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Abstract: This paper extends the correspondence between discrete Cluster Integrable
Systems and BPS spectra of five-dimensional N = 1 QFTs on R

4 × S1 by proving
that algebraic solutions of the integrable systems are exact solutions for the system of
TBA equations arising from the BPS spectral problem. This statement is exemplified in
the case of M-theory compactifications on local del Pezzo Calabi–Yau threefolds, corre-
sponding to q-Painlevé equations and SU (2) gauge theories with matter. A degeneration
scheme is introduced, allowing to obtain closed-form expression for the BPS spectrum
also in systems without algebraic solutions. By studying the example of local del Pezzo
3, it is shown that when the region in moduli space associated to an algebraic solution is
a “wall of marginal stability”, the BPS spectrum contains states of arbitrarily high spin,
and corresponds to a 5d uplift of a four-dimensional nonlagrangian theory.
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B. Discrete Equations for 4d Super Yang–Mills, and the 2-Krönecker Quiver .

Nature uses only the longest threads to weave her patterns, so that each small
piece of her fabric reveals the organization of the entire tapestry.

Richard P. Feynman

1. Introduction

In recent years, there has been a new wave of interest in the study of the BPS spectrum
of five-dimensional Quantum Field Theories with eight supercharges, after a decade
of progress with the four-dimensional case. The strongest motivation comes from ob-
serving that compactification of type IIA string theory on a local Calabi–Yau threefold
doesn’t simply produce a standard four-dimensional N = 2 theory, but rather a five-
dimensional one [34,56,72,76]: the hidden presence of the M-theory circle leads to an
infinite number of fields in the four-dimensional theory, which are Kaluza–Klein (KK)
modes on the five-dimensional circle, so that the BPS spectrum of such theories con-
tains highly nontrivial nonperturbative information about M-theory itself.1 Prototypical
examples of local Calabi–Yau threefolds appearing in this context are total spaces of the
canonical bundles over a complex surfaces S, where S is either a P

1 × P
1 or a (pseudo-)

del Pezzo surface d Pn , these latters being blowups of P
2 at n (possibly nongeneric)

points. Apart from the case of local P
2, the 5d theories resulting from these geometries

admit low-energy SU (2) gauge theory phases with matter.
The advantage of a string-theoretic mindset towards these CFTs is that stable BPS

states are realized geometrically by D0, D2, D4-branes wrapping holomorphic cycles
inside a resolution X of the (typically singular) Calabi–Yau geometry, so that the lattice
of BPS charges is the even cohomology lattice with compact support

Ŵ = H0
cpt (X) ⊕ H2

cpt (X) ⊕ H4
cpt (X). (1.1)

BPS states are then mathematically described as objects in the derived category Db(X)

of coherent sheaves on X . By this correspondence, exact computations of BPS spectra for
five-dimensional theories have nontrivial counterpart in the Donaldson–Thomas theory
of the corresponding geometry [19].

Our main tool will be the so-called BPS quiver of the theory, a term introduced
for four-dimensional theories in [22] and generalized to the present context in [24],
appearing also in related physics literature under the name of fractional brane quiver
[35,40,43,52,80]. The determination of the BPS spectrum for five-dimensional theories
on a circle is typically much more involved than for four-dimensional ones, and until

1 Typically, five-dimensional theories include BPS string states, which can manifest as particles in the four-
dimensional Kaluza–Klein framework, provided these BPS strings wrap around the five-dimensional circle.
In this paper, we focus exclusively on the BPS particle spectrum of the five-dimensional theory on a circle,
viewed as a four-dimensional QFT with an infinite number of Kaluza–Klein modes. These include both BPS
particles and wrapped BPS strings from the purely five-dimensional viewpoint.
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Fig. 1. Schematic picture of central charges in the collimation chamber in local P
1 × P

1. The black arrows
correspond to towers of hypermultiplets, while the red arrows to vector multiplets and corresponding Kaluza–
Klein modes. Towers of hypermultiplets such as the one in the figure are also called Peacock patterns

recently very little was known. In [13], inspired by the recently discovered relation be-
tween partition functions of five-dimensional gauge theories (or equivalently, Topolog-
ical String partition functions [38,77]) and q-Painlevé tau functions [8,12–14,57,68],
a new strategy for the computation of the BPS spectrum was proposed. The general
idea behind this approach is to introduce a discrete (cluster) integrable system from
the underlying Calabi–Yau geometry, which encodes hidden quantum symmetries of
the five-dimensional QFT. When applied to an appropriate set of elementary states, the
discrete time evolution of the integrable system generates the BPS spectrum. Different
examples were considered, and a conjectural expression advanced for the case of local
P

1 × P
1 in [24] was readily reproduced with this new method, that outlined a clear path

forward for more general cases.
The relation between Cluster Integrable Systems and BPS spectra was further clar-

ified in the subsequent paper [28], where it was shown how to associate to the Cluster
Integrable System special chambers in the moduli space of the theory (technically, in the
moduli space of stability conditions of the CY3), dubbed collimation chambers, in which
the BPS spectrum can be computed exactly. These chambers have the property that the
spectrum is comprized of infinite towers of states, with central charges all limiting to
the positive real axis. The name comes from the analogy between rays of light and rays
on the complex plane of central charges of the BPS states, as we might think of the BPS
spectrum as a light beam, with rays all travelling in the same direction confined in a
given width, as depicted in Fig. 1.

Another aspect of the relation between BPS spectra and Cluster Integrable Systems
comes from the fact that the String theory corrections to the central charges are described
by a set of TBA equations that appeared for the first time in the work of Gaiotto, Moore
and Neitzke on four-dimensional N = 2 QFTs [45,46], and were then shown to describe
the D-instanton corrections to the central charges in type IIB String Theory [1–3]:

log Xγ (ǫ) =
Zγ

ǫ
−

ǫ

π i

∑

γ ′>0

�(γ ′)〈γ, γ ′〉

∫

ℓγ ′

dǫ′

(ǫ′)2 − (ǫ)2 log(1 − σ(γ ′)Xγ ′(ǫ′)).

(1.2)

Here γ ∈ Ŵ is a vector in the lattice of BPS charges (1.1) and Zγ is the central charge
of the corresponding BPS state. �(γ ) is the BPS degeneracy, coinciding with the DT
invariant of the coherent sheaf γ , and σ(γ ) = −1 if �(γ ) = 1, while σ(γ ) = 1
if �(γ ) = −2 (we will not need other cases here). The Xγ can be also regarded as
solutions to the Bridgeland Riemann–Hilbert problem, which endows the moduli space
of stability conditions of the CY3 with a geometric structure known as Joyce structure
[18]. In [29], it was shown that the TBA equation (1.2) in the collimation chamber of local
P

1×P
1 can be rephrased as the q-Painlevé equation of symmetry type A

(1)
1 . Furthermore,

it was observed that within the collimation chambers there can exist a fine-tuned stratum
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Table 1. Main results of the paper

Local CY3 Quiver Collimation chamber BPS spectrum Alg. Sol.
d P5 Fig. 3 Eq. (3.34) Eq. (3.12)* Eq. (3.27)
d P4 Fig. 5 Eq. (3.42) Eq. (3.46) No
d P3 Fig. 6 Eq. (3.52) Eq. (3.55)* Eq. (3.60)

Eq. (4.13) Eqs. (4.21), (4.20) No
d P2 Fig. 8 Eq. (3.69) Eq. (3.72) No
d P1 Fig. 9b Eq. (3.83) Eq. (3.80) No
P

1 × P
1 Fig. 9a Eq. (3.77) † Eq. (3.80)* Eq. (3.27)

∗: from [28] † : from [29]

where the solution to (1.2) receives no ǫ-corrections, and corresponds to the algebraic

solution of the corresponding q-Painlevé equation, so that it was conjectured that such
exact solutions should correspond to algebraic solutions of the Cluster Integarble System.

