different bins
of distance to each TC center between 1980–1999 and 2000–2020
(Fig. 1b, c). Both low latitudes (≤ 25°) andmid-latitudes (> 25°) observe
decreased relative frequency of extreme TC rainfall within 200 km of
the TC center. While the low latitude has a 5.02% decrease, the mid-
latitude has a larger 22.60% decrease. Conversely, we observe increa-
ses in the relative frequency of extreme TC rainfall beyond 200 km
from the TC center in both low and mid-latitudes. The low latitudes
show a 13.11% increase, but a 43.33% increase in mid-latitudes. To fur-
ther validate trends found in extreme TC rainfall, we also defined
DIST50 as the distance between the TC center and extreme rainfall
clusters larger than 50mm/3 h. DIST50 shows a consistent upward
trendof 0.36 km/year (Supplementary Fig. 1a) similar toDIST30, with a
smaller change in the relative frequency in low latitudes (−3.02%
beyond 200 km from the TC center and + 1.12% within 200 km of the

TC center; Supplementary Fig. 1b), but the higher relative change in
mid-latitudes (+ 52.52% beyond 200 km from the TC center and
− 21.54% within 200 km of the TC center; Supplementary Fig. 1c).

Spatial distribution of changes in DIST30
To further investigate the spatial variations of DIST30, we calculated
temporal differences of DIST30 between the late period (2001–2020)
and the early period (1980–1999) (ΔDIST30) for every 4° grid cell
(Fig. 2). The results show that DIST30 increases for 59.87%
(8.79 × 107 km2) and only decreases for less than 40.13%
(5.89 × 107 km2) of the total TC impact areas (Fig. 2 and Supplementary
Table 1). The areas with positive ΔDIST30 greater than 25, 50, 75, and
100 km take 39.03% (5.73 × 107 km2), 22.06% (3.24 × 107 km2), 12.01%
(1.76 × 107 km2), and 7.41% (1.09 × 107 km2) amount of the global total
TC impact areas, respectively (Supplementary Table 2). Among six
ocean basins, only the Northern Indian basin experiences a general
reduction in DIST30. In the other five ocean basins, increasing trends
of DIST30 are more frequent than decreasing trends. The Western
North Pacific basin has the largest proportion of areas with DIST30
growth (2.20 × 107 km2, 25.06% of global area with DIST30 increase),
and the areas with positive ΔDIST30 greater than 25, 50, 75, and
100 km take 39.76% (1.35 × 107 km2), 21.49% (7.30 × 106 km2), 10.62%
(3.61 × 106 km2), and 7.49% (2.54× 106 km2) of the total TC impact areas
in Western North Pacific basin, respectively (Supplementary Table 2).
The NorthernAtlantic basin has the second largest proportion of areas
with DIST30 growth (1.92 × 107 km2, 21.80% of global area with DIST30
increase), and the areas with positive ΔDIST30 greater than 25, 50, 75,
and 100 km take 43.73% (1.29 × 107 km2), 22.64% (6.68 × 106 km2),
13.79% (4.07 × 106 km2), and 7.36% (2.17 × 106 km2) amount of the total
TC impact areas in Northern Atlantic basin, respectively (Supplemen-
tary Table 2).

In addition, we examined coastal grid cells (defined as grid cells
with both land and sea) and found they have slight growth in DIST30.
From a total of 4.73 × 107 km2 of land and sea boundary areas, slightly
more than half (54.02%, representing 2.56 × 107 km2) present an
increasing trend in DIST30. More growths in DIST30 are observed in
populated coastal areas including eastern coastal areas of China, Japan
islands, Korean peninsula, and eastern Australia, since we have
observed that 7.33 × 106 km2 (61.84%) of Western North Pacific basin
boundary areas and 4.93 × 106 km2 (63.55%) of South Pacific
basin boundaryareas showed increases ofDIST30. In general, the areas
experiencing increases of DIST30 have elevated risk of heavy pre-
cipitation far from the TC center, and they take the majority of the TC
impact areasglobally, indicating aglobal expansionofTCprecipitation
footprint and flood risk. In contrast, we observed a downward trend in
DIST30 in theNorth Indianbasin coastal areas (1.67 × 106 km2, 32.71%of

