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CORRECTION

Correction: Epigenetic resetting of human pluripotency

(doi:10.1242/dev.146811)
Ge Guo, Ferdinand von Meyenn, Maria Rostovskaya, James Clarke, Sabine Dietmann, Duncan Baker,
Anna Sahakyan, Samuel Myers, Paul Bertone, Wolf Reik, Kathrin Plath and Austin Smith

There were errors in Development (2017) 144, 2748-2763 (doi: 10.1242/dev.146811).

Several images were inadvertently duplicated in Fig. 1F and Fig. S1E. All the original data for these figures were reviewed by the journal

and the correct panels are shown below.

This error does not affect the conclusions of the paper. The authors apologise to readers for any confusion caused.

Fig. 1. Resetting human pluripotent stem cells (hPSCs) with HDAC inhibitors. (F) Images of reset S6EOS cultures over the first four passages. Scale bar:

100 μm.

Fig. S1. (E) Images of first four passages of reset H9EOS cultures. Scale bar: 100 μm.

1

© 2018. Published by The Company of Biologists Ltd | Development (2018) 145, dev166397. doi:10.1242/dev.166397

D
E
V
E
L
O
P
M

E
N
T



STEM CELLS AND REGENERATION TECHNIQUES AND RESOURCES ARTICLE

Epigenetic resetting of human pluripotency
Ge Guo1,*, Ferdinand von Meyenn2, Maria Rostovskaya1, James Clarke1, Sabine Dietmann1, Duncan Baker3,
Anna Sahakyan4,5, Samuel Myers1, Paul Bertone1, Wolf Reik1,2,6,‡, Kathrin Plath4,5,‡ and Austin Smith1,7,*

ABSTRACT

Much attention has focussed on the conversion of human pluripotent

stem cells (PSCs) to a more naïve developmental status. Here we

provide a method for resetting via transient histone deacetylase

inhibition. The protocol is effective across multiple PSC lines and can

proceed without karyotype change. Reset cells can be expanded

without feeders with a doubling time of around 24 h. WNT inhibition

stabilises the resetting process. The transcriptome of reset cells

diverges markedly from that of primed PSCs and shares features with

human inner cell mass (ICM). Reset cells activate expression of

primate-specific transposable elements. DNA methylation is globally

reduced to a level equivalent to that in the ICM and is non-random,

with gain of methylation at specific loci. Methylation imprints are

mostly lost, however. Reset cells can be re-primed to undergo

tri-lineage differentiation and germline specification. In female reset

cells, appearance of biallelic X-linked gene transcription indicates

reactivation of the silenced X chromosome. On reconversion to

primed status, XIST-induced silencing restores monoallelic gene

expression. The facile and robust conversion routine with

accompanying data resources will enable widespread utilisation,

interrogation, and refinement of candidate naïve cells.

KEYWORDS: Pluripotent stem cells, Differentiation, Human embryo,
Methylome, Reprogramming

INTRODUCTION

Studies of the early mouse embryo and of derivative stem cell

cultures have led to the proposition that pluripotency proceeds

through at least two phases: naïve and primed (Hackett and Surani,

2014; Kalkan and Smith, 2014; Nichols and Smith, 2009, 2012;

Rossant and Tam, 2017). Recent reports provide evidence that the

naïve phase of pluripotency characterised in rodent embryos may be

present in a similar form in the early epiblast of primate embryos,

albeit with some species-specific features (Boroviak et al., 2015;

Nakamura et al., 2016; Reik and Kelsey, 2014; Roode et al., 2012;

Takashima et al., 2014). However, mouse embryonic stem cells

(ESCs) correspond to naïve pre-implantation epiblast (Boroviak

et al., 2014, 2015), whereas human pluripotent stem cell (hPSC)

cultures (Takahashi et al., 2007; Thomson et al., 1998; Yu et al.,

2007) seem to approximate primitive streak stage epiblast

(Davidson et al., 2015; Irie et al., 2015; Wu et al., 2015;

Nakamura et al., 2016). In general, hPSCs more closely resemble

mouse post-implantation epiblast-derived stem cells (EpiSCs)

(Brons et al., 2007; Tesar et al., 2007) than ESCs. Consequently,

they are considered to occupy the primed phase of pluripotency.

Mouse ESCs can be propagated as highly uniform populations that

exhibit consistent and unbiased multi-lineage differentiation in vitro

and in chimaeras (Martello and Smith, 2014; Wray et al., 2010; Ying

et al., 2008). These attributes contrast favourably with the

heterogeneity and variable differentiation propensities of primed

hPSCs (Butcher et al., 2016; Nishizawa et al., 2016) and have

provoked efforts to determine conditions that will support a human

naïve condition (De Los Angeles et al., 2012). Early studies lacked

stringent criteria for demonstrating a pluripotent identity with

comprehensive resemblance to both rodent ESCs and naïve cells in

the human embryo (Davidson et al., 2015; Huang et al., 2014).

However, two culture conditions have now been described for

sustaining reset hPSC phenotypes that exhibit a wide range of both

global and specific properties expected for naïve pluripotency

(Takashima et al., 2014; Theunissen et al., 2016, 2014).

Furthermore, candidate naïve hPSCs can be derived directly from

dissociated human inner cell mass (ICM) cells (Guo et al., 2016).

These developments support the contention that the core principle of

naïve pluripotency may be conserved between rodents and primates

(Nakamura et al., 2016; Nichols and Smith, 2012; Smith, 2017).

Nonetheless, current techniques for resetting conventional primed

hPSCs to a more naïve state raise issues concerning employment of

transgenes, universality, genetic integrity, and ease of use. Here, we

address these challenges and provide a simple protocol for consistent

resetting to a stable and well-characterised candidate naïve phenotype.

RESULTS

Transient histone deacetylase inhibition resets human

pluripotency

To monitor pluripotent status we exploited the piggyBac (PB)

EOS-C(3+)-GFP/puroR reporter (EOS) as previously described

(Takashima et al., 2014). Expression of this reporter is directed by

mouse regulatory elements that are active in undifferentiated ESCs:

a trimer of the CR4 element from the Oct4 (Pou5f1) distal enhancer

coupled with the early transposon (Etn) long terminal repeat

promoter (Hotta et al., 2009). We observed that conventional human

ESCs (hESCs) stably transfected with the piggyBac construct and

maintained in KSR/FGF on feeders quickly lost visible EOS-GFP,

although expression remained detectable by flow cytometry

(Fig. S1A,B). Expression was further diminished when cells were

transferred into 2iLIF (two inhibitors – the MEK inhibitor PD and

the GSK3 inhibitor CH – with the cytokine leukaemia inhibitoryReceived 12 November 2016; Accepted 9 June 2017
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factor LIF; see Materials and Methods) or MEK inhibitor plus LIF

(PDLIF) culture (Fig. S1C). By contrast, the PB-EOS reporter is

upregulated during transgene-induced resetting and visible

expression is maintained in naïve-like cells (Takashima et al.,

2014). These observations suggested that PB-EOS might be subject

to reversible epigenetic silencing in primed hPSCs.

Histone deacetylase (HDAC) inhibitors are global epigenetic

destabilisers that have been used to facilitate nuclear transfer (Ogura

et al., 2013), somatic cell reprogramming (Huangfu et al., 2008) and

mouse EpiSC resetting (Ware et al., 2009). We investigated whether

exposure to HDAC inhibitors would promote conversion of human

primed cells to a naïve state. We applied valproic acid (VPA) or

sodium butyrate to Shef6 hESCs carrying the PB-EOS reporter

(S6EOS cells). When cells were treated for 3 days in E6 medium

supplemented with PDLIF, then exchanged to t2iLGö naïve cell

maintenance medium, the EOS reporter was upregulated (Fig. 1A,B).

Bright GFP-positive colonies with dome-shapedmorphology emerged

over several days. We varied the culture parameters and empirically

determined conditions that consistently yielded EOS expression in

compact spheroid colonies (Fig. 1A-C). We tested the method on

H9EOS reporter cells and found that they similarly acquired bright

GFP expression and formed dome-shaped colonies (Fig. S1D).

We monitored the expression of OCT4, NANOG and the primate

naïve marker KLF17 (Guo et al., 2016) during resetting of S6EOS

cells. RT-qPCR analysis (Fig. 1D) shows that both OCT4 and

NANOG expression decrease without HDAC inhibitor treatment,

consistent with differentiation in PDLIF. By contrast, in HDAC

inhibitor-treated cells, OCT4 mRNA levels show a transient increase

on day 3 then remain at a similar level to that in primed cells, whereas

NANOG transcripts increase ∼2-fold over the first 9 days. KLF17

transcripts are not detected in conventional hESCs, but become

appreciable from day 7 onwards during resetting. KLF17 protein

became apparent in some cells by immunofluorescence staining from

as early as day 3 of resetting (Fig. 1E).