Contents and results:

The main results of this paper consist of Theorem 1, together with the results sum-
marized in Table 1.

After briefly recalling how BPS quivers arise in five-dimensional SCFTs, in Sect. 2
we generalize and make precise the identification of exact solutions to the TBA equa-
tions (1.2) with algebraic solutions of q-Painlevé equations, and more generally cluster
integrable systems. To this end we prove Theorem 1, stating a precise set of conditions
under which such an exact solution exists. These conditions are equivalent to the in-
variance under certain folding transformation of the corresponding q-Painlevé equation
[11], which is a property characterizing their algebraic solutions, so that the conjecture
of [29] is effectively proven.

The theorem is then applied in Sect. 3, where the exact solutions are written explicitly
for the cases of local d P5 and local d P3, realizing five-dimensional SU (2) Super Yang–
Mills with four and two fundamental hypermultiplets respectively. In the case of d P5 and
d P3, starting from the algebraic solutions it is possible to obtain an infinite number of
closed-form solutions to the TBA equations, which are rational solutions of q-Painlevé
VI and III respectively. These are obtained by applying Bäcklund transformations to the
algebraic solution, physically corresponding to appropriate sequences of dualities of the
5d theory, and while they can be written down explicitly, display all-order ǫ corrections,
in contrast to the algebraic solutions.

The problems encountered in [28] in finding collimation chambers for local d P4, d P2,

d P1 are explained by their lack of symmetry with respect to the other cases, signaled
by the absence of folding transformation in the corresponding q-Painlevé equation.
Nonetheless, in Sect. 3 we implement a degeneration procedure that produces new
collimation chambers, with explicit BPS spectrum and stability conditions, for these
missing cases, completing the picture of collimation chambers and BPS spectra for
five-dimensional SU (2) super Yang–Mills up to N f = 4. The degeneration procedure
amounts geometrically to the blow-down of exceptional 2-cycles in the local del Pezzo
geometries, or equivalently to the holomorphic decoupling of hypermultiplets in the
corresponding gauge theory. At the level of integrable systems it is the confluence of
q-Painlevé equations, as described by Sakai’s classification by symmetry type [75] in
Fig. 2.

In Sect. 4 we show what happens when the stability condition associated to an alge-
braic solution lies on a wall of marginal stability. By perturbing away from the algebraic
solution, it is possible to find a stability condition which would still correspond to a col-
limation chamber, since it yields infinite towers of hypermultiplets which accumulate
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Fig. 2. Sakai’s Classification of discrete Painlevé equations by symmetry type. The affine root lattice coincides
with the flavour sublattice of the corresponding geometry, above which we wrote down the corresponding
geometry

on the positive real axis. However, instead of finding mutually local vector multiplets,
on the real axis there is a (likely infinite) number of mutually non-local higher spin
states, so that we are still lying on a wall of marginal stability. The structure of the quiver
suggests that a further deformation of this chamber might be related to a 5d uplift of a
4d Argyres–Douglas theory, as was pointed out in [13].

Finally, in Sect. 5 we make several concluding remarks about possible generalizations
of this work: these include a yet unexplained observation on the connection between
the BPS spectrum of 5d pure SU (2) Super Yang–Mills (local P

1 × P
1) and the 4d

N = 2∗ theory (2-Markov quiver), and extension to higher-rank gauge theories and
five-dimensional uplifts of En Minahan-Nemeschansky theories.

2. TBA Equations and Algebraic Solutions of Cluster Integrable Systems

Let us start with some basic terminology. By a quiver Q, it is meant an oriented graph
consisting of nodes connected by arrows. Here we always consider quivers with no
arrows from a node to itself (loops), nor pairs of arrows connecting two nodes in opposite
directions (2-cycles), and we label the nodes by numbers 1, . . . , |Q|, where |Q| denotes
the size of the quiver, i.e. the number of its nodes. The quiver is then encoded in its
(antisymmetrized) adjacency matrix B, whose entries Bi j are equal to the number of
arrows from node i to node j , with the convention that outgoing arrows carry positive
sign, while incoming arrows carry negive sign. A representation of a quiver Q is an
assignment of a vector space Vi to each node i of Q, and a linear map φi j for each arrow
i → j . In the context of quiver representation theory, to every node i of the quiver
one can associate an angle θi , and the collection {θi }

|Q|
i=1 is called a θ -stability condition

[62],2 or simply a stability condition since there will not be any chance of confusion
in this paper. The space of values that the θi can assume is called its moduli space of
stability conditions.

In this paper, all the quivers are BPS quivers, arising physically in the following
way: BPS particles of M-theory on a Calabi–Yau threefold X are described by M2- or

2 In the present context of D-branes on Calabi–Yau threefolds, this is also related to Douglas �-stability
[33], mathematically formalized by the notion of Bridgeland stability [16].
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M5-branes wrapping compact even-dimensional cycles in X , which are described by
D0, D2, D4-branes in type IIA String Theory. They are labeled by their BPS charges,
which are vectors of Chern characters of compactly supported coherent sheaves

γ ∈ Ŵ := H even
cpt (X, Z) = H0

cpt (X, Z) ⊕ H2
cpt (X, Z) ⊕ H4

cpt (X, Z). (2.1)

The low-energy dynamics of these particles is described by an N = 4 supersym-
metric quantum mechanics associated to the quiver [4,30,35], typically determined by
dimer model/brane tiling techniques (see [44,61,80] for comprehensive reviews of brane
tilings) and the generators γi of Ŵ associated to the nodes of the quiver are the so-called
fractional branes of the Calabi–Yau, which are hypermultiplet states. The adjacency ma-
trix of the quiver is the antisymmetric Euler pairing in the basis γi of fractional branes,
which is identified with the physical Dirac pairing of the corresponding BPS states. For
the local CY3’s that we consider, which are total spaces of canonical bundles over an
algebraic surface S, this is

Bi j = 〈γi , γ j 〉 := χ
(
Eγi

, Eγ j

)
− χ

(
Eγi

, Eγ j

)
, χ

(
Eγ , Eγ ′

)

=

∫

S

ch(E∨
γ )ch(Eγ )Td(S), (2.2)

where ch and Td denote respectively the Chern and Todd class, Eγ is a sheaf with Chern
vector gamma and E∨

γ is its dual. We say that two states are mutually local if they have
vanishing pairing. When the central charges of two mutually nonlocal states are aligned,
they are called marginally stable, and such pathological regions of the moduli space of
stability conditions are called walls of marginal stability.

The central charge, a linear function Z : Ŵ → C, describes the mass of BPS states
through the BPS bound Mγ = |Zγ |. Its phase θγ give the Fayet-Ilioupoulos couplings of
the quantum mechanical model, and the collection θγi

is called a stability condition.3 The
(semi-)stable representations of the quiver determine the stable BPS particles of the QFT,
and they can be depicted by ray diagrams, where each BPS state is represented through
the corresponding vector in the complex plane of central charges. More precisely, the
quantum numbers of the stable BPS particles are obtained by quantising the moduli
space of semi-stable representations of the quiver. As a result, the physical picture
would require working with L2 cohomology instead of the de Rham cohomology with
compact support that we are considering, a distinction that can lead to some subtleties
when considering D0-brane states, see [36,73,81]. In this paper, however, we will only
consider compactly supported coherent sheaves (2.1), and semi-stable representations
of the quiver with respect to the central charges Zγi

, that we refer to as stability data,
which is the context naturally arising in Donaldson–Thomas theory [17,32].