Fig. 1 | Temporal changes in distance at the threshold of 30mm/3 hours
(DIST30) and tropical cyclone (TC) rainfall. a Annually time series of globally
averaged DIST30. b Relative frequency of > 30mm/3h precipitation in low latitude
(≤ 25°). c Relative frequency of > 30mm/3 h precipitation in mid latitude (> 25°).

Blue lines denote the early period (1980–1999) and red lines denote the late period
(2001–2020). Bins with 25 km equal intervals of Distance are created for each 20
years sample. The relative frequency is defined as the frequency of observations in
each bin divided by all observations for each 20 years sample.
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area with increasing trends). Other ocean basins only observed slight
increases or no trend in DIST30.

Modeling DIST30 using machine learning
Drawing on high-resolution dynamical General Circulation Models
(GCMs) and downscaled Regional Climate Models (RCMs), many stu-
dies discuss the sensitivity of TC rainfall rate (Clausius-Clapeyron
Scaling) to global climate warming scenarios9,23,24,28–32. To understand
factors that determine the TC rainfall footprint, we developed
XGBoost models for global and ocean basin wide monthly values of
DIST30 based on TC characteristics (e.g., central pressure and max-
imum sustained wind speed) and environmental factors (SST, relative
2-meter air temperature, vertical wind shear). XGBoost is a powerful
decision tree-based machine learning approach33 that repeatedly
generates new trees from the initial poor performers (‘weak learners’)
intending to improve the model fit (see Methods for further detail). A
variables list is shown in Supplementary Tables 3 and 4. The XGBoost
model demonstrates decent out-of-sample prediction performances,
with the ratio of the explained variance (R2) = 0.51, root mean square
error (RMSE) = 70.48 km, and mean absolute error (MAE) = 47.34 km.
Similarly, models for different ocean basins (Supplementary Fig. 2)
also show consistent performance (R2 ranging from0.46 to 0.57, RMSE
ranging from66.66 to 77.90 km,MAE ranging from43.74 to 50.77 km).
The South Indian basin has the highest R2 and the Western
North Pacific basin has the lowest RMSE/MAE. All indicate that our
XGBoost models have decent prediction performance without over-
fitting and are reliable sources for model interpretations.

The SHapley Additive exPlanations (SHAP) value34 (see Methods)
is an interpretable artificial intelligence (AI) approach that represents
the contribution from each feature to each individual prediction.
Therefore, a larger than zero SHAP value indicates a positive con-
tribution from a feature to the mean prediction of the response vari-
able (here DIST30) and vice versa. Here we define the feature
importance as the absolute value of all positive and negative con-
tributionsof each featurewhich reflects the sensitivity ofDIST30 to the
specific feature. Figure 3b demonstrates the 8 top-ranked features for
the global DIST30 models. The TC maximum intensity (VMAX) and

Latitude (LAT) rank as the most important variables in the global
DIST30 model, followed by the central pressure (PRES), vertical wind
shear (WS), and relative 2-meter air temperature (RT2M). In addition,
we demonstrated the detailed interactions between DIST30 and four
top-ranked features in the XGBoost models (Fig. 3c–f) as well as their
spatial distributions (Fig. 4).