Cultures were dissociated with TrypLE after 9 days of resetting

and replated in naïve culture medium, t2iLGö. Some differentiation

and cell death were evident, and a few passages were required before

the EOS-positive population became stable and predominant

(Fig. 1F, Fig. S1E,F). From passage 5 onwards the reset

phenotype was robust and could thereafter be expanded reliably.

The ability to enrich the naïve phenotype after resetting by bulk

passaging in t2iLGö suggested that a reporter should be dispensable,

facilitating general applicability. We therefore tested resetting

without the EOS transgene on a panel of primed human ESCs and

induced pluripotent stem cells (iPSCs). Stable cultures of compact

colonies displaying naïve marker gene expression were established

consistently (Table 1, Fig. 1G). These cell lines are denoted by the

designation cR (chemically reset). Resetting efficiency varied

between lines and according to initial culture status. In general,

however, a single well of a 6-well plate of primed PSCs was

sufficient for initial generation of multiple colonies and subsequent

establishment of stable naïve cultures by passage 5. Rho-associated

kinase (ROCK) inhibitor was used during resetting and initial

expansion in most experiments, but was usually omitted during

subsequent propagation. Together with NANOG, reset cells

expressed the naïve transcription factor proteins KLF4 and

TFCP2L1, which are present in the human ICM (Takashima

et al., 2014) but undetectable in primed PSCs (Fig. 1H).

Feeder-free expansion of reset cells

As noted previously (Takashima et al., 2014), reset cells can be

cultured on pre-coated plates without feeders. However, morphology

was heterogeneous, with more differentiation and cell death than on

feeders. We varied conditions and found that provision of growth

factor-reduced Geltrex with the culture medium at the time of plating

was more effective than pre-coating (Fig. 2A). Geltrex or laminin

applied in this manner supported continuous propagation in t2iLGö

of both embryo-derivedHNES and chemically reset cells, with robust

expression of naïve pluripotency factors (Fig. 2B-D). Moreover,

aberrant expression of some mesoendodermal genes was reduced in

feeder-free conditions (Fig. 2E).

In the absence of feeders we found that some reset cell lines

expanded more robustly in very low (0.3 µM) or even no CH

(Fig. 2F). This is in line with observations that GSK3 inhibition is

optional in the alternative 5i/L/A naïve culture system (Theunissen

et al., 2016). We subsequently adopted 0.3 µM CH for standard

culture. Naïve cell maintenance medium with 0.3 µM CH is termed

tt2iLGö. Reset cultures in Geltrex and tt2iLGö displayed

homogeneous morphology and expanded continuously with a

doubling rate of ∼24 h (Fig. 2G,H).

We also observed that omitting CH entirely for the first 10 days of

resetting increased the yield of EOS-positive cells. We therefore

implemented a revised resetting routine, omitting CH initially then

exchanging into tt2iLGö on feeders before transfer to Geltrex

culture. PSCs reset in these conditions showed consistent feeder-

free expansion, with typical naïve morphology, growth and marker

profiles that were indistinguishable from cells reset in the presence

of CH (Fig. 2I).

WNT inhibition stabilises resetting

As noted above, EOS-GFP-positive and KLF17-immunopositive

colonies emerged within 10 days of VPA treatment (Fig. 1E).

However, differentiation and cell death are ongoing for several

passages and during this period we observed that the reset

phenotype could not be sustained without feeders. Thus, the

resetting process appears incomplete and vulnerable at early stages.

We also noted a requirement for a stabilisation period following

doxycycline (DOX) withdrawal during transgene-mediated

resetting (Takashima et al., 2014). We used H9-NK2 cells, with

DOX-dependent expression of NANOG and KLF2, to explore

conditions that might stabilise resetting. We tested two candidates:

the amino acid L-proline and the tankyrase inhibitor XAV939

(XAV). L-proline is reported to be produced by feeders and to

alleviate nutrient stress in mouse ESCs (D’Aniello et al., 2015).

XAV inhibits canonical Wnt signalling (Huang et al., 2009) and has

previously been reported to facilitate the propagation of pluripotent

cells in alternative states (Kim et al., 2013; Zimmerlin et al., 2016).

Wewithdrew DOX from H9-NK2 cells and applied either L-proline

(1 mM) or XAV (2 µM) in combination with t2iLGö. We assessed

colony formation on feeders after the first and second passages. We

saw no pronounced effect of L-proline. By contrast, addition of

XAV resulted in more robust production of uniform domed colonies

(Fig. 3A). RT-qPCR analysis substantiated the presence of naïve

pluripotency markers in XAV-supplemented cultures and also

highlighted reduced levels of lineage-affiliated markers such as

brachyury (T) and GATA factors (Fig. 3B).

We investigated whether WNT inhibition would stabilise

emergent cR cells. In addition to the tankyrase inhibitor XAV, we

tested an orthogonal WNT pathway inhibitor, IWP2, which acts to

prevent the production of functional WNT protein (Chen et al.,

2009). XAVor IWP2 were added following VPA treatment on day 3

of resetting H9EOS and S6EOS cells (Fig. 3C). For both inhibitors

we observed reduced numbers of differentiating or dying cells and a

substantial increase in the frequency of EOS-GFP-positive cells by
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Fig. 1. Resetting human pluripotent stem cells (hPSCs) with HDAC inhibitors. (A) Schematic of the chemical resetting protocol. HDACi, HDAC inhibitor.

(B) Images of reset S6EOS cells at day 9 in t2iLGö. Red staining is from Gö6983. VPA, valproic acid; NaB, sodium butyrate. (C) Flow cytometry analysis of

EOS-GFP expression at day 9 of resetting. (D) RT-qPCR analysis of pluripotency markers in S6EOS cells subjected to the resetting culture regimewith or without

VPA. Error bars indicate s.d. of technical duplicates. (E) Immunostaining for OCT4 and KLF17 during resetting of Shef6 cells. (F) Images of reset S6EOS cultures

over the first four passages. (G) RT-qPCR analysis of general and naïve pluripotency markers in various reset cell cultures. Error bars indicate s.d. of technical

duplicates. (H) Immunostaining of pluripotency markers in established reset culture, cR-H9EOS. Scale bars: 100 μm.
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day 9, which increased further on passaging into tt2iLGö on MEFs

(Fig. 3D, Fig. S2A). After the second passage the majority of

colonies displayed domed morphology and readily visible GFP

(Fig. 3E). WNT inhibitor-treated H9EOS cultures at passage 2

expressed higher levels of naïve markers and lower GATA6 and

GATA3 than parallel cultures reset without WNT inhibition

(Fig. 3F). Similarly, S6EOS cells reset using XAV or IWP2

progressed to stable reset cultures expressing naïve markers and

minimal levels of brachyury, CDX2 and GATA6 (Fig. S2B). From

passage 3, we transferred XAV-treated cells to feeder-free culture in

tt2iLGö and Geltrex without XAV. Marker analysis by RT-qPCR

confirmed maintained expression of signature naïve pluripotency

factors after four passages at similar levels to those in reset cells

generated without the use of WNT inhibitors (Fig. 3G).

We also assessed whether vitamin C was required for resetting.

For the 3 day period of exposure to VPA we replaced E6 medium,

which contains vitamin C, with N2B27 medium with or without

addition of vitamin C. Resetting was continued in the presence of

XAV as above. After two passages we observed comparable

upregulation of EOS-GFP and similar expression of naïve markers

with or without exposure to vitamin C (Fig. S2C,D).

Collectively, these findings establish that, following VPA

treatment, WNT inhibition can improve the rate and efficiency of

conversion to a stable naïve phenotype that can subsequently be

propagated robustly in tt2iLGö with or without feeders or ongoing

WNT inhibition. The results also indicate that vitamin C

supplementation is not required for resetting. Full details of the

protocol and cell lines reset are provided in the supplemental

Materials and Methods and Table S1.