For the five-dimensional theories considered in this paper, there is always a preferred
direction in the plane of central charges, the real axis, since there always is a D0-brane
state (skyscraper sheaf) representing Kaluza–Klein modes on the 5d circle with central
charge

Z D0 =
2π

R
, (2.3)

3 The precise relation between central charge phases, various notions of stability, and Fayet Ilioupoulos
couplings requires to introduce some more terminology from quiver representation theory that will not be used
in the rest of the paper, see Sect. 2 of [28] for more details and references.
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where R is the radius of the five-dimensional circle. In such theories, one usually expects
the real axis to constitute an accumulation ray in the plane of central charges, since
the Kaluza–Klein towers of states coming from dimensional reduction along S1 are
realized in String Theory by towers of D0-branes with central charge Zn D0 = 2πn/R.
Besides the accumulation ray along the real axis, it is a general feature of supersymmetric
theories that “higher” spin multiplets, which in this context means any state which is
not a hypermultiplet, are either limiting rays of an infinite sequence of hypermultiplet
states, or they are contained within a cone in the complex plane of central charges, whose
boundaries are limiting rays. In fact, one can classify the possible types of chambers
in the moduli space of the theory based on how the central charges of BPS states are
organized:

• The simplest chambers are finite, with a finite number of stable states which are
hypermultiples. This is not possible in 5d due to the KK modes, so our chambers will
always be infinite.

• If there is only one accumulation ray on which lies the central charge of a vector
multiplet, the chamber is called tame.

• More generally, one will have various accumulation rays, and between them there
will be a cone where it is expected to find particles of arbitrary high spin organized
in Regge trajectories [26,49]. Such a chamber is called a wild chamber.

• In the five-dimensional setting the real axis is an accumulation ray in the complex
plane of central charges due to the presence of KK modes. This means that in order
to have a tame chamber it will be necessary for all the vector multiplet states to have
real central charges, and to avoid walls of marginal stability they must be mutually
local. We can relax this condition, and allow the presence of higher spin states, as
long as they also lie on the real axis and are mutually local: a chamber with these
properties was named collimation chamber in [28], as all the accumulation rays are
collimated on the real axis. Although the notion of collimation chamber and that
of tame chamber are in principle distinct, all the known examples of collimation
chambers are also tame.

The mutation method. Given a quiver and a stability condition, one can obtain (at least
part of) the BPS spectrum by using the mutation method [4,5]. Let us briefly recap the
main ideas behind this procedure. The nodes of a BPS quiver correspond to an integral
basis of simple (hypermultiplet) objects in the charge lattice, i.e. they are indecomposable
and any other state can be written in terms of them as a linear combination with positive
coefficients. Furthermore, one can choose an appropriate half-plane, referred to as the
positive half-plane, where lie all the central charges of the quiver nodes. This amounts
to a choice of what we call particle and antiparticle, since the central charge of an
antiparticle is the opposite of the central charge of the corresponding particle.

If we start to rotate clockwise the choice of half-plane, at some point the ray of a BPS
state for some node of the quiver will exit the positive half-plane, inducing a change in the
quiver description corresponding to a mutation of the BPS quiver at the corresponding
node [7]. If we mutate at the node k, we will have a new basis of the charge lattice, and
the antisymmetric pairing must change accordingly, as:

μk(Bi j ) =

{
−Bi j , i = k or j = k,

Bi j +
Bik |Bk j |+Bk j |Bik |

2 , otherwise.
(2.4)
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μk(γ j ) =

{
−γ j , j = k,

γ j + [B jk]+ γk, otherwise,
(2.5)

where we defined the notation

[B jk]+ := max(B jk, 0). (2.6)

This is just a change of basis and the new quiver just corresponds to a dual description of
the same physics, so that the charges of the new nodes of the quiver must have been also
in the original spectrum. By iterating this procedure, one produces stable hypermultiplet
states in a given chamber, with higher spin multiplets appearing as limiting vectors of
infinite sequences of mutations. In finite chambers, the mutation method exhausts the
whole BPS spectrum. For collimation chambers, it is possible to obtain in this way all
the hypermultiplet states, and then use additional permutation symmetries of the quiver
to determine the states on the limiting ray [28].

Exact solutions of TBA equations. Once the BPS spectrum in a particular chamber is
known, it is possible to formulate the so-called BPS Riemann–Hilbert problem [18]
associated to a CY3 as the problem of solving the system (1.2) of TBA equations [2].
We will now prove that under certain assumptions, such problem admits a classically
exact solution, i.e. one with no ǫ-corrections.

Theorem 1. Under the following assumptions:

1. There exist a permutation symmetry π of the quiver and of the BPS spectrum, acting

nontrivially on the charges γi , such that π N = id for some N > 1.

2. π is such that {γi + π(γi ) + . . . π N−1(γi )}
|Q|
i=1 ⊆ Ŵ f ;

3. If γ ∈ Ŵ is such that πn(γ ) = γ for some n < N − 1, then γ ∈ Ŵ f .

Then the stability condition

Zγi
= Zπ(γi ) (2.7)

yields a semiclassically exact solution of the TBA equations (1.2):

Xγi
= Xπ(γi ) = e

Zγi
ǫ . (2.8)

Proof. Let S be the BPS spectrum in the chamber associated to the stability condition
(2.7), and let Sinv be the subset of BPS states that are left invariant by some power of
the permutation π . By assumption 1, S is invariant under π , so that

S = S0 ⊔ π(S0) ⊔ · · · ⊔ π N−1(S0) ⊔ Sinv, S0 ⊂ S. (2.9)

The TBA equations can then be written as

log Xγ =
Zγ

ǫ
−

ǫ

iπ

N−1∑

j=0

∑

γ ′∈π j (S0)

�(γ ′)〈γ, γ ′〉Iγ ′ −
ǫ

iπ

∑

γ ′∈Sinv

�(γ ′)〈γ, γ ′〉Iγ ′

=
Zγ

ǫ
−

ǫ

iπ

∑

γ ′∈S0

N−1∑

j=0

�(π j (γ ′))〈γ, π j (γ ′)〉Iπ j (γ ′),

(2.10)
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where we defined

Iγ ′ :=

∫

ℓγ ′

dǫ′

(ǫ′)2 − (ǫ)2 log(1 − σ(γ ′)Xγ ′(ǫ′)), (2.11)

and we used assumption 3, implying that the skew-symmetric pairing in the last term of
the first line vanishes. Since π is simply a permutation of the nodes leaving the quiver
invariant, for any γ ∈ Ŵ we have �(γ ) = �(π(γ )), and σ(γ ) = σ(π(γ )), and the
integration contour in the TBA equation also satisfies ℓγi

= ℓπ(γi ).
When solving the TBAs order by order in ǫ, the variables Xγ in the integral of the

order ǫn+1 are the solution of the TBAs at order ǫn−1. The first correction will be

log Xγ ≃
Zγ

ǫ
−

ǫ

iπ

∑

γ ′∈S0

�(γ ′)〈γ, γ ′ + π(γ ′) + · · · + π N−1(γ ′)〉

×

∫

ℓγ ′

dǫ′

(ǫ′)2 − (ǫ)2 log
(

1 − σ(γ ′)e
Zγ ′/ǫ′

)
,

(2.12)

On the other hand, since by assumption 2 γ ′ + π(γ ′) + · · · + π N−1(γ ′) ∈ Ŵ f , we
have

〈γ, γ ′ + π(γ ′) + · · · + π N−1(γ ′)〉 = 0, (2.13)

so that

log Xγ =
Zγ

ǫ
+ O(ǫ3). (2.14)

The first correction vanishes, but the same argument applies order by order, so that in
fact the corrections will vanish to all orders. Then

Xγ = exp

(
Zγ

ǫ

)
(2.15)

is an exact solution to the system of TBAs. ⊓⊔

Remark 1. For the solution (2.8) to be physically meaningful, we need that 〈γi , π(γi )〉 =
0, since we are aligning the corresponding central charges. If the pairing is nonzero, it
will still be true that (2.8) provides an exact solution to the TBA equations, but we will
be lying on a wall of marginal stability. We will see in Sect. 4 that even in this latter case,
it is possible to deform away from the fine-tuned stability condition in a controlled way,
and discover interesting new phases of the 5d theory.