DIST30 generally has a negative relationship with VMAX (Fig. 3c),
with different sensitivities within different VMAX ranges. Negative
contributions to DIST30 (smaller DIST30) are generally associated
with a higher VMAX (> 70 knots, ~ Category 1 hurricane intensity). The
magnitude of negative contributions of SHAP is stabilized when VMAX
is larger than 70 knots. Strong convective precipitation from a well-
developed TC system in the tropics is usually located near the
eyewalls35,36, within a short distance to the TC center. In contrast, the
DIST30 SHAP increases abruptly when the VMAX is reduced below 70
knots, which could be related to the Extratropical Transition (ET) of
TCs. As TCs undergo the ET, warm-core tropical systems change to
cold-core mid-latitude cyclones. These mid-latitude systems are gen-
erally larger with a more widespread distribution of precipitation than
well-developedTCs in the tropics. As the eyewall disappears, the heavy
precipitation center for ET stormsusuallymoves further away from the
storm center. In Fig. 3d we can observe a clear pattern such that a
higher absolute value of LAT is associated with a larger DIST30, whilst
mid-latitude regions (20 °N to 40 °N and 20 °S to 40 °S) have more
frequent observations of lower VMAX. The translation speedof TC also
increases as it moves to higher latitudes37, contributing to the asym-
metry of TC precipitation21,38 and possibly to the increase in DIST30. In
addition to the general positive relationships with latitude, a small
number of high DIST30 SHAP values are also located in low latitudes
(between 20 °S and 20 °N, Fig. 3b) and have low VMAX. These are
possibly associated with scattered tropical thunderstorms in less
organized tropical storm systems with weak wind intensity (< 40
knots). The eyewalls of those systems are not well defined, and the
center of the thunderstorms with heavy precipitation can be far away
from the center.

The vertical wind shear (WS) demonstrates a general positive but
non-linear relationship with the DIST30 SHAP values (Figs. 3e and 4c),

Fig. 2 | Spatialdistributionof differences indistance at the thresholdof30mm/
3 hours (DIST30) between the late period (2001-2020) and the early period
(1980-1999). Bars show the percentages of increasing and decreasing areas in each
ocean basin/region. The cross indicates the difference at the location passed the

Mann-Whitney test on the regression model of time series at the 99% significance
level. DIST30 is collected within 4° grid cells for clear visualization of spatial
patterns.
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Fig. 3 | Model performance, feature importance and selected features’ rela-
tionships with the distance at the threshold of 30mm/3 hours (DIST30) based
on the SHapley Additive exPlanations (SHAP) values from the global XGBoost
model. Models are developed based on monthly averaged DIST30 and environ-
mental variables within 0.25° × 0.25° grid boxes. a The scatter density plot of
observed and predicted based on 5-fold random cross-validations: one XGBoost
model is trained using the data exclusively for each fold and used for prediction
based on data from each fold; The predicted values are collected for all five folds

and compared with all observed values; color represents the frequency of obser-
vations/predictions in each 1/100 bin within the observed DIST30 range. b feature
importance calculated as the SHAP value for eight top-ranked features with the
most importance for the XGBoost model. c–f Relationship between the four most
important features and DIST30 SHAP value, with distributions of each feature. Dot
colors in (c–f) denote that the feature has the largest covariance with the main
feature (x-axis) in the model.
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with complexities when WS is below 15 knots. Higher WS is likely to
expand the TC rainfall area and introduce higher rainfall rates far from
the TC center39,40; this phenomenon is particularly strong in the mid-
latitudes when TCs are translating to regions with lower relative sea
surface temperature (green and yellow dots in Fig. 3e). More frequent
largerWSSHAPvalues also occur athigher latitudes (Fig. 4c), reflecting
the latitudinal gradient. Previous studies have identified WS as one of
the key factors that increase the TC precipitation asymmetry21,38,41,42.
Positive vertical wind shear SHAP values are scattered across different
ocean basins in the northern hemisphere (Fig. 4c) and are slightly
stronger in the southern hemisphere. The lower range of WS (< 10
knots) demonstrates both negative and positive contributions to the
DIST30 SHAP values and those cases are more likely to happen in
warmer SSTs (Fig. 3e), indicating a lower sensitivity of DIST30 to the
WS in the tropics.