Global transcriptome profiling

We obtained transcriptome data by RNA sequencing (RNA-seq) of

replicate samples of reset cells generated by VPA treatment. We also

sequenced the embryo-derived naïve stem cell line HNES1 (Guo

et al., 2016) and a parallel culture of HNES1 cells that had been

ʻprimed’ by transfer into KSR/FGF for more than ten passages. We

added to the analysis published data (see Materials and Methods)

from cells reset with inducible transgenes (Takashima et al., 2014),

HNES cells cultured in the presence of vitamin C and ROCK

inhibitor (Guo et al., 2016), naïve-like cells in 5i/L/A (Ji et al., 2016)

and a variety of conventional PSCs from publicly available

resources and our own studies. We applied two complementary

dimensionality reduction techniques: principal component analysis

(PCA) identifies and ranks contributions of maximum variation in

the underlying dataset, whereas t-distributed stochastic neighbour

embedding (t-SNE) is a probabilistic method that minimises the

divergence between pairwise similarities in the constituent data

points. Both analyses of global transcriptomes unambiguously

discriminate naïve/reset samples from primed PSCs (Fig. 4A,B). In

each analysis, cR cells cluster closely together with HNES1 cells

that were cultured in parallel. Sample replicates are intermingled

despite being from cell lines of disparate provenance and culture

history. Feeder-free cultures form a slightly distinct cluster within

the naïve grouping. Consistent with previous analyses (Huang et al.,

2014; Irie et al., 2015; Nakamura et al., 2016; Takashima et al.,

2014; Theunissen et al., 2016), two independent RNA-seq datasets

for purported naïve cells cultured in 4i (NHSM) conditions (Gafni

et al., 2013; Irie et al., 2015; Sperber et al., 2015) cluster with

conventional primed PSCs by both PCA and t-SNE, as do cultures

in ʻextended pluripotency’media (Yang et al., 2017). For both naïve

and primed cells, PCA component 2 appears sensitive to differences

in growth conditions and/or batch effects and to capture variation

between laboratories and cell lines.

Gene Ontology (GO) analysis of genes contributing to PCA

component 1 shows significant enrichment of functional categories

primarily associated with extracellular matrix, development and

differentiation (Table S2), reflecting distinct identities associated

with naïve and primed cells. We also noted upregulation of multiple

genes associated with mitochondria and oxidative phosphorylation

in reset cells cultured on laminin and on feeders (Fig. S3A-C),

consistent with metabolic reprogramming between primed and

naïve pluripotency (Takashima et al., 2014; Zhou et al., 2012).

Overall, cR cells share global gene expression features with ICM-

derived HNES cells and transgene-reset PSCs and are distinct from

various primed PSCs. Genes highly upregulated in naïve conditions

relative to conventional PSCs are highlighted in Fig. 4C.

Table 1. Karyotype analyses of reset cultures

Parental line; passage (P)

at resetting Substrate*, passages‡ Karyotype§ Identifier

ESCs Shef6EOS; P18 MEF, P16, Y 46,XX [20] cR-S6VPCY

″ ″ MEF, P40, Y 46,XX,add(19)(q13) [30]

Shef6EOS; P26 MEF, P7, Y 46,XX [30] cR-S6EOS-Y

Shef6EOS; P26 MEF, P7 46,XX [30] cR-S6EOS

Shef6; P37 MEF, P3; +LN, P14 46,XX [15]/46,XX,add(6)(q2) [5]

″ ″ MEF, P3; +LN, P14; +GT, P9 46,XX [30]

H9EOS; P43 MEF, P8, Y 46,XX [28]/46,XX,del(3)(p21) [2] cR-H9EOS-Y

H9EOS; P43 MEF, P8 46,XX [30] cR-H9EOS

H9EOS; P43¶ MEF, P8, Y 46,XX [24]/46,XX,del(3)(p21) [6]

iPSCs Fips; P53 MEF, P7 46,XX [30] cR-Fips

Fips; P53 MEF, P7, Y 46,XX [23]/47,XX,+20 [7] cR-Fips-Y

NCRM2; P29¶ MEF, P7 46,XX [26/30]# cR-NCRM2

″ ″ MEF, P18 46,XX [10]/48,XX+11,+16 [5]

″ ″ MEF, P5; +LN, P5 46,XX [30]

″ ″ MEF, P5; +GT, P16 46,XX [30]

*MEF, mouse embryonic fibroblast feeders; LN, laminin; GT, Geltrex.
‡Y indicates culture maintained in medium containing Y27632.
§Numbers in square brackets are the number of spreads with the indicated karyotype.
¶Reset with sodium butyrate.
#Four different abnormalities, each detected in a single metaphase.

Semi-colons mark transfers in culture conditions during continuous propagation of reset cells.
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We inspected the expression of transposable elements (TEs) – the

transposcriptome (Friedli and Trono, 2015). A number of TEs are

known to be transcriptionally active in early embryos and PSCs,

potentially with functional significance. PCA of TE expression

separated cR and HNES cells from primed PSCs (Fig. S3D,E).

Notably, HERVK, SINE-VNTR-Alu (SVA) and LTR5_Hs

elements were upregulated in naïve cultures (Fig. 4D). Inspection

of KRAB-ZNFs, potential regulators of TE expression, revealed that

many are significantly upregulated in reset cells (Fig. S3F). These

include ZNF229 and ZNF534, which represses HERVH elements

(Theunissen et al., 2016), ZNF98 and ZNF99, which are also

upregulated during epigenetic resetting of germ cells (Tang et al.,

2015), and ZFP57, which protects imprints in the mouse

(Quenneville et al., 2011).

We compared relative transcript levels for a panel of pluripotency

markers between cR cells and human pre-implantation embryos. For

the embryo data we used published single-cell RNA-seq (Blakeley

et al., 2015; Yan et al., 2013). Normalised expression was consistent

between reset cells and the epiblast, more so than with earlier

stage embryonic cells (Fig. 4E). Primed PSCs exhibited no or low

Fig. 2. Feeder-free culture. (A) Cells plated on Geltrex-coated plates (left) or with Geltrex added to the medium (right). Images taken after 4 days. (B) Cultures in

Geltrex (GT) or laminin (LN) for more than ten passages. (C) Immunostaining for pluripotency markers in reset cells passaged in laminin. (D) Naïve marker

expression in feeder-free reset cultures in t2iLGö as determined by RT-qPCR and normalised to the expression level in H9-NK2 transgene reset cells. (E) Lineage

marker expression in feeder-free reset cultures relative to levels on feeders. (F) Reset cells plated in the presence of the indicated concentrations (µM)

of the GSK3 inhibitor CHIR99021 (CH) for 4 days. (G) Images of colony expansion over 4 days in Geltrex. (H) Growth curve for reset cells in tt2ilGö and Geltrex.

Error bars indicate s.d. from triplicate cultures. (I) RT-qPCR marker profile for cells reset with or without CH and expanded in tt2iLGö and Geltrex, normalized to

expression level in cR-H9 cells on MEF in tt2iLGö. Error bars on PCR plots indicate s.d. of technical duplicates. Scale bars: 100 μm in A,B,F,G; 50 μm in C.
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Fig. 3.WNT inhibition stabilises resetting. (A) Alkaline phosphatase staining of H9-NK2 colonies at first and second passage after DOXwithdrawal and transfer

into t2iLGö alone or plus L-proline (L-Pro) or the tankyrase inhibitor XAV939 (XAV). (B) RT-qPCR analysis of marker expression in H9-NK2 cells at passage 2,

treated as in A. KSR/FGF reference sample is a conventional S6EOS culture. (C) Resetting protocol with WNT inhibitors. (D) (Top) Flow analysis of

resetting H9EOS cells cultured in the presence or absence of WNT inhibitors. (Bottom) Flow analysis after two passages (a further 8 days) in tt2iLGö with WNT

inhibitors on MEFs. (E) cR-H9EOS colonies in tt2iLGö with XAV or the WNT pathway inhibitor IWP2 after two passages on MEFs. (F) Marker analysis by

RT-qPCR for cR-H9EOS cells at passage 2 cultured in tt2iLGö with and without WNT inhibitors. (G) Marker analysis by RT-qPCR of cR-H9EOS cultures

generated with or without XAV and transferred into tt2iLGö on Geltrex (without XAV) for four passages. Error bars on PCR plots indicate s.d. of technical

duplicates. Scale bars: 200 μm in A; 100 μm in E.
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Fig. 4. Transcriptome analysis of reset PSCs. (A) Principal component analysis (PCA) of whole-transcriptome RNA-seq data from the indicated cell lines.