Remark 2. This theorem can also be directly rephrased in a purely algebro-geometric
setting without reference to the TBA equations. 4 In broad terms, it would state that
given a BPS structure in the sense of [19] with symmetry π , the stability condition (2.7)
yields the solution (2.8) to the BPS Riemann–Hilbert Problem. This is because under
these assumptions the jump condition

Xγ �→ Xγ

∏

Zγ ′∈ℓγ

(
1 + σ(γ )Xγ

)〈γ,γ ′〉�(γ )
(2.16)

is trivially solved by Xγ = e
Zγ
ǫ .

4 Many thanks go to T. Bridgeland, who brought this fact to the author’s attention.
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3. Algebraic Solutions, Decoupling and Exact BPS Spectra of Local del Pezzos

We now briefly introduce X -cluster variables, that can be used to construct (nonau-
tonomous) cluster integrable systems associated to toric CY3 [8,9,71]. We will show
that the notion of algebraic solutions of the Cluster Integrable System coincides with
the semiclassically exact solution of the TBA in Theorem 1. Indeed, as was shown ex-
plicitly for local P

1 × P
1 in [29], the TBA equations (1.2) in a collimation chamber are

equivalent to the discrete equation of the integrable system, so that the general solution
of the TBAs will correspond to a transcendental solution, rather than an algebraic one
(we will briefly review how the argument applies for local d P5 at the end of Sect. 3.1).
A possible intermediate behaviour is given by rational solutions, that we will construct
explicitly.

To each node i of the quiver Q we associate a C
×-valued X -cluster variable Xi :=

Xγi
, so that for a generic γ =

∑
i niγi ∈ Ŵ we have

Xγ :=
∏

i

X
ni

i . (3.1)

The X -cluster variety is constructed by patching local charts of X -cluster variables
by birational transformations called mutations. Under a mutation μk at a node k of
the quiver, the quiver and BPS charges transform according to (2.4), (2.5), while the
X -cluster variables transform as

μk(X j ) =

⎧
⎨
⎩

X −1
j , j = k,

X j

(
1 + X

sgnB jk

k

)B jk

, otherwise.
(3.2)

Other transformations that have to be considered are permutations of the nodes of the
quiver, and the inversion

ι : Bi j → −Bi j , Xi → X −1
i . (3.3)

The adjacency matrix of the quiver defines a Poisson bracket on the X -cluster variety,
for which the coordinates Xi are log-canonical:

{Xi ,X j } = Bi jXiX j . (3.4)

The Casimirs of this algebra are X -cluster variables associated to elements γ ∈ ker B :=
Ŵ f ⊂ Ŵ, the flavour sublattice of Ŵ. For local del Pezzos, such sublattices are isomorphic
to affine root lattices, according to the diagram 2, so that we can write them in terms of
cluster variables associated to the affine roots αi (see Appendix A),

ai := Xαi
, q := XD0, (3.5)

where the D0 brane charge is the null root of the affine root lattice. These are also
called multiplicative root variables. In the following, we will consider cluster variables
as solutions to the TBA equations (1.2): in terms of central charges/stability data, the
multiplicative root variables are simply

ai = e
Zαi
ǫ , q = e

Z D0
ǫ = e

2π
Rǫ , (3.6)

since central charges corresponding to flavour charges do not receive ǫ-corrections in
the TBA equations (1.2).
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Sequences of mutations, permutations and inversion that preserve the quiver (but
that can act nontrivially on the X -cluster variables) are Poisson maps on the cluster
variety. The group of such transformation is called the cluster modular group, and in our
present case it contains (often being isomorphic to) the extended affine Weyl group of the
corresponding algebra [8,71]. Among such transformation, a special role is performed by
affine translations, that are discrete time evolutions for a corresponding (nonautonomous)
cluster integrable system, which in this case are given by q-Painlevé equations.5

These are discrete flows among the leaves of (3.4): an affine translation will act on
the simple roots as

αi �→ αi + niγD0, (3.7)

so that the Casimirs get transformed according to

ai �→ qni ai . (3.8)

Once an affine translation is chosen as a discrete time evolution, the remaining ones act
as symmetries of the system, its so-called Bäcklund transformations. The importance of
these flows for us will be two-fold: on the one hand, it was shown in [13,28] that discrete
time evolutions of q-Painlevé equations, when acting on the charges through the mutation
rule (2.5), generate all the hypermultiplet BPS states outside the accumulation ray starting
from the initial generators γi associated to the nodes of the quiver. When acting on the X -
cluster variables, they instead yield the q-difference equations of the cluster integrable
system. The remaining flows, i.e. the Bäcklund transformations, generate an infinite
number of solutions to the TBA equations (1.2) starting from the simple solution of
Theorem 1.

3.1. Local d P5 and the algebraic solution to q-Painlevé VI. We consider the BPS quiver
associated to local d P5

6 in Fig. 3. The low-energy gauge theory phase of this geometry
is 5d SU (2) Super Yang–Mills with four fundamental flavours, and the BPS flavour
sublattice is

Ŵ f ≃ Q
(

D
(1)
5

)
, (3.9)

whose realization we recall in Appendix A.1. Consider the stability condition

C
(alg)

1 (d P5) : Z1 = Z5 = Z + �1, Z2 = Z6 = Z + �2,

Z3 = Z7 = Z̄ + �3, Z4 = Z8 = Z̄ + �4, (3.10)

with

�i ∈ R, �1 < �2, �4 < �3, 4Re Z + �1 + �2 + �3 + �4 =
π

R
, Im Z > 0

5 These can be seen as a deformation of cluster integrable systems arising from dimer models on the torus
[41,50]. The undeformed cluster integrable system describes the Seiberg–Witten geometry of the 5d gauge
theory [20,37], while the deformation takes into account the stringy (ǫ-) corrections, similarly as what happens
in four dimensions when going from a Hitchin System to Painlevé equations [15].

6 The quiver 3 is also associated to “pseudo local d P5”, which is a toric geometry first introduced in [39],
constructed by blowing up P

2 at non-generic points. The distinction between the two geometries enters in
the superpotential associated to the quiver and in additional bidirectional arrows in the quiver, both of which
however do not play a role in our considerations, see [6,53].
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1

2

3

4

5

6

7

8

Fig. 3. BPS quiver for dP5

(3.11)

and �i sufficiently small so that no wall-crossing happens from the case �1 = �2 =

�3 = �4 = 0, which we will refer to as the fine-tuned stratum C
(0)
1 . In [28] the BPS

spectrum for this chamber was shown to be of the form7:

γ �(γ ; y)

γr + kv1 1
−γr + (k + 1)v1 1

γs + kv2 1
−γs + (k + 1)v2 1
γa + γb + kγD0 1

−γa − γb + (k + 1)γD0 1
v1 + kγD0 y + y−1

−v1 + (k + 1)γD0 y + y−1

(k + 1)γD0 y3 + 6y + y−1

(3.12)

where k ≥ 0 and

r ∈ {1, 2, 3, 4}, s ∈ {5, 6, 7, 8}

(a, b) ∈ {(1, 3), (1, 4), (2, 3), (2, 4), (5, 7), (5, 8), (6, 7), (6, 8)},

v1 = γ1 + γ2 + γ3 + γ4, v2 = γ5 + γ6 + γ7 + γ8.

(3.13)

The BPS spectrum (3.12) is invariant under the involution π2 = (1, 5)(2, 6)(3, 7)

(4, 8), which can be identified with the Dynkin diagram automorphism in Fig. 4. Finally,

7 There is also another collimation chamber C
(alg)
2 , obtained from (3.10) through permutation π =

(1, 3, 5, 7)(2, 4, 6, 8) of the nodes. It corresponds to the algebraic solution of the second collimation chamber
C2 considered in [28]. For concreteness we will consider only the chamber C1, but everything holds for the
other chamber as well, after permutation of the labels in the formulas.
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Fig. 4. D
(1)
5 Dynkin diagram and involution

comparing with the basis of Ŵ f consisting of D
(1)
5 simple roots from equation (A.1), we

can see that

γ1 + π2(γ1) = γ5 + π2(γ5) = α2, γ2 + π2(γ2) = γ6 + π2(γ6) = α1 + α1 + α2,

γ3 + π2(γ3) = γ7 + π2(γ7) = α3, γ4 + π2(γ4) = γ8 + π2(γ8) = α3 + α4 + α5.