The relative 2-meter air temperature (RT2M) also demonstrates a
nonmonotonic relationshipwithDIST30—a negative relationshipwhen
the RT2M is lower than 1 K but a weak positive relationship when the
RT2M is higher than 1 K. This non-monotonic relationship could be
caused by several factors. The RT2Mdecreaseswith latitudes, so larger
DIST30 (ET systems) correspond to lower RT2M in higher latitudes,
whilst in the tropics, higher RT2M corresponds to higher SST. Higher
SST is likely to support more latent heat to the TC system. Interest-
ingly, the SHAPvalues for theRelative SST (Supplementary Fig. 5h) also
demonstrate a positive relationship with DIST30 when it is above 0K,
but the absolute SST has both positive and negative contributions to
DIST30 (Supplementary Fig. 5g). Both observations and numerical
models have previously demonstrated that the area of TC rainfall
increases as the relative SST increases for mature TCs in the tropics,
potentially caused by the influences from Relative SST to TC size,
relative humidity, and potential intensity14. But the TC rainfall area is
less sensitive to the absolute SST in the tropics14. Our analysis also

indicates thathigher total precipitablewater vapor (TCWV) is generally
associated with larger DIST30 (Supplementary Fig. 5i). This is also
consistent with the previous analysis13, which demonstrates that there
is a positive relationship between TCWV and rainfall intensity in the TC
outer region, while there is a negative relationship between TCWV and
rainfall intensity in the TC inner core. Spatially, a very strong latitudinal
gradient is also evident for the SHAP value for RT2M (Fig. 4d).

Interpreting trends in DIST30
In previous sections, we have discovered that after TCs’ own char-
acteristics (VMAX and PRES), vertical wind shear is themost important
environmental variable explaining DIST30, and displays a strong
positive but non-linear relationship. Therefore, here we provide
additional analysis to explain temporal trends in global DIST30
by splitting our monthly DIST30 data into three parts according to
latitude: the tropics between 25 °S and 25 °N, mid-latitudes of the
northern hemisphere (> 25 °N), and mid-latitudes of the southern
hemisphere (> 25 °S).

In the tropics, DIST30 demonstrates a slight increasing pattern
but with low confidence (Fig. 5a, p-value ≈0.11). Meanwhile, we
identified a statistically significant (p-value ≈0.00) decreasing trend
in vertical wind shear in the tropics. Lower vertical wind shear is likely
to create a more favorable environment for cyclone genesis to sur-
vive and evolve into stronger TCs43,44 in the tropics. Meanwhile, lower
vertical wind shear is not likely to directly disperse the rain field and
increase the DIST30 in the tropics because of its lower sensitivity in
the tropics (SHAP value in Fig. 3e). We did find a weak increasing
pattern in the annual frequency of DIST30 in the tropics (p-value ≈
0.29, Fig. 5c), which could be related to the reduced vertical wind
shear. Recent studies have also identified increased SST in the
tropics globally45,46. Both the more surviving TCs and more latent
heat supplied from the ocean surface are likely to contribute to the

Fig. 4 | Spatial distributionof SHapley Additive exPlanations (SHAP) values of the fourmost important variables. aMaximumwind speed (VMAX).b Latitude (LAT).
c Vertical Wind Shear (WS). d Relative Sea Surface Temperature (RSST). Values are averaged to hexagons with radius = 1° for improved visualization.
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slightly increasing precipitation footprints (DIST30) of TCs within
the tropics.