(B) t-SNE analysis of RNA-seq data. (C) Heatmap of differentially expressed genes between chemically reset (cR) and embryo-derived HNES cells (naïve)

compared with conventional hPSCs (primed). Genes unregulated in naïve cells are shown, ranked by log2 fold-change (FC). Values displayed correspond to

the average expression level in each sample group scaled by the mean expression of each gene. (D) Heatmap showing expression of all transposon families that

are differentially expressed (log2 FC>1.5, P<0.05). (E) Comparative expression of pluripotency markers in human embryo cells (Blakeley et al., 2015; Yan et al.,

2013), HNES cells, cR cells, conventional primed PSCs, NHSM cultures and purported expanded potency (EPS) cells. Data shown reflect mean expression

levels from cell lines and biological replicates belonging to each sample group, and single cells from indicated embryo stages. Published datasets used are

identified in the Materials and Methods.
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expression of several of these key markers. A set of genes

upregulated in reset cells were also expressed in the human ICM and

epiblast, and their expressionwas low or absent in various conventional

and alternative primed PSC cultures (Fig. 4E, Fig. S4). These genes

encode transcription factors, epigenetic regulators, metabolic

components and surface proteins, and provide several candidate

markers of human naïve pluripotency. In addition, we inspected

recently published transcriptome data from cynomolgus monkey

embryos (Nakamura et al., 2016). Analysis of the most differentially

expressed genes between reset and primed PSCs separated the

cynomolgus samples into two clusters (Fig. S5). Notably, reset cells

share features with the pre-implantation epiblast, whereas primed PSCs

are more similar to pre-streak and gastrulating epiblast.

Methylome status

Global DNA hypomethylation is a distinctive characteristic of

mouse and human ICM cells (Guo et al., 2014; Lee et al., 2014;

Smith et al., 2012) that is manifest in candidate naïve hPSCs

(Takashima et al., 2014; Theunissen et al., 2016). We performed

whole-genome bisulfite sequencing (BS-seq) on primed S6EOS

and on reset S6EOS and H9 EOS cultures derived from independent

experiments with or without addition of XAV. Methylation profiles

were compared with previous datasets for primed PSCs, human

ICM cells (Guo et al., 2014), transgene reset PSCs (H9-NK2;

Takashima et al., 2014) and HNES1 cells (Guo et al., 2016). Primed

PSCs show uniformly high levels of DNA methylation (85-95%),

whereas reset cells display globally reduced CpG methylation,

comparable to ICM and with a similar relatively broad distribution

(Fig. 5A). Hypomethylation extended over all genomic elements

(Fig. S6B) and was lower in cells that had been through more than

ten passages in t2iLGö. Loss of methylation from primed to reset

conditions was not uniform across the whole genome, however.

Highly methylated (80-100% methyl-CpG) regions in primed cells

showed divergent demethylation to between 15% and 65% methyl-

CpG (Fig. 5A,B, Fig. S6C). The majority of promoters were

methylated at low levels in both primed and reset S6EOS cells

(Fig. 5C), including most CpG island (CGI)-containing promoters.

Among methylated promoters in primed PSCs, many showed

decreased methylation in reset cells in line with the global trend.

However, we also identified a number of CGI and non-CGI

promoters that gainedmethylation upon resetting (highlighted in red

in Fig. 5C; >40% CpG methylation difference between primed and

averaged reset cells). GO analysis of the genes associated with this

group of promoters indicated enrichment for terms related to

differentiation, development and morphogenesis (Fig. S6D).

Transgene reset and HNES1 cells also showed significantly

higher promoter methylation levels at these loci than their primed

counterparts (Fig. 5D), suggesting that selective promoter

methylation is a feature of naïve-like cells in t2iLGö. By contrast,

we observed that many, although not all, imprinted differentially

methylated regions (DMRs) are demethylated in reset conditions

(Fig. 5E), in line with previous findings (Pastor et al., 2016).

The correlation between gene expression and promoter

methylation (Fig. 5F, Fig. S6E) is very weak overall, as

previously noted in mouse ESCs (Ficz et al., 2013; Habibi et al.,

2013). Nonetheless, some genes that are highly upregulated in reset

cells and potentially functionally significant, such as KLF17,

DNMT3L and ZNF534, show striking reductions in promoter

methylation. Conversely, although TEs in general obeyed the

genome-wide trend of hypomethylation in reset cells, substantial

subsets of the HERVH and LTR7 TE families gained methylation

and most of these showed reduced expression or were silenced

(Fig. 5G). Finally, we noted demethylation of the piggyBac repeat

sequences in cR-S6EOS cells (Fig. S6F), consistent with the

proposition that the transgene is subject to epigenetic repression in

primed cells that is relieved by resetting.

Chromosomal stability

A major concern with manipulation of PSC culture conditions is the

potential for selection of genetic variants (Amps et al., 2011). Indeed, it

has previously been noted that naïve-like cells cultured in the 5i/L/A

formulation are prone to aneuploidy (Pastor et al., 2016; Sahakyan et al.,

2017; Theunissen et al., 2014). We therefore carried out metaphase

chromosome analyses by G-banding on a selection of cR cells

(Fig. S2E). The results presented in Table 1 show retention of a

diploid karyotype in most cases, although in some cultures minor

subpopulations of aneuploid cells are present. These data indicate that

the epigenetic resetting process does not induce major chromosomal

instability nor select for pre-existing variants, in line with previous

observations that cultures in t2iLGö can maintain a diploid karyotype

(Guo et al., 2016; Takashima et al., 2014). However, we noticed a

variable incidence of tetraploid cells during expansion and one line

showed a ubiquitous gain of chr19q13 after extended culture (40

passages). cR and HNES1 cells could also maintain a diploid karyotype

over multiple passages in Geltrex or laminin, although abnormalities

emerged in some cultures (Table 1). We also examined the

transcriptome data by variant analysis for mutations in TP53 that have

been detected recurrently in primed PSCs (Merkle et al., 2017). None of

the loss-of-function TP53 mutations identified was found in cR cells.

Differentiation

To assess the multi-lineage potential of cR cells we first used

embryoid body differentiation. After 3 days of floating culture in t2iL

without Gö, aggregates were transferred to Geltrex-coated dishes and

differentiated as outgrowths in serum. Alternatively, reset cells were

transferred into E8 medium for 6 days then aggregated in serum for

3 days before outgrowth. RT-qPCR on 8 day outgrowths showed

upregulation in both conditions of markers of early neuroectoderm,

mesoderm and endoderm specification (Fig. S7A). Induction of these

markers was lower for reset cells taken directly from t2iLGö than for

cells conditioned in E8 (Fig. S7A), whereas downregulation of

pluripotency markers was similar in both cell types. Immunostaining

evidenced expression of protein markers of mesoderm and endoderm

differentiation (Fig. S7B) and, at lower frequency, of neuron-specific

β-tubulin.

We then evaluated directed lineage commitment in adherent

culture. Unsurprisingly, cR cells taken directly from t2iLGö did not

respond directly to definitive endoderm or neuroectoderm induction

protocols (Chambers et al., 2009; Loh et al., 2014) developed for

primed PSCs (Fig. S7C). After prior transfer into N2B27 for 3 days,

a CXCR4/SOX17-positive, PDGFRα-negative population,

indicative of definitive endoderm, could be obtained (Fig. S7D)

but neural marker induction in response to dual SMAD inhibition

remained low. We therefore converted cR cells into a conventional

primed PSC state by culture in E8 medium on Geltrex for several

passages (Fig. S7E). We then applied the protocols for germ layer

specification from primed cells to three different ʻre-primed’

cultures. We observed robust expression of lineage markers for

endoderm, lateral plate mesoderm and neuroectoderm by RT-qPCR

(Fig. 6A). Immunostaining for SOX17 and FOXA2, and for SOX1

and PAX6, validated the widespread generation of endoderm or

neuroectoderm, respectively (Fig. 6B). Flow cytometric analysis

quantified efficient induction of all three lineages (Fig. 6C,

Fig. S7F). We examined further neuronal differentiation. After
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29 days we detected expression of neuronal markers by RT-qPCR

(Fig. 6D). Many cells with neurite-like processes were

immunopositive for MAP2 and NEUN (RBFOX3) (Fig. 6E). By

40 days, markers of maturing neurons were apparent: vesicular

glutamate transporter (vGlut2; SLC17A6), the post-synaptic protein

SNAP25 and the presynaptic protein bassoon (Fig. 6F).