(3.14)

Thus, the assumptions of Theorem 1 are verified, and

Xγ1 = Xγ5 = e
Z+�1

ǫ ,Xγ2 = Xγ6 = e
Z+�2

ǫ ,

Xγ3 = Xγ7 = e
Z̄+�3

ǫ ,Xγ4 = Xγ8 = e
Z̄+�4

ǫ (3.15)

is an exact solution of the TBA equations, as can also be checked by explicit computation.
We will now introduce the cluster Integrable System associated to this geometry, and
use it to write down an infinite class of exact solutions starting from (3.15).

The q-Painlevé VI Cluster Integrable System The Cluster Integrable System for this
case is the q-Painlevé VI equation (symmetry type D

(1)
5 in Sakai’s classification). The

multiplicative root variables (Casimirs) are

a0 = X2X
−1
1 , a1 = X6X

−1
5 a2 = X1X5,

a3 = X3X7, a4 = X4X
−1
3 , a5 = X8X

−1
7 , (3.16)

with

q =

8∏

i=1

Xi = a0a1a2
2a2

3a4a5. (3.17)

The q-Painlevé dynamics is described by two log-canonical variables

F =

(
X7X8

X3X4

) 1
4

=

(
a5

a2
3a4

) 1
4

X7, G =

(
X5X6

X1X2

) 1
4

=

(
a1

a0a2
2

) 1
4

X5, {F, G} = 1,

(3.18)

evolving through the discrete time evolution

T1 = s3s4s5s3s2s1s0s2(2, 6)(1, 5)(4, 8)(7, 3)

= (1, 2)(3, 4)(5, 6)(7, 8)μ4μ8μ3μ7μ2μ6μ1μ5,
(3.19)
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which is an affine translation on the root lattice Q(D
(1)
5 ). Here si denotes the simple

reflection along the root αi , and is given in Appendix A. It acts on the (multiplicative)
affine roots as

T1(�α) = (α0, α1, α2 + δ, α3 − δ, α4, α5) , T1(�a) =
(

a0, a1, qa2, q−1a−1
3 , a4, a5

)
,

(3.20)

on the BPS charges as

T n
1 ( �γ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 + n v1
γ2 + n v1
γ3 − n v1
γ4 − n v1
γ5 + n v2
γ6 + n v2
γ7 − n v2
γ8 − n v2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.21)

and on the X-cluster variables as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X3 =

(
1+X −1

1

)(
1+X −1

2

)

X4(1+X5)(1+X6)
,

X4 =

(
1+X −1

1

)(
1+X −1

2

)

X3(1+X5)(1+X6)
,

X7 =

(
1+X −1

5

)(
1+X −1

6

)

X8(1+X1)(1+X2)
,

X8 =

(
1+X −1

5

)(
1+X −1

6

)

X7(1+X1)(1+X2)
,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X1 =

(
1+X −1

7

)(
1+X −1

8

)

X2(1+X3)(1+X4)
,

X2 =

(
1+X −1

7

)(
1+X −1

8

)

X1(1+X3)(1+X4)
,

X5 =

(
1+X −1

3

)(
1+X −1

4

)

X6(1+X7)(1+X8)
,

X6 =

(
1+X −1

3

)(
1+X −1

4

)

X5(1+X7)(1+X8)
,

(3.22)

where an overline represents the action of T1, while the underline represents the action of
T −1

1 . One can explicitly verify [8] that F, G defined by (3.18) satisfy the sixth q-Painlevé

equation (as written in [79] after the replacement bi �→ b
− 1

4
i )

F F =
1

b5b6

(1 + b6G)(1 + b5G)

(1 + b7G)(1 + b8G)
, G G =

1

b1b2

(1 + b1 F)(1 + b2 F)

(1 + b3 F)(1 + b4 F)
, (3.23)

where

b4
1 =

a4

a2
3a5

, b4
2 =

1

a2
3a3

4a5
, b4

3 =
a2

3a4

a5
, b4 = a2

3a4a3
5, (3.24)

b4
5 =

a0a2
2

a1
, b6 = a0a3

1a2
2 , b4

7 =
a0

a1a2
2

, b4
8 =

1

a3
0a1a2

2

. (3.25)

Note that the q-Painlevé VI time evolution generates all the states in the BPS spectrum
(3.12) whose central charges lie outside the real axis, since it produces the tilting of the
positive half-plane associated to the stability condition (3.10) (in fact, also to the more
general stability condition (3.34) that we will introduce below).
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Algebraic and rational solutions of q-Painlevé VI and exact solutions to the TBA Al-
gebraic solutions are typically characterized by their invariance under certain Bäcklund
transformations known as foldings, implementing appropriate Dynkin diagram auto-
morphisms on the cluster variables (see e.g. [11,59] and references therein), and they
provide the integrable system counterpart of the exact solutions to the TBAs of The-
orem 1. In particular, if we impose invariance under the involution π2, we obtain the
following algebraic solution of q-Painlevé VI

�X
(d P5)
alg (a0, a2, a3, a4) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
1/2
2

a0a
1/2
2

a
1/2
3

a4a
1/2
3

a
1/2
2

a0a
1/2
2

a
1/2
3

a4a
1/2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, q = (a0a2a3a4)
2, (3.26)

which coincides with (3.15) after appropriate identification between the Casimirs a0, a2,

a3, a4, q and the stability data Z ,�1,�2,�3,�4:

�X
(d P5)
alg (Z ,�i ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e
1
ǫ
(Z+�1)

e
1
ǫ
(Z+�2)

e
1
ǫ
(Z+�3)

e
1
ǫ
(Z+�4)

e
1
ǫ
(Z+�1)

e
1
ǫ
(Z+�2)

e
1
ǫ
(Z+�3)

e
1
ǫ
(Z+�4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 4Re Z +
∑

�i =
π

R
. (3.27)

From the algebraic solution (3.27) it is possible to construct an infinite number of ra-
tional solutions by applying Bäcklund transformations, and in particular other affine
translations realized as elements of the cluster modular group.8 The fact that these are
all solutions to the q-Painlevé equation (3.23) follows from the commutativity of affine
translations: for any translation T , one has

T1T �X
(d P5)
alg (a0, . . . , a5) = T T1 �X

(d P5)
alg (a0, . . . , a5)

= T �X
(d P5)
alg (a0, a1, qa2, q−1a3, a4, a5). (3.28)

From the point of view of the BPS Riemann–Hilbert problem, this gives closed-form
exact solutions for an infinite family of stability conditions related to each other by
affine translations, in terms of the stability data of the original stability condition C

(alg)

1
in (3.10).