DIST30 in mid-latitudes of the northern hemisphere demon-
strates a very strong increasing trend (p-value ≈0.00). We believe this
is themajor contributor to the global increasing trend inDIST30, since
both the tropics and southern hemisphere mid-latitudes (Supple-
mentary Fig. 7) demonstrate weak increases of DIST30. The strong
increasing trend of DIST30 beyond 25 °N can be explained by changes
in both vertical wind shear and the frequency of TCs entering the mid-
latitudes. In contrast to the decreasing pattern in the tropics, the
vertical wind shear in the northern hemisphere at higher latitudes
demonstrates a weakly increasing signal (Fig. 5e, p-value ≈0.33). More
importantly, a very strong increase is evident for the annual DIST30
observation frequency beyond 25 °N (Fig. 5f, p-value ≈0.00). It is
probable thatmore TCs survived beyond 25 °N, translated towardmid-
latitudes, and then encountered relatively higher vertical wind shear.
Those TCs undergoing extratropical transition are usually associated
with more asymmetric distribution of rain fields and enlarged DIST30,
whichwas alsodemonstratedby thehigh sensitivity ofDIST30 toWS in
mid-latitudes from our SHAP analysis (Fig. 3e). Interestingly, we only
observe those strong temporal trends inDIST30 in the higher latitudes
of the northern hemisphere. In the southern hemisphere, no statisti-
cally significant trend has been identified in DIST30, vertical wind
shear, and observation frequencybeyond 25 °S (Supplementary Fig. 7).
The poleward migration of TCs was first described by Kossin et al. 47

and has been discussed by recent studies48–52. The polewardmigration
of TC intensity can be explained by the expansion of the Inter Tropical
Convergence Zone (ITCZ) and the tropical Hadley circulation under a
warming climate, which changes the environment for TC genesis and
development, including the vertical wind shear, SST, and steering
flows. Some studies identified a more distinct poleward migration of
TCs in the Western North Pacific basin48,50,53. Here we discovered that
the vertical wind shear in the tropics has becomemore favorable to TC
genesis and evolution globally in the last 41 years. More TCs moved to
higher latitudes in the northern hemisphere and interacted with

stronger verticalwind shear. Thoseprocesses couldwork together and
cause substantial increases of larger TC precipitation footprint
(DIST30) globally. Supplementary Figs. 3–6 also show SHAP relation-
ships between all included features and the global DIST30 from our
XGBoost modeling.

Discussion
DIST30 can serve as an important indicator to understand potential
flood impacts. A higher value of DIST30 indicates that the most
extreme precipitation related to the TC occurs farther away from the
center. It is important to note that DIST30 is a numerical value calcu-
lated solely from the TC precipitation profile including both the inner
core and outer rain bands, as the cases show in Supplementary Fig. 8.
We acknowledge that DIST30 can only partially describe the com-
plexity of TC precipitation structure, and future work should focus on
optimizing the definition for the TC precipitation structure by
including both the rainfall area19,20,25–27,40 and intensity.

From1980 to 2020, DIST30 shows an increasing trendof 0.34 km/
year. The relative frequency of > 30mm/3h TC precipitation beyond
200 km from the TC center increases by 13.11% at low latitudes and
43.33% at mid-latitudes, while the frequency of > 30mm/3h TC pre-
cipitation within 200 km of the TC center decreases by 5.02% at low
latitudes and 22.60% atmid-latitudes. Spatially, we observe the DIST30
increases in 59.87% (8.79 × 107 km2) of the global total TC affected area
(1.47 × 108 km2). There are 3.24 × 107 km2 with > 100 km increases in
DIST30, representing 22.07% of the total TC affected area. In addition,
54.02% (2.56 × 107 km2) of the global land and sea boundary area
(4.73 × 107 km2) affected by TCs observed growth in DIST30, while
more percentage of areas with DIST30 growth are shown in the Wes-
tern North Pacific basin (61.84% from a total of 1.19 × 107 km2 affected
area) and the Southern Pacific basin (63.55% from a total of
7.76 × 106 km2 affected area).

The XGBoost machine learning model provides skillful out-of-
sample predictions for monthly values of DIST30 both globally and
ocean basin wide based on environmental variables and climate index.