We also subjected cR-S6EOS cells to a protocol for

inducing primordial germ cell-like cells (PGCLCs). Cells were

transferred from t2iLGö into TGFβ and FGF for 5 days,

followed by exposure to germ cell-inductive cytokines (Irie

et al., 2015; von Meyenn et al., 2016). Cells co-expressing

tissue non-specific alkaline phosphatase and EOS-GFP,

suggestive of germ cell identity, were isolated by flow cytometry

on day 9. Analysis of this double-positive population by RT-qPCR

showed upregulated expression of a panel of primordial germ

cell markers (Fig. S7G). These data indicate that germ cell

Fig. 5. Methylome analysis of reset PSCs. (A) Bean plots showing the global distribution of CpG methylation levels from pooled replicates of the indicated

samples compared with human ICM data (Guo, 2014). Reset samples are from independent derivations without or with addition of XAV. Methylation was

quantitated over 20 kb genomic tiles. Note that KCL37 and HNES1 are male and H9 and Shef6 are female. (B) Scatter plots of CpG methylation percentages

over tiles spanning 20 kb on chromosome 7 and chromosome X, comparing parental Shef6EOS (in KSR/FGF) with cR-S6EOS. (C) Scatter plots of CpG

methylation over promoters (−900 to +100), for parental and cR-S6EOS cells. Promoters with >40% gain in CpG methylation in reset cells are highlighted in red.

(D) CpG methylation levels of a subset of promoters highlighted (red) in C in the indicated samples. (E) Averaged CpG methylation of known DMRs of

imprinted maternal and paternal genes. Sperm and oocyte data are from Okae et al. (2014); ICM from Guo et al. (2014); H9 and H9-NK2 from Takashima et al.

(2014). (F) Scatter plot showing the change in expression (log2 FC) against the difference in promoter methylation for reset (averaged over cR-H9EOS and

cR-S6EOS) versus parental Shef6EOS. (G) Scatter plots for prominent differentially expressed transposon families showing the change in expression (log2 FC)

versus the difference in methylation for all loci.
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specification may be induced from chemically reset cells, as also

shown for reset cells generated by transgene expression (von

Meyenn et al., 2016).

X-chromosome activity

Female naïve cells are expected to have two active X chromosomes

in human, as in mouse. Unlike in mouse, however, XIST is

Fig. 6. Differentiation of reset PSCs. (A) RT-qPCR analysis of lineage specification markers after induction of re-primed cR lines. ‘Non’ indicates non-induced;

Ecto, neuroectoderm; DE, definitive endoderm; LPM, lateral plate mesoderm. (B) Immunostaining for lineage specification markers. (C) Summary of flow

cytometric quantification of neuroectodermal, mesodermal and endodermal lineage specification. (D) RT-qPCR assays for pan-neuronal markers after 29 days

differentiation from re-primed cR-S6EOS cells. (E) Immunostaining for neuronal markers MAP2 and NEUN after 29 days. (F) Immunostaining for neuronal

maturation markers after 40 days. Arrowheads (middle) highlight expected punctate clusters of SNAP25; arrows (right) indicate a non-stained cell to show

antibody specificity. Error bars in PCR plots are s.d. of technical duplicates. Scale bars: 100 µm in B,E; 10 µm in F.
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expressed from one or both active X chromosomes in human ICM

cells (Okamoto et al., 2011; Petropoulos et al., 2016; Vallot et al.,

2017) as well as from the inactive X in differentiated cells. Primed

female hPSCs usually feature an inactive X, although this has

frequently lost XIST expression, a process referred to as erosion

(Mekhoubad et al., 2012; Silva et al., 2008). X chromosomes in

female cR-S6EOS cells showmore marked loss of methylation than

autosomes (Fig. S6C), suggestive of reactivation (Takashima et al.,

2014). We employed RNA FISH to assess nascent transcription

fromX chromosomes at the single-cell level. In parental S6EOS and

H9EOS cells the presence of two X chromosomes was confirmed by

RNA FISH for XACT (Fig. S8A), which is transcribed from both

active and eroded X chromosomes (Patel et al., 2017; Vallot et al.,

2017). No XIST signal was evident in either cell line but we detected

monoallelic transcription of HUWE1, an X-linked gene typically

subject toX-chromosome inactivation (Patel et al., 2017) (Fig. 7A,B).

By contrast, reset cells displayed biallelic transcription of HUWE1

in the majority (90%) of diploid cells for both lines. Similar results

were obtained for two other X-linked genes: ATRX and THOC2

(Fig. S8A,B). XISTwas detected monoallelically in a subset of reset

cells (Fig. 7A,B). This unusual feature is in line with recent reports

that human naïve-like cells have two active X chromosomes, but

predominantly express XIST from neither, or only one, allele

(Sahakyan et al., 2017; Vallot et al., 2017).

We also examined X-chromosome status after reset cells had been

reverted to a primed-like PSC state by culture in E8 medium for

30 days as above. We found that HUWE1 became transcribed

monoallelically in ∼90% of ʻre-primed’ cR-S6EOS cells and that

almost all of those cells expressed XIST from the other X

chromosome (Fig. 7A,B). For cR-H9EOS, 40% of re-primed cells

showed monoallelic expression of HUWE1, and those cells also

upregulated XIST from the other, inactive X chromosome. Similar

patterns were observed when we co-stained the cells for XIST and

another X-linked gene, THOC2 (Fig. S8A). These data are

consistent with induction of X-chromosome silencing by XIST

during pluripotency progression.

DISCUSSION

The availability of candidate naïve hPSCs offers an experimental

system for investigation of human pluripotency progression and a

potentially valuable source material for biomedical applications. Our

findings demonstrate that cell populations exhibiting a range

of properties consistent with naïve pluripotency can readily be

generated from primed PSCs by transient HDAC inhibition followed

by culture in t2iLGö or tt2iLGö. WNT inhibition stabilises initial

acquisition of the reset phenotype. Chemically reset cells are

phenotypically stable and in many cases cytogenetically normal.

They can be propagated robustly without feeders and readily be re-

primed to undergo multi-lineage differentiation in vitro. We provide

detailed protocols alongwith global transcriptome, transposcriptome

and methylome datasets as resources for the community.

The mechanism by which HDAC inhibition promotes resetting is

unresolved but seems likely to involve the generation of a more open

chromatin environment that relieves silencing of naïve pluripotency

factors. The reset phenotype is initially rather precarious but can be

stabilised by inhibitors of tankyrase or porcupine that suppress the

canonical WNT pathway. cR cells differ dramatically in global

expression profile from primed PSCs and resemble previously

described human naïve-like cells generated by inducible or transient

transgene expression (Takashima et al., 2014) or by adaptation to

culture in 5i/L/A/(F) (Theunissen et al., 2014). In particular,

transcriptome analysis shows that cR cells share a high degree of

genome-wide and marker-specific correspondence with HNES cell

lines derived directly from dissociated human ICM (Guo et al.,

2016). Reset cells express transcription regulators and other genes

that are found in human pre-implantation epiblast but are low or

absent in primed PSCs. These include the characterised naïve

pluripotency factors KLF4 and TFCP2L1, along with potential new

regulators and markers.

Reset and HNES cells express SVA, LTR5, HERVK and SST1

TEs. These are among the most recent entrants to the human

genome and are transcribed in pre-implantation embryos (Grow

et al., 2015; Theunissen et al., 2016). By contrast, HERVH families

and their flanking LTR7 repeats are mostly downregulated in reset

cells and exhibit increased methylation. These findings confirm and

extend the recent report that specific TE expression discriminates

between primed and naïve-like hPSCs (Theunissen et al., 2016).

HERVH and LTR7 are reported to generate alternative and

chimaeric transcripts in primed PSCs, where they display

heterogeneous expression (Wang et al., 2014). Therefore,

silencing in naïve cells and derepression upon progression to

primed pluripotency might have functional significance. Notably,

ZNF534, the postulated negative regulator of HERVH (Theunissen

et al., 2016), is highly upregulated in reset cells, while increased

expression of DNMT3L in human naïve-like cells, a feature not

apparent in mouse ESCs, may facilitate de novo methylation at

specific TE loci.

During resetting, DNA methylation is globally reduced to a level

similar to that reported for human ICM (Guo et al., 2014). This is

regarded as a key process for erasure of epigenetic memory in the

naïve phase of pluripotency (Lee et al., 2014). Reduced methylation

extends to all classes of genomic element but is non-uniform. At

promoters, both loss and gain of methylation are detected. As in

other cell types, there is poor overall correlation with gene

expression but it is noteworthy that extensively demethylated

promoters in reset cells include several associated with highly

upregulated genes that are likely to be functional in naïve cells,

including KLF17, as well as numerous primate- and hominid-

specific TEs. Demethylation also extends to imprinted loci,

however, as noted previously for other human naïve-like stem

cells (Pastor et al., 2016; Theunissen et al., 2016). Loss of imprints

is observed in conventional hPSCs (Nazor et al., 2012) and in

mouse ESCs (Dean et al., 1998; Greenberg and Bourc’his, 2015;

Walter et al., 2016), but not typically to the extent detected for

human naïve-like cells. Whether failure to sustain imprints is an

intrinsic feature of human naïve pluripotency during extended

propagation or may be rectified by modification of the culture

environment remains to be determined.