8 See Sect. 3.2 of [59] for an algorithmic procedure to construct any affine translation as a sequence of the
simple reflections (A.4).
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Example. Consider the affine translation

T2 := π2s0s2s3s5s4s3s2s0, T2(�α) = (α0 + δ, α1 − δ, α2, α3, α4, α5) , (3.29)

or in terms of multiplicative root variables

T2(�a) = (qa0, q−1a1, a2, a3, a4, a5). (3.30)

If we apply this to the algebraic solution (3.27), we obtain the following rational solution
of q-Painlevé VI

X
(d P5)
5,rat := T2(X

(d P5)
5,alg )

=
a3

2a2
3

(
a2 ((a2 + 1) a3 + 1) a2

0 + 1
)

a2
4

(
a2

(
(a2 + 1) a3a2

4 + 1
)

a2
0 + 1

)
(
a2

0 a3a2
2 + (a3 + 1) a2 + 1

) (
a2

0 a2
2 a3a2

4 + a2
(
a3a2

4 + 1
)

+ 1
) , (3.31)

X
(d P5)
5,rat := T2(X

(d P5)
5,alg )

=
a3

(
a2

(
a3

(
a2a2

3

((
a2a2

0 + 1
)

a3a2 + a2 + 1
)

a4
4 + (a2 + 1) (a3 + 1) (a2a3 + 1) a2

4 + a2 + 1
)

+ 1
)

a2
0 + 1

)

a2
(
a3

(
a2

0 a2a2
3

(
a2 ((a2 + 1) a3 + 1) a2

0 + 1
)

a4
4 +

(
a2a2

0 + 1
)
(a3 + 1)

(
a2a3a2

0 + 1
)

a2
4 + a2

0 a2 + 1
)

+ 1
)

+ 1
,

(3.32)

the other cluster variables being obtained by a combination of (3.30) and (3.16). This is an
exact solution for the BPS Riemann–Hilbert problem corresponding to the transformed
stability condition Z̃i := T2(Zi ), with

T2(C
(alg)

1 ) : T2(Z1) = Z1 − 2Re Z1 − �3 − �4, T2(Z2) = Z2 + 2Re Z2 + �3 + �4,

T2(Z3) = Z3, T2(Z4) = Z4, T2(Z5) = Z1 + 2Re Z1 + �3 + �4,

T2(Z6) = Z6 − 2Re Z6 − �4 − �4, T2(Z7) = Z7, T2(Z8) = Z8,

(3.33)

with Zi given by (3.10). This stability condition does not satisfy the assumptions of
Theorem 1, and so its solution receives all-order corrections in ǫ. Nontheless, an exact
solution can be given starting from the algebraic one.

Remark 3. The rational solutions have a nice characterization from a resurgent stand-
point: recalling that ai = exp(Zαi

/ǫ), they are trans-series with no perturbative cor-
rections around all the infinite saddles. The algebraic solution is the one consisting of
only one trans-monomial. To the author’s knowledge, from the point of view of the BPS
spectral problem the existence of such solutions has never been pointed out before.

q-Painlevé VI equation and TBA equation Up to now we used the fact that the algebraic
solution satisfies the assumptions of Theorem 1 to construct relatively simple solutions
(algebraic and rational in the multiplicative root variables) of the BPS Riemann–Hilbert
Problem. Before moving forward, let us stress that it is possible show that any solution
to (1.2) corresponding to the spectrum (3.12) must also solve the q-Painlevé equation
(3.23). This is analogous to the perhaps more familiar statement that solutions of the
TBA equations for finite chambers can be reformulated as a Y-system, such as those
appearing in the study of 2d integrable QFTs [21,64,74,82].

We will only sketch the derivation, as the argument is simply an adaptation of the
one used in [29] for local P

1 × P
1: consider the following deformation of the family of

stability conditions C
(alg)

1 :9

C
(de f )

1 (d P5) : Z1 = Z + �1, Z2 = Z + �2, Z3 = Z̄ + �3, Z4 = Z̄ + �4,

9 This is only one neighborhood of C
(alg)
1 that is particularly convenient for the present discussion, but

more general ones can be considered within the same chamber.
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Z5 = Z + �1 + �5, Z6 = Z + �2 + �6, Z7 = Z̄ + �3 + �7,

Z8 = Z̄ + �4 + �8, (3.34)

with

�i ∈ R, max(�1, �1 + �5) < min(�2, �2 + �6),

max(�4,�4 + �8) < min(�3,�3 + �7),

4Re Z + �1 + �2 + �3 + �4 =
π

R
, �5 + �6 + �7 + �8 = 0, Im Z > 0,

(3.35)

and perform the following homotopy in the space of stability conditions:

Zγi
(s) = (1 − s)Zγi

+ s Z̃γi
. (3.36)

Here

Z̃γ1,5 = Zγ1,5 + Zv1, Z̃γ2,6 = Zγ2,6 + Zv2 , (3.37)

Z̃γ3,7 = Zγ3,7 − Zv2 , Z̃γ4,8 = Zγ4,8 − Zv1 , (3.38)

so that we are shifting the towers of central charges with positive imaginary part to the
right, and the towers with negative imaginary part to the left. Along this path in the
moduli space of stability conditions, the integration contours of the TBA rotate, and the
phase of ǫ is crossed first by the following paths, in sequence: ℓγ1 , ℓγ5 , ℓγ2 , ℓγ6 , ℓγ5+γ6+γ8 ,
ℓγ1+γ2+γ4 , ℓγ1+γ2+γ3 , ℓγ5+γ6+γ7 . This has the effect of the following sequence of mutations
on the solution to the TBA equations:

m1 = μ4μ8μ3μ7μ2μ6μ1μ5, (3.39)

which is the same (up to a permutation that only exchanges labels of mutually local
central charges and does not affect the result) as the sequence of mutations entering
in the affine translation (3.19) defining the q-Painlevé VI time evolution. Since the q-
Painlevé VI equation follows only from the mutation rules, it follows that solutions of
the GMN TBA equation (1.2) in the collimation chamber C

(de f )

1 are also solutions of the
q-Painlevé VI equation (3.23). The explicit expression for the general solution in terms
of dual Nekrasov partition functions was obtained in [57], so that one has an explicit
formula for the solution of the TBA equation (1.2) in terms of Nekrasov functions. We
will not go into a detailed description of the general solution, which can be studied
applying the methods of [29] to the solution of [57].

Remark 4. As already noted at the beginning of this section, the q-Painlevé equation
(3.23) can be regarded as the analogue of a Y-system for the TBA equations (1.2).
Interestingly, the q-Painlevé tau functions, which can be written as dual 5d gauge theory
partition functions [8–10,14,57,68], are related to the X -cluster variables by

Xi = yi

|Q|∏

j=1

τ
B j i

j , (3.40)

where yi are cluster algebra coefficients. This expression seems to point out that the
q-Painlevé tau functions should be the analogue of Q-functions for the TBA equation
[42,60,63].
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3.2. Local d P4. Our strategy to study local d P4 will be to decouple appropriate nodes
of the BPS quiver 3 to obtain the desired d P4 quiver (see model 8a in [53], with the
same remark about del Pezzos and pseudo del Pezzos as in footnote 6). This procedure is
called "Higgsing" in the physics literature [24], and it was mostly studied in the context of
brane tilings/dimer models associated to toric geometries [27,43,44,53]. In our present
case, it corresponds to sending to infinity the mass of a hypermultiplet in the low-energy
SU (2) N f = 4 gauge theory phase of local d P4, degenerating to the SU (2) N f = 3
low-energy gauge theory phase of local d P4.

We start from the collimation chamber C1 of d P5 and send Z5, Z7 → ∞ while
keeping Z5 + Z7 finite. This can be realized by sending �5 → −∞, �7 → +∞ in
(3.34)while keeping �̃1 := �5 + �7 finite. Graphically, the nodes γ5, γ7 of the quiver
merge, and the number of arrows from the i-th node of the quiver to the new node γ5 +γ7
are equal to Bi5 + Bi7.