Fig. 5 | Interpreting the trend in distance at the threshold of 30mm/3hours
(DIST30). aChangeofDIST30 in the tropics (between25 °S and 25 °N).bChangeof
vertical wind shear in the tropics. c Changes in observation frequency (number of

monthly aggregated records) in the tropics. d Changes of DIST30 in mid-latitudes
of the northern hemisphere (> 25 °N). eChangesof verticalwind shear> 25 °N. fThe
changes of observation frequency > 25 °N.
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The models show consistently good performance with high R2 values
(0.51 globally, and 0.46–0.57 at different ocean basins) and low RMSE
values (70.8 km globally and 66.66–77.90 km at different
ocean basins). The interpretable AI approach (SHAP values) identified
the most important environmental factors and their relationships
with DIST30. Specifically, we find that maximum sustained wind
speed (central pressure), latitude, vertical wind shear, relative
2-meter air temperature, relative SST, and total column water vapor
are the most important variables for DIST30 in the XGBoost model.

Our models demonstrate that the vertical wind shear is the
environmental forcing variable with the most significant influence on
DIST30, particularly in the mid-latitudes. Previous studies demon-
strated the strong vertical wind shear as one of the most important
factors to change the shape and increase the size of the rain field54,55.
Meanwhile, decreases in vertical wind shear in the tropics likely cre-
ated a more favorable environment for TC genesis and development,
together with the expansion of the ITCZ47, increasing the number of
TCs translating into the mid-latitudes > 25 °N. The increases in TC
frequency along with the slightly increased vertical wind shear for
regions > 25 °N, largely contributed to the global increase of DIST30.
The strongest increasing patternof DIST30of all occurs in theWestern
North Pacific Ocean basin, which agrees with the shifting poleward
trends in TCs evident from previous observation-based analysis53.

Besides the vertical wind shear, the interpretable AI approach
identified other possible physical mechanisms controlling DIST30.
Both the maximum sustained wind speed and latitude show negative
relationships with DIST30. There is negative relationship between
DIST30 and themaximumsustainedwind speedbut this relationship is
non-monotonic. The stabilized low DIST30 with high maximum sus-
tained wind speed can be explained by more organized TCs with
stronger intensity and strong precipitation in the eye walls near the TC
center. However, there is a strong negative relationship between
DIST30 and the lower-rangemaximum sustained wind speed. Possible
explanations for this are that unorganized tropical storms and ET TC
systems (both with lower wind intensity) usually have rain bands fur-
ther away from the center. The negative relationship with latitudes is
attributed to several factors: 1) TCs translating to higher latitudes
move faster therefore their precipitation footprint is larger; 2) the scale
of TC undergoing ET is larger than matured TCs in the tropics; 3) TC
rain field enlarging effect occurs withmore intense vertical wind shear
in mid-latitudes. Some variables also show non-linear or non-mono-
tonic relationshipswithDIST30, including the relative SST and the SST.
They both display a strong gradient with latitude, and many larger
DIST30 cases correspond to lower air temperature and SST observa-
tions in mid-latitudes. In the tropics, we observe that DIST30 slightly
increases with relative SST because of its control on size, relative
humidity, and potential intensity for mature TCs14. There is also a
generally positive relationship between DIST30 and the availability of
water vapor12.

There is a high certainty that global warmingwill increase both air
temperature and SST, and therefore make intense TCs more
frequent56,57. Meanwhile, rising air temperature will increase the
atmosphere’s capacity to hold more moisture and therefore increase
the rain rate from TCs10. Our results indicate that footprints of heavy
rainfall from TCs have slightly expanded spatially in the tropics but
substantially increased in the mid-latitudes of the northern hemi-
sphere, particularly in the Western Pacific and North Atlantic basins.
Multiple recent studies12,13 alsodemonstrated increases of TC rainfall in
the outer rain bands globally. Notably, some recent extreme pre-
cipitation events in the mid-latitude generated by TCs were far away
from the TC center, including the 2021 Henan flood event from
Typhoon In-fa (No. 2106) and the 2023 Hebei flood event from
Typhoon Doksuri (No. 2305). Both the scientific community and risk
managers need to pay more attention to this spatial migration of TCs
and the elevated flood risk related to heavy rainfall from TCs,

particularly for the densely populated communities in the mid and
high latitudes of the Northern Hemisphere. Those vulnerable com-
munities are historically less exposed to TC hazards, and so are both
physically and psychologically less prepared for TCs. Multiple recent
studies58–62 indicated that their exposure to TC hazard has increased
substantially in recent years, posing a big threat to local society. Fur-
ther work is needed to understand the details of regional mechanisms
controlling the changing patterns of TC rainfall in different
oceanbasins andhow their spatial footprints are likely to change in the
future warming world.