Efficient multi-lineage differentiation may be initiated from reset

cells either via embryoid body formation or by ʻre-priming’ in

adherent culture. It is noteworthy, however, that human cells in the

t2iLGö naïve condition are not immediately responsive to lineage

induction. Ground-state mouse ESCs also appear not to respond

directly to lineage cues but to require prior transition through a

formative stage (Kalkan et al., 2017; Mulas et al., 2017; Semrau

et al., 2016 preprint). This capacitation period might be more

protracted in primates given the longer window between

implantation and gastrulation (Nakamura et al., 2016; Smith, 2017).

A hallmark of the transient phase of naïve pluripotency in both

rodent and human ICM cells is the presence of two active X

chromosomes in females (Okamoto et al., 2011; Petropoulos et al.,

2016; Sahakyan et al., 2017; Vallot et al., 2017). In female cR

cells, the gain of biallelic expression of X-linked genes indicates

reactivation of the silent X chromosome. Moreover, expression of
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XIST from an active X chromosome in a subset of reset cells

resembles the pattern of the human pre-implantation embryo. Upon

re-priming, monoallelic expression of X-linked genes is restored in

many cells. Significantly, although no XIST was observed in the

original primed cells, an XIST signal is detected in re-primed

cells on a silenced X chromosome. Resetting and subsequent

differentiation thus offer a system to characterise X-chromosome

regulation in human, which appears to diverge substantially from

the mouse paradigm (Okamoto et al., 2011).

In summary, this study provides the requisite technical protocols

and resources to facilitate routine generation and study of candidate

human naïve PSCs. Moreover, feeder-free culture simplifies the

propagation of reset cells. Nonetheless, further refinements are

desirable to enhance the quality and robustness of naïve hPSCs,

including preserving imprints and maximising long-term karyotype

stability. Optimising the capacitation process prior to differentiation

by recapitulating the progression of pluripotency in the primate

embryo is an important future goal and opportunity.

Fig. 7. X-chromosome status of parental, reset and re-primed cells. (A) S6EOS. (B) H9EOS. Images showRNA FISH for nascent X-linked RNA transcription.

Note that in re-primed cells displaying monoallelicHUWE1 and XIST expression, the two signals are on different chromosomes. Bar charts show quantification of

X-chromosome activation status based on HUWE1 and XIST signals from samples of at least 100 cells.
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MATERIALS AND METHODS

Conventional hPSC culture

Primed hPSCs were routinely maintained on irradiated mouse embryonic

fibroblast (MEF) feeder cells in KSR/FGF medium: DMEM/F-12 (Sigma-

Aldrich, D6421) supplemented with 10 ng/ml FGF2 (prepared in-house),

20% KnockOut Serum Replacement (KSR) (Thermo Fisher Scientific),

100 mM 2-mercaptoethanol (2ME) (Sigma-Aldrich, M7522), 1×MEM

non-essential amino acids (NEAA) (Thermo Fisher Scientific, 11140050)

and 2 mM L-glutamine (Thermo Fisher Scientific, 25030024). Cells were

passaged as clusters by detachment with dispase (Sigma-Aldrich,

11097113001). To establish PB-EOS stable transfectants, 1 μg/ml

puromycin was applied for two passages (10 days) to transfected cells on

Matrigel (Roche). Some PSC lines were propagated without feeders on

Geltrex (growth factor-reduced, Thermo Fisher, A1413302) in E8 medium

[made in-house according to Chen et al. (2011)].

Naïve cell culture

Chemically reset and embryo-derived (HNES) naïve stem cells were propagated

in N2B27 (see the supplementary Materials and Methods) supplemented with

t2iLGö [1 µMCHIR99021 (CH), 1 µMPDO325901 (PD), 10 ng/ml humanLIF

and 2 µM Gö6983] with or without ROCK inhibitor (Y-27632) on irradiated

MEF feeders. Where indicated as tt2iLGö, CH was used at 0.3 µM. For feeder-

free culture, Geltrex or laminin (Merck, CC095) was added to the medium at the

time of plating. Cells were cultured in 5%O2, 7% CO2 in a humidified incubator

at 37°C and passaged by dissociation with Accutase (Thermo Fisher Scientific,

A1110501) or TrypLE (Thermo Fisher Scientific, 12605028) every 3-5 days.

Cells were cryopreserved in CryoStem (Biological Industries, K1-0640). Cell

lines were tested free of mycoplasma contamination in-house by PCR. No other

contamination test has been performed.

Reverse transcription and real-time PCR

Total RNAwas extracted using anRNeasyKit (Qiagen) and cDNA synthesized

with SuperScript III reverse transcriptase (Thermo Fisher Scientific, 18080085)

and oligo(dT) adapter primers. TaqMan assays and Universal ProbeLibrary

(UPL) probes (RocheMolecular Systems) are listed in Table S3A,B. Embryoid

bodies were lysed in TRIzol (Thermo Fisher Scientific, 15596018) and total

RNA was isolated with PureLink RNA Mini Kit (Thermo Fisher Scientific,

12183025) with On-Column PureLink DNase (Thermo Fisher Scientific,

12185010). For analyses of adherent differentiation, total RNA was extracted

with ReliaPrep RNA Miniprep Kit and RT-qPCR performed using oligo(dT)

primer, the GoScript Reverse Transcription System and GoTaq qPCR Master

Mix (all from Promega).

Immunostaining

Cells were fixed with 4% buffered paraformaldehyde for 15 min at room

temperature, permeabilised with 0.5% Triton X-100 in PBS for 10 min and

blocked with 3% BSA and 0.1% Tween 20 in PBS for 30 min at room

temperature. Incubation with primary antibodies (Table S3C) diluted in PBS

with 0.1% Triton X-100 and 3% donkey serum was overnight at 4°C and

secondary antibodies were added for 1 h at room temperature. Slides were

mounted with Prolong Diamond Antifade Mountant (Life Technologies).

Chromosome analysis

G-banded karyotype analysis was performed following standard

cytogenetics protocols, typically scoring 30 metaphases.

Transcriptome sequencing

Total RNA was extracted using the TRIzol/chloroform method (Invitrogen)

and RNA integrity assessed using a Qubit 2.0 fluorometer (Thermo Fisher

Scientific) and RNANanoChip Bioanalyzer (Agilent Genomics). Ribosomal

RNA was depleted from 1 µg total RNA using Ribo-Zero (Illumina).

Sequencing libraries were prepared using the NEXTflex Rapid Directional

RNA-Seq Kit (Bioo Scientific, 5138-08). Sequencing was performed on an

Illumina HiSeq4000 in either single-end 50 bp or paired-end 125 bp format.

RNA-seq data analysis

External datasets used for comparative analyses were obtained from the

European Nucleotide Archive (ENA) under accessions ERP006823

(Takashima et al., 2014), SRP059279 (Ji et al., 2016), SRP045911

(Sperber et al., 2015), SRP045294 (Irie et al., 2015), SRP011546 (Yan et al.,

2013), SRP055810 (Blakeley et al., 2015), SRP074076 (Yang et al., 2017)

and ERP007180 (Wellcome Trust Sanger Institute). To minimise technical

variability, reads of disparate lengths and sequencing modes were truncated

to 50 bp single-end format. Alignments to human genome build hg38/

GRCh38 were performed with STAR (Dobin et al., 2013). Transcript

quantification was performed with htseq-count, part of the HTSeq package

(Anders et al., 2014), using gene annotation from Ensembl release 86 (Aken

et al., 2016). Libraries were corrected for total read count using the size

factors computed by the Bioconductor package DESeq2 (Love et al., 2014).