Before detailing the result of this degeneration procedure, let us remark that in prin-
ciple when taking this limit an infinite number of wall-crossings happen, possibly pro-
ducing new wild states. However, as argued in [24] on the basis of quiver representation
theory, in terms of which the limit amounts to imposing that the arrow between the nodes
5 and 7 is an isomorphism, these states will be unstable in the limit, so that they will not
contribute to the BPS spectrum. In practice, the argument from [24] is corroborated by
the fact that the BPS spectrum computed by degeneration of (3.12) coincides with the
one computed by using the mutation method for the limiting stability condition (3.42)
below. After relabeling

γ
(d P4)
5 := γ

(d P5)
6 , γ

(d P4)
6 := γ

(d P5)
5 + γ

(d P5)
7 , γ

(d P4)
7 := γ

(d P5)
8 , (3.41)

the quiver takes the form in Fig. 5, which is a BPS quiver associated to local d P4 and to
the q-Painlevé equation of symmetry type A

(1)
4 . The stability condition (3.34) becomes

C
(de f )

1 (d P4) : Z1 = Z + �1, Z2 = Z + �2, Z3 = Z̄ + �3, Z4 = Z̄ + �4,

Z5 = Z + �2 + �6, Z6 = 2Re Z + �1 + �3 + �̃1,

Z7 = Z̄ + �4 + �8, (3.42)

with

�i ∈ R, �1 < min(�2, �2 + �6), max(�4,�4 + �8) < �3

4Re Z + �1 + �2 + �3 + �4 =
π

R
, �̃1 + �6 + �8 = 0. (3.43)

Indeed, after the limit, the rank of the flavour sublattice is reduced from 6 to 5, and
we can choose the following basis:

α
(d P4)
0 := α

(d P5)
2 + α

(d P5)
3 , α

(d P4)
1 := α

(d P5)
0 , α

(d P4)
2 = α

(d P5)
2 + α

(d P5)
1 ,

α
(d P4)
3 := α

(d P5)
3 + α

(d P5)
5 , α

(d P4)
4 = α

(d P5)
4 , (3.44)

which in terms of the BPS charges associated to the quiver 5 reads (omitting the super-
script d P4 when not necessary)

α0 = γ1 + γ3 + γ6, α1 = γ2 − γ1, α2 = γ1 + γ5,

α3 = γ3 + γ7, α4 = γ4 − γ3. (3.45)
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1
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3

4

5

6

7

Fig. 5. BPS quiver for dP4

Using the relation (3.44), together with the D
(1)
5 Cartan matrix (A.3), one finds that the

intersection pairing between the basis α j of Ŵ f for local d P4 coincides with the Cartan

matrix of A
(1)
4 (A.9), as expected from the degeneration diagram 2. The limit can be

straightforwardly applied to the BPS spectrum (3.12) as well, by keeping only states
from (3.12) whose central charges remain finite:

γ �(γ ; y)

γr + kv1 1
−γr + (k + 1)v1 1

γs + kv2 1
−γs + (k + 1)v2 1
γa + γb + kγD0 1

−γa − γb + (k + 1)γD0 1
γ6 + kγD0 1

−γ6 + (k + 1)γD0 1
v1 + kγD0 y + y−1

−v1 + (k + 1)γD0 y + y−1

(k + 1)γD0 y3 + 6y + y−1

(3.46)

where k ≥ 0 and

r ∈ {1, 2, 3, 4}, s ∈ {5, 7}

(a, b) ∈ {(1, 3), (1, 4), (2, 3), (2, 4), (5, 7)},

v1 = γ1 + γ2 + γ3 + γ4, v2 = γ5 + γ6 + γ7.

(3.47)

In fact, one can also find this spectrum by directly by applying the mutation method
to the stability condition (3.42). On the new basis of BPS charges, the discrete time
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1 2

3

45

6

Fig. 6. BPS quiver for dP3

evolution (3.21) degenerates to

T n
1 ( �γ ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γ1 + n v1
γ2 + n v1
γ3 − n v1
γ4 − n v1
γ5 + n v2

γ6
γ7 − n v2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3.48)

which is the following affine translation on the (multiplicative) root variables

T1(�α) = (α0, α1, α2 + δ, α3 − δ, α4) , T1(�a) =
(

a0, a1, q a2, q−1a3, a4

)
,

(3.49)

and can be realized in terms of mutation as

T1 = (1, 2)(3, 4)(5, 6, 7)μ6μ3μ4μ5μ2μ1. (3.50)

This translation also coincides with the time evolution of the corresponding q-Painlevé V
equation (symmetry type A

(1)
4 ) [8,78]. The integrable system admits no folding [11], and

correspondigly we do not have a semiclassically exact solution to the TBAs. Instead, so-
lutions of the TBA equation (1.2) in the collimation chamber (3.46) will be described by
nontrivial solutions of the corresponding q-Painlevé equation, by an analogous argument
to the one at the end of the previous section.

3.3. Local d P3. To decouple one more flavour, we follow the same procedure as before
and take Z1, Z3 → ∞ in the stability condition (3.42), while keeping Z1 + Z3 finite, i.e.
take �1 → −∞, �3 → +∞ while fixing �̃2 := �1 + �3 in (3.42). After relabeling

γ
(d P3)
2 := γ

(d P4)
1 + γ

(d P4)
3 , γ

(d P3)
1 := γ

(d P4)
2 , γ

(d P3)
3 := γ

(d P4)
4

γ
(d P3)
4 := γ

(d P4)
5 , γ

(d P3)
5 := γ

(d P4)
6 , γ

(d P3)
6 := γ

(d P4)
7 , (3.51)
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Fig. 7. (A2 + A1)(1) Dynkin diagrams and automorphisms. π2 = id on the A
(1)
1 sublattice, while π3 = id

on the A
(1)
2 sublattice. The two combine to give the Z6 permutation symmetry of the quiver

the resulting quiver for local d P3 is in Fig. 6, and the limiting stability condition

C
(de f )

1 (d P3) : Z1 = Z + �2, Z2 = 2Re Z + �̃2, Z3 = Z̄ + �4,

Z4 = Z + �2 + �6, Z5 = 2Re Z + �̃1 + �̃2, Z6 = Z̄ + �4 + �8,

(3.52)

with

�i ∈ R, 4Re Z + �̃2 + �2 + �4 =
π

R
, �̃1 + �6 + �8 = 0, (3.53)

deforming the fine-tuned stability condition of [28], which is recovered when �i =
�̃i = 0.

We can choose the following basis for the flavour lattice (omitting d P3 labels for
convenience):

α0 = γ3 + γ6 = α
(d P4)
3 + α

(d P4)
4 , α1 = γ1 + γ4 = α

(d P4)
1 + α

(d P4)
2 ,

α2 = γ2 + γ5 = α
(d P4)
0 ,

β0 = γ2 + γ4 + γ6 = α
(d P4)
2 + α

(d P4)
3 , β1 = γ1 + γ3 + γ5 = α

(d P4)
0 + α

(d P4)
1 + α

(d P4)
4 .

(3.54)

As before, we introduce multiplicative root variables by ai := Xαi
, bi := Xβi

. The
symmetric pairing of the flavour charges (3.54) coincides with the (A2 + A1)

(1) Cartan
matrix (A.15) encoded in the Dynkin diagrams in Fig. 7.

The BPS spectrum obtained from the decoupling procedure coincides with the one
computed in [28], and is given by

γ �(γ ; y)

γr + kv1 1
−γr + (k + 1)v1 1

γs + kv2 1
−γs + (k + 1)v2 1

γt + kγD0 1
−γt + (k + 1)γD0 1
γa + γb + kγD0 1

−γa − γb + (k + 1)γD0 1
v1 + kγD0 y + y−1

−v1 + (k + 1)γD0 y + y−1

(k + 1)γD0 y3 + 4y + y−1

(3.55)
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with k ≥ 0,

r ∈ {1, 3} s ∈ {4, 6} t ∈ {2, 5} (a, b) ∈ {(1, 3), (4, 6)}, (3.56)

and

v1 = γ1 + γ2 + γ3, v2 = γ4 + γ5 + γ6. (3.57)

The corresponding cluster integrable system is the q-Painlevé I I I1 equation (symmetry
type (A2 + A1)

(1) in Sakai’s classification), with discrete time evolution

T1 = π2s2s1, T1(�a, �b) = (q−1a0, qa1, a2, b0, b1). (3.58)

The Dynkin diagram 7 now has a Z2 involution realized on the BPS charges as the
permutation

π3 = (1, 4)(2, 5)(3, 6), (3.59)

with π given in the cluster realization of the affine Weyl group (A.14). We are again
in a setting where the assumptions of Theorem 1 hold, since when �6 = �8 = 0,
�̃2 = �1 + �̃1 both the stability condition (3.52) and the spectrum (3.55) are invariant
under π3. The exact solution of the TBA equation is