Methods
Data
The International Best Track Archive for Climate Stewardship
(IBTrACS) v04 dataset63 was acquired for the period 1980 to 2020,
which includes TC position, minimum sea-level pressure, and the
maximum sustained wind speed. The TC-related precipitation data
were drawn from the Multi-Source Weighted-Ensemble Precipitation
(MSWEP) v2 dataset, which takes advantage of the complementary
strengths of in-situ-, satellite-, and reanalysis-based data to provide
reliable estimates of precipitation on a global scale64. The MSWEP v2
data provides a complete record of precipitation over both ocean and
land after 1980 and its length matches with the satellite-based TC
location records. The land and sea boundary shape file were obtained
from the UCLA Geoportal (see Data availability section).

TC information and precipitation extraction
All TCs with wind speeds in the best track dataset on both land and
ocean during 1980-2020 are used in this study, but only including
records at 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, and 21:00
UTC.TheMSWEPdataset covers theperiod 1980-2020with a temporal
resolution of 3 h. Here the Precipitation of TCs is defined as accumu-
lated 3-h MSWEP precipitation within 500 km of the TC center15. To
facilitate the calculation of the distance from the TC center, we first
adjust the latitude values (rounding the latitude up for the Northern
Hemisphere and down for the Southern Hemisphere) and resample
the TC precipitation field to 25 km resolution using the Albers pro-
jection. In the Albers projection, standard parallels are set to the
adjusted latitude of TC center ± 10°. The number of rows and columns
of the TCprecipitation field after resampling is 41, and the coordinates
of the TC center are 21,21ð Þ, which we note here as the TC cen-
ter X0,Y0

� �
.

DIST30 and DIST50
DIST30 is the distance from the center of clustered heavy rainfall cells
(> 30mm/3h) to each TC center, which is given:

DIST30=
PN

i = 1disti ×PiPN
i= 1Pi

ð1Þ

where:

Pi =
precipi, precipi ≥ 30mm per 3hours

0, precipi <30mm per 3hours

�
ð2Þ

where N is grid number within 500 km from the TC center, precipi is
the TC precipitation in the i-th grid (unit: mm/3 h), disti is the distance
between the TC center and the i-th grid (unit: km).

The definition of DIST50 is the same as DIST30 but the threshold
of heavy rainfall is 50mm/3h.

Trend detection for time series
The linear trends in Figs. 1a, 5, and Supplementary Figs. 1a, 7 are esti-
mated using simple linear regression. Shaded areas in Fig. 1a and
Supplementary Fig. 1a are the 95% confidencebounds. In this work, the
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significance of linear trends in Fig. 1a and Supplementary Figs. 1a are
using the F-test65 (the regress() function and the LinearModel.fit()
function in Matlab R2016a). The crosses in Fig. 2 indicate the location
passed the Mann-Whitney U-test66 on the regression model of time
series based on the 99% significance level (the ranksum() function in
Matlab R2016a).

The surface area of grid
Based on the ref. 67, the surface area of each raster is given:

A=R2 × ðθ2 � θ1Þ× sinφ2 � sinφ1

� � ð3Þ

where A is the surface area (unit: km2), θ1 and θ2 is longitude (unit:
radians),φ1 andφ2 is latitude (unit: radians),R is the radius of the earth
(R = 6371:39, unit: km). Here we created a mesh of grids boxes with
0.25° × 0.25° by size. Then the monthly mean value of DIST30 is cal-
culated for each grid and used as the response variable for the
XGBoost models.

Land and sea boundary
If a grid cell includes both land and sea, we define the grid cell as the
land and sea boundary.