Principal components were computed by singular value decomposition with

the prcomp function in the R statistics package from variance-stabilised

count data. Differential expression was computed with DESeq2 and genes

ranked by log2 fold-change. t-distributed stochastic neighbour embedding

(t-SNE) (van der Maaten and Hinton, 2008) was performed using the

Barnes-Hut algorithm (Van Der Maaten, 2014) implemented in the

Bioconductor package Rtsne with perplexity 12 for 1600 iterations. For

display of expression values, single-end count datawere normalised for gene

length to yield RPKMs and scaled relative to the mean expression of each

gene across all samples. Heatmaps include genes for which a difference in

expression was observed (i.e. scaled expression >1 or <−1 in at least one

sample). For functional testing, enrichment for GO terms was determined

using the GOStats package (Falcon and Gentleman, 2007) based on the

1000 most upregulated and downregulated genes distinguishing naïve

and primed cells, and most significant genes contributing to principal

component 1 (Fig. 3A). RNA-seq libraries were screened for mutations

in the P53 locus by processing alignments with Picard tools (http://

broadinstitute.github.io/picard) and the Genome Analysis Toolkit (GATK)

(DePristo et al., 2011; McKenna et al., 2010) to filter duplicate reads,

perform base quality score recalibration, identify indels for realignment, and

call variants against dbSNP build 150 (Sherry et al., 2001).

Bisulfite sequencing, mapping and analysis

Post-bisulfite adaptor tagging (PBAT) libraries for whole-genome DNA

methylation analysis were prepared from purified genomic DNA (Miura

et al., 2012; Smallwood et al., 2014; von Meyenn et al., 2016). Paired-end

sequencing was carried out on HiSeq2000 or NextSeq500 instruments

(Illumina). Raw sequence reads were trimmed to remove poor quality reads

and adapter contamination using Trim Galore (v0.4.1) (Babraham

Bioinformatics). The remaining sequences were mapped using Bismark

(v0.14.4) (Krueger and Andrews, 2011) to the human reference genome

GRCh37 in paired-end mode as described (von Meyenn et al., 2016). CpG

methylation calls were analysed using SeqMonk software (Babraham

Bioinformatics) and custom R scripts. Global CpG methylation levels of

pooled replicates were illustrated using bean plots. The genomewas divided

into consecutive 20 kb tiles and percentage methylation was calculated

using the bisulfite feature methylation pipeline in SeqMonk. Pseudocolour

scatter plots of methylation levels over 20 kb tiles were generated using R.

Specific genome features were defined using the following Ensembl gene

sets annotations: Gene bodies (probes overlapping genes), Promoters (probes

overlapping 900 bp upstream to 100 bp downstream of genes), CGI promoters

(promoters containing a CGI), non-CGI promoters (all other promoters),

Intergenic (probes not overlapping with gene bodies), non-promoter CGI (CGI

not overlapping with promoters). Annotations of human germline imprint

control regions were obtained fromCourt et al. (2014). Pseudocolour heatmaps

representing average methylation levels were generated using the R heatmap.2

function without further clustering, scaling or normalisation. Correlation

between promoter methylation and gene expression was computed from

average CpGmethylation across promoters or TEs and correlating these values

with the respective gene expression values.

Fluorescent in situ hybridisation (FISH)

Nascent transcription foci of X-linked genes and the lncRNAs XIST and

XACT were visualised at single-cell resolution by RNA FISH as described

(Sahakyan et al., 2017). Fluorescently labelled probes were generated from

BACs RP11-13M9 (XIST), RP11-35D3 (XACT), RP11-121P4 (THOC2),

RP11-1145J4 (ATRX) and RP11-975N19 (HUWE1). Coverslips were
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imaged using an Imager M1 microscope (Zeiss) and AxioVision software.

ImageJ was used for collapsing z-stacks, merging different channels, and

adjusting brightness and contrast to remove background. Aminimum of 100

nuclei were scored for each sample. Cells that appeared to have more than

two X chromosomes were excluded.

Transposable elements

RepeatMasker annotations for the human reference genomewere obtained from

the UCSC Table Browser. To calculate repeat expression, adapter-trimmed

RNA-seq readsweremapped to the reference genome using bowtie (Langmead

and Salzberg, 2012) with parameters ‘−M1 –v2 –best –strata’, i.e. two

mismatches were allowed, and one alignment location was randomly selected

for reads that multiply align to the reference genome. Read counts for repeat

regions and Ensembl transcripts were calculated by featureCounts, normalised

by the total number of RNA-seq reads that mapped to protein-coding gene

regions. Differential expression of repeat copies across samples was evaluated

by the R Bioconductor DESeq package (Anders and Huber, 2010).

Embryoid body differentiation

Embryoid body formation and outgrowth were performed in DMEM/F12

supplemented with 15% fetal calf serum (FCS), 2 mM L-glutamine. 1 mM

sodium pyruvate, 1× non-essential amino acids and 0.1 mM 2ME as

described (Guo et al., 2016). Alternatively, reset cells were aggregated in

t2iLIF medium with ROCK inhibitor in PrimeSurface 96V cell plates

(Sumitomo Bakelite MS-9096V) then plated after 3 days on Geltrex

(Thermo Fisher Scientific, 12063569) for outgrowth in serum-containing

medium. Outgrowths were fixed with 4% paraformaldehyde for 10 min at

room temperature for immunostaining.

Adherent differentiation

Except where specified, reset cells were ʻre-primed’ before initiating

differentiation. Cells were plated on Geltrex in t2iLGö and after 48 h the

medium was changed to E8. Cultures were maintained in E8, passaging at

confluence. Lineage-specific differentiation was initiated between 25 and

44 days.

Definitive endoderm was induced according to Loh et al. (2014). Cells

were cultured in CDM2 medium (in-house according to Loh et al., 2014)

supplemented with 100 ng/ml activin A (produced in-house), 100 nM PI-

103 (Bio-Techne, 2930), 3 µM CHIR99021, 10 ng/ml FGF2, 3 ng/ml

BMP4 (Peprotech) for 1 day. For the next 2 days the following supplements

were applied: 100 ng/ml activin A, 100 nM PI-103, 20 ng/ml FGF2,

250 nM LDN193189.

For lateral mesoderm induction (Loh et al., 2016), cells were treated with

CDM2 supplemented with 30 ng/ml activin A, 40 ng/ml BMP4 (Miltenyi

Biotech, 130-098-788), 6 µMCHIR99021, 20 ng/ml FGF2, 100 nM PI-103

for 1 day, then with 1 µM A8301, 30 ng/ml BMP4 and 10 µM XAV939

(Sigma-Aldrich).

For neural differentiation via dual SMAD inhibition (Chambers et al.,

2009), cells were treated with N2B27 medium supplemented with 500 nM

LDN193189 (Axon, 1509) and 1 μM A 83-01 (Bio-Techne, 2939) for

10 days, then passaged to plates coated with poly-L-ornithine and laminin

and further cultured in N2B27 without supplements.

Flow cytometry

Flow analysis was carried out on a Fortessa instrument (BD Biosciences). Cell

sortingwas performed using aMoFlo high-speed instrument (BeckmanCoulter).

Acknowledgements
Rosalind Drummond provided excellent technical support. We thank Nicholas

Bredenkamp for sharing data. We are grateful to Peter Andrews for advice and

support on karyotyping and to Valeria Orlova and Balazs Varga for advice on

differentiation protocols. Andy Riddell and Peter Humphreys supported flow

cytometry and imaging studies. Maike Paramor prepared RNA-seq libraries.

Sequencing was conducted at the CRUK Cambridge Institute Genomic Core. We

thank Felix Krueger for bioinformatics support.

Competing interests
G.G. and A.Sm. are inventors on a patent filing by the University of Cambridge

relating to human naïve pluripotent stem cells. W.R. is a consultant to, and

shareholder in, Cambridge Epigenetix.

Author contributions
Conceptualization: G.G., F.v.M., A.Sm.; Methodology: G.G., F.v.M., M.R., J.C., D.B.,

A.Sa., S.M., P.B.; Formal analysis: F.v.M., S.D., D.B., A.Sa., P.B.; Investigation:

G.G., F.v.M., M.R., J.C., S.M.; Writing - original draft: G.G., A.Sm.; Writing - review &

editing: G.G., F.v.M., A.Sm.; Visualization: S.D., P.B.; Supervision: K.P., W.R.,

A.Sm.; Funding acquisition: K.P., W.R., A.Sm.

Funding
This research is funded by the Medical Research Council of the United Kingdom

(G1001028 and MR/P00072X/1) and European Commission Framework 7

(HEALTH-F4-2013-602423, PluriMes), and in part by the UKRegenerativeMedicine

Platform (MR/L012537/1). W.R. is supported by the Biotechnology and Biological

Sciences Research Council (BB/K010867/1), Wellcome Trust (095645/Z/11/Z),

European Commission BLUEPRINT and EpiGeneSys. The Cambridge Stem Cell

Institute receives core funding from the Wellcome Trust and the Medical Research

Council. F.v.M. was funded by a Postdoctoral Fellowship from the Swiss National

Science Foundation (SNF; Schweizerischer Nationalfonds zur Förderung der

Wissenschaftlichen Forschung)/Novartis. S.M. is funded by a Wellcome Trust PhD

Studentship. A.Sm. is a Medical Research Council Professor. Deposited in PMC for

immediate release.