X1 = X4 = e
Z+�2

ǫ , X2 = X5 = e
2Re Z+�̃2

ǫ , X3 = X6 = e
Z̄+�4

ǫ , (3.60)

coinciding with the q-Painlevé I I I3 algebraic solution

X1 = X4 = a
1
2
1 , X2 = X5 = a

1
2
2 , X3 = X6 = a

1
2
0 , a0a1a2 = q. (3.61)

Remark 5. Note that the algebraic solution of d P3 can be obtained by direct decoupling
of the algebraic solution of d P5. This is because if one tries to take the limit Z5, Z7 → ∞,
Z5 + Z7 finite that takes d P5 to d P4, the Z2 symmetry of the stability condition (3.10)
corresponding to the algebraic solution (3.27) requires also to simultaneously take the
limit Z1, Z3 → ∞ with Z1 + Z3 finite, that brings d P4 to d P3. In terms of multiplicative
roots/Kähler parameters, the limit reads

a
(d P5)
2 , a

(d P5)
4 → ∞, a

(d P5)
0 , a

(d P5)
3 → 0, (3.62)

while keeping finite

a
(d P3)
1 := a

(d P5)
0 (a

(d P5)
2 )2, a

(d P3)
2 := a

(d P5)
2 a

(d P5)
3 , a

(d P3)
3 := a

(d P5)
4 (a

(d P5)
3 )2.

(3.63)

As it happened for the case of local d P5, there are nontrivial Bäcklund transformation,
consisting of flows T2, T3 on the A

(1)
2 sublattice (equation (A.16)), and of the flow T4

on the A
(1)
1 sublattice (equation (A.17)). Rational solutions are constructed from the

elementary one by action of Bäcklund transformations. The flows T2, T3 act rather
simply:

T2(Xi (a0, a1, a2)) = Xi (a0, q−1a2, qa3), T3(Xi (a0, a1, a2)) = Xi (qa0, a1, q−1a2).

(3.64)
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On the other hand, the action of T4 = (4, 6)μ2μ4μ6μ2(4, 5, 1, 2, 3) gives quite non-
trivial rational solutions. For example,

T4(X1) = a1a
1
2
3

⎛
⎜⎜⎝

1 + a
1
2
2

(
1 + a

1
2
1

)

1 + a
1
2
1

(
1 + a

1
2
3

)

⎞
⎟⎟⎠ , T4(X2) = a

− 1
2

1

⎛
⎜⎜⎝

1 + a
1
2
2

(
1 + a

1
2
1

)

1 + a
1
2
3

(
1 + a

1
2
2

)

⎞
⎟⎟⎠ (3.65)

T4(X3) = a
1
2
2 a3

⎛
⎜⎜⎝

1 + a
1
2
1

(
1 + a

1
2
3

)

1 + a
1
2
3

(
1 + a

1
2
2

)

⎞
⎟⎟⎠ , T4(X4) = a

− 1
2

3

⎛
⎜⎜⎝

1 + a
1
2
1

(
1 + a

1
2
3

)

1 + a
1
2
2

(
1 + a

1
2
1

)

⎞
⎟⎟⎠ (3.66)

T4(X5) = a
1
2
1 a2

⎛
⎜⎜⎝

1 + a
1
2
3

(
1 + a

1
2
2

)

1 + a
1
2
2

(
1 + a

1
2
1

)

⎞
⎟⎟⎠ , T4(X6) = a

− 1
2

2

⎛
⎜⎜⎝

1 + a
1
2
3

(
1 + a

1
2
2

)

1 + a
1
2
1

(
1 + a

1
2
3

)

⎞
⎟⎟⎠ (3.67)

is another solution. An infinite number of rational solutions for the q-Painlevé I I I3 flow
generated by T1 can be generated by successive application of T2, T3, T4 to the "seed"
solution (3.61), yielding an infinite number of exact solutions to the BPS RHP in the
respective transformed chambers.

3.4. Local d P2. To degenerate further to local d P2, we send Z4, Z5 → ∞ While
keeping Z4 + Z5 finite, which can be achieved by sending �6 → +∞, �̃1 → −∞ while
keeping finite �6 + �̃1 = −�8. After relabeling

γ
(d P2)
1 := γ

(d P3)
3 , γ

(d P2)
2 := γ

(d P3)
4 + γ

(d P3)
5 , γ

(d P2)
3 := γ

(d P3)
6 ,

γ
(d P2)
4 := γ

(d P3)
1 , γ

(d P2)
5 := γ

(d P3)
2 (3.68)

one obtains the local d P2 quiver in Fig. 8. The stability condition becomes

C
(de f )

1 (d P2) : Z1 = Z̄ + �4, Z2 = Z + 2Re Z + �̃2 + �2 − �8,

Z3 = Z̄ + �4 + �8, Z4 = Z + �2, Z5 = 2Re Z + �̃2, (3.69)

with

�i ∈ R, 4Re Z + �̃2 + �2 + �4 =
π

R
. (3.70)

The new basis for Ŵ f

α0 = γ2 + γ4 + γ5 = α
(d P3)
0 + α

(d P3)
1 , α1 = γ1 + γ3 = α

(d P3)
2 ,

β0 = γ2 − 2γ4 + 2γ5 − γ1 = 2β
(d P3)
0 + α

(d P3)
0 − α

(d P3)
1 (3.71)

is a basis of simple roots for the lattice Q(A1 + A1)
(1), as expected from the diagram 2,

and the intersection form (A.3) in this basis becomes the appropriate Cartan matrix
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Fig. 8. BPS quiver for dP2

(A.23). The BPS spectrum obtained from the degeneration procedure is

γ �(γ ; y)

γr + kv1 1
−γr + (k + 1)v1 1

γ3 + kv2 1
−γ3 + (k + 1)v2 1

γ5 + kγD0 1
−γ5 + (k + 1)γD0 1
γ1 + γ4 + kγD0 1

−γ1 − γ4 + (k + 1)γD0 1
v1 + kγD0 y + y−1

−v1 + (k + 1)γD0 y + y−1

(k + 1)γD0 y3 + 4y + y−1

(3.72)

with k ≥ 0 and

r ∈ {1, 4}, v1 = γ1 + γ4 + γ5, v2 = γ2 + γ3, (3.73)

which indeed corresponds to the stability condition (3.69) and is obtained from the tilting
sequence

m(d P2) = μ1μ3μ5μ2μ4μ1μ3μ5μ4μ1μ2μ5μ3μ4μ1μ2μ5μ4, (3.74)

corresponding to the affine translation

T
(
�α, �β

)
= (α0 + 6δ, α1 − 6δ, β0 + 6δ, β1 − 6δ) . (3.75)

Interestingly, and differently from the previous cases, it does not seem that the mutation
sequence can be decomposed into more “fundamental” translations. Finally, as we ob-
served in the case of local d P4, one does not have a semiclassically exact solution to the
TBAs, which in general will be instead given by solutions of q-Painlevé I I I2 (symmetry
type E

(1)
2 in Sakai’s classification). This again mirrors the fact that the corresponding

q-Painlevé equation does not have algebraic solutions invariant under foldings [11].
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3.5. Local P
1 × P

1. Starting from local d P2, there are two possible degenerations, one
leading to local P

1 × P
1, and the other to local d P1. To degenerate to local P

1 × P
1 we

send Z4, Z5 → ∞ while keeping Z4 + Z5 finite, i.e. end �2 → −∞, �̃2 → +∞ with
�2 + �̃2 := � finite. After relabeling

γ
(P1×P

1)
4 := γ

(d P2)
4 + γ

(d P2)
5 , (3.76)

we obtain the quiver in Fig. 9a, which is the BPS quiver of local P
1 ×P

1, and the stability
condition

C
(de f )

1 (P1 × P
1) : Z1