XGBoost model
Boosting trees is a decision tree-based machine learning approach33.
The algorithm starts with weak learners, and new trees are generated
to reduce the errors of trees inprevious rounds. Theobjective function
of XGBoost is written as follows:

LðtÞ =
Xn

i= 1

l yi, ŷ
ðt�1Þ
i + f tðXiÞ

� �
+Ωðf tÞ ð4Þ

where L is a differentiable convex loss function measuring the differ-
ence between the prediction ŷi and the target value yi. The term Ω is a
penalization for the complexity of the regression tree functions. The
model is trained in an additive manner so ŷðtÞi is the prediction of the i-
th instance at the t-th iteration and f t is greedily added tominimize the
objective L and improve the model performance. The XGBoost has
already been successfully used to reconstruct precipitation isotope
records in Europe68 and historical hurricane wind records69. We used
the caret R package caret (v 6.0-93) to streamline the model training
process of theXGBoostmodel (R package xgboost v 1.7.3.1). Thewhole
data was sliced into five equal-size samples that are with random data
selections. For each data slice, we trained the XGBoost with the
remaining 4/5 of data with 5 folds cross-validation. A set of different
parameters combinations have been tested (number of rounds,
maximum tree depth, subsample ratio of columns when constructing
each tree, etc.) using the caret package to achieve the best model
fitting, cross-validation, and out-of-sample prediction results. The
model is used to predict the observedDIST30 for each 1/5 testing slice.
All out-of-sample predictions for five slices are collected and
compared with the observation for model predictive performance
evaluation. We repeated the process for the entire globe and six ocean
basins.

Machine learning models are not only adept at delivering robust
prediction performance but can also unveil essential insights into
underlying physical processes. One strength of certain machine
learning models, like XGBoost, is their ability to identify intricate and
non-linear relationships between input features and outputs. To
interpret our trained models, we employed the SHapley Additive
exPlanations (SHAP) value method, which draws inspiration from
Shapley Values in game theory. It offers a systematic mechanism to
allocate significance values to individual model features, helping to
quantify the influence of each feature on the model’s predictions by
considering all potential feature combinations. The Shapley value can

be mathematically represented by:

ϕj vð Þ=
X

S�f1,...,pgfjg

Sj j! p� Sj j � 1ð Þ!
p!

vx S∪ j
� �� �� vxðSÞ

� �
ð5Þ

Here, S represents a subset of the p features themodel utilizes, and x is
the feature value vector of the instance under study. vx(S) denotes the
prediction for feature values in set S, marginalized over features out-
side of set S. Calculating the exact SHAP value becomes computa-
tionally demanding as it requires evaluating all feature combinations
both with and without a particular feature, especially as the feature
count grows. To mitigate this computational challenge, approxima-
tions like the Monte-Carlo Sampling introduced by Štrumbelj et al. 70

have been proposed. We use the SHAP value to both rank the feature
importance and analyze how DIST30 interacts with each individual
feature. For our analysis, we harnessed the R package “shapviz” to
compute and visualize the SHAP values for all environmental forcing
variables in our XGBoost model.

Data availability
The TCs track dataset is obtained from the International Best Track
Archive for Climate Stewardship (IBTrACS) https://www.ncei.noaa.
gov/products/international-best-track-archive. Three hourly pre-
cipitation data are obtained from the Multi-Source Weighted-Ensem-
ble Precipitation (MSWEP) v2 at http://www.gloh2o.org/. The land and
sea boundary shape file are obtained from the UCLA Geoportal at
https://guides.library.ucla.edu/gis. Climate/oceanic indexes are
obtained from the NOAA Physical Science Laboratory at https://psl.
noaa.gov/data/climateindices/list/. The source data generated in this
study71 have been deposited in the https://doi.org/10.5281/zenodo.
11190029.

Code availability
All codes used to read, analyze, and plot the data in this study71 are
available at https://doi.org/10.5281/zenodo.11190029.
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