Data availability
RNA-seq data are deposited in ArrayExpress under accession number E-MTAB-

5674; and whole-genome bisulfite sequencing data in Gene Expression Omnibus

under accession number GSE90168.

Supplementary information
Supplementary information available online at

http://dev.biologists.org/lookup/doi/10.1242/dev.146811.supplemental

References
Aken, B. L., Ayling, S., Barrell, D., Clarke, L., Curwen, V., Fairley, S., Fernandez

Banet, J., Billis, K., Garcia Giron, C., Hourlier, T. et al. (2016). The Ensembl

gene annotation system. Database (Oxford) 2016.

Amps, K., Andrews, P. W., Anyfantis, G., Armstrong, L., Avery, S., Baharvand,
H., Baker, J., Baker, D., Munoz, M. B., Beil, S. et al. (2011). Screening ethnically

diverse human embryonic stem cells identifies a chromosome 20 minimal

amplicon conferring growth advantage. Nat. Biotechnol. 29, 1132-1144.
Anders, S. and Huber, W. (2010). Differential expression analysis for sequence

count data. Genome Biol. 11, R106.
Anders, S., Pyl, P. T. and Huber, W. (2014). HTSeq – A Python framework to work

with high-throughput sequencing data. bioRxiv.

Blakeley, P., Fogarty, N. M. E., del Valle, I., Wamaitha, S. E., Hu, T. X., Elder, K.,
Snell, P., Christie, L., Robson, P. and Niakan, K. K. (2015). Defining the three

cell lineages of the human blastocyst by single-cell RNA-seq. Development 142,
3151-3165.

Boroviak, T., Loos, R., Bertone, P., Smith, A. andNichols, J. (2014). The ability of
inner-cell-mass cells to self-renew as embryonic stem cells is acquired following

epiblast specification. Nat. Cell Biol. 16, 516-528.
Boroviak, T., Loos, R., Lombard, P., Okahara, J., Behr, R., Sasaki, E., Nichols,

J., Smith, A. and Bertone, P. (2015). Lineage-specific profiling delineates the

emergence and progression of naive pluripotency in mammalian embryogenesis.

Dev. Cell 35, 366-382.
Brons, I. G. M., Smithers, L. E., Trotter, M. W. B., Rugg-Gunn, P., Sun, B., Chuva

de Sousa Lopes, S. M., Howlett, S. K., Clarkson, A., Ahrlund-Richter, L.,
Pedersen, R. A. et al. (2007). Derivation of pluripotent epiblast stem cells from

mammalian embryos. Nature 448, 191-195.
Butcher, L. M., Ito, M., Brimpari, M., Morris, T. J., Soares, F. A. C., Ährlund-

Richter, L., Carey, N., Vallier, L., Ferguson-Smith, A. C. and Beck, S. (2016).
Non-CG DNAmethylation is a biomarker for assessing endodermal differentiation

capacity in pluripotent stem cells. Nat. Commun. 7, 10458.
Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M.

and Studer, L. (2009). Highly efficient neural conversion of human ES and iPS

cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275-280.
Chen, B., Dodge, M. E., Tang, W., Lu, J., Ma, Z., Fan, C.-W., Wei, S., Hao, W.,

Kilgore, J., Williams, N. S. et al. (2009). Small molecule-mediated disruption of

Wnt-dependent signaling in tissue regeneration and cancer. Nat. Chem. Biol. 5,
100-107.

Chen, G., Gulbranson, D. R., Hou, Z., Bolin, J. M., Ruotti, V., Probasco, M. D.,
Smuga-Otto, K., Howden, S. E., Diol, N. R., Propson, N. E. et al. (2011).
Chemically defined conditions for human iPSC derivation and culture. Nat.

Methods 8, 424-429.
Court, F., Tayama, C., Romanelli, V., Martin-Trujillo, A., Iglesias-Platas, I.,

Okamura, K., Sugahara, N., Simon, C., Moore, H., Harness, J. V. et al. (2014).
Genome-wide parent-of-origin DNAmethylation analysis reveals the intricacies of

human imprinting and suggests a germline methylation-independent mechanism

of establishment. Genome Res. 24, 554-569.

2761

STEM CELLS AND REGENERATION Development (2017) 144, 2748-2763 doi:10.1242/dev.146811

D
E
V
E
L
O
P
M

E
N
T



D’Aniello, C., Fico, A., Casalino, L., Guardiola, O., Di Napoli, G., Cermola, F., De
Cesare, D., Tate,̀ R., Cobellis, G., Patriarca, E. J. et al. (2015). A novel

autoregulatory loop between the Gcn2-Atf4 pathway and L-Proline metabolism

controls stem cell identity. Cell Death Differ. 22, 1094-1105.
Davidson, K. C., Mason, E. A. and Pera, M. F. (2015). The pluripotent state in

mouse and human. Development 142, 3090-3099.
De Los Angeles, A., Loh, Y.-H., Tesar, P. J. and Daley, G. Q. (2012). Accessing
naïve human pluripotency. Curr. Opin. Genet. Dev. 22, 272-282.

Dean, W., Bowden, L., Aitchison, A., Klose, J., Moore, T., Meneses, J. J., Reik,
W. and Feil, R. (1998). Altered imprinted gene methylation and expression in

completely ES cell-derivedmouse fetuses; association with aberrant phenotypes.

Development 125, 2273-2282.
DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C.,
Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M. et al. (2011). A
framework for variation discovery and genotyping using next-generation DNA

sequencing data. Nat. Genet. 43, 491-498.
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut,
P., Chaisson, M. and Gingeras, T. R. (2013). STAR: ultrafast universal RNA-seq
aligner. Bioinformatics 29, 15-21.

Falcon, S. and Gentleman, R. (2007). Using GOstats to test gene lists for GO term

association. Bioinformatics 23, 257-258.
Ficz, G., Hore, T. A., Santos, F., Lee, H. J., Dean, W., Arand, J., Krueger, F.,
Oxley, D., Paul, Y.-L., Walter, J. et al. (2013). FGF signaling inhibition in ESCs

drives rapid genome-wide demethylation to the epigenetic ground state of

pluripotency. Cell Stem Cell 13, 351-359.
Friedli, M. and Trono, D. (2015). The developmental control of transposable

elements and the evolution of higher species. Annu. Rev. Cell Dev. Biol. 31,
429-451.

Gafni, O., Weinberger, L., Mansour, A. A. F., Manor, Y. S., Chomsky, E., Ben-
Yosef, D., Kalma, Y., Viukov, S., Maza, I., Zviran, A. et al. (2013). Derivation of

novel human ground state naive pluripotent stem cells. Nature 504, 282-286.
Greenberg, M. V. C. and Bourc’his, D. (2015). Cultural relativism: maintenance of

genomic imprints in pluripotent stem cell culture systems. Curr. Opin. Genet. Dev.

31, 42-49.
Grow, E. J., Flynn, R. A., Chavez, S. L., Bayless, N. L., Wossidlo, M., Wesche,
D. J., Martin, L., Ware, C. B., Blish, C. A., Chang, H. Y. et al. (2015). Intrinsic
retroviral reactivation in human preimplantation embryos and pluripotent cells.

Nature 522, 221-225.
Guo, H., Zhu, P., Yan, L., Li, R., Hu, B., Lian, Y., Yan, J., Ren, X., Lin, S., Li, J. et al.
(2014). The DNA methylation landscape of human early embryos. Nature 511,
606-610.

Guo, G., von Meyenn, F., Santos, F., Chen, Y., Reik, W., Bertone, P., Smith, A.
and Nichols, J. (2016). Naive pluripotent stem cells derived directly from isolated

cells of the human inner cell mass. Stem Cell Rep. 6, 437-446.
Habibi, E., Brinkman, A. B., Arand, J., Kroeze, L. I., Kerstens, H. H. D., Matarese,
F., Lepikhov, K., Gut, M., Brun-Heath, I., Hubner, N. C. et al. (2013). Whole-

genome bisulfite sequencing of two distinct interconvertible DNA methylomes of

mouse embryonic stem cells. Cell Stem Cell 13, 360-369.
Hackett, J. A. and Surani, M. A. (2014). Regulatory principles of pluripotency: from
the ground state up. Cell Stem Cell 15, 416-430.

Hotta, A., Cheung, A. Y. L., Farra, N., Vijayaragavan, K., Séguin, C. A., Draper,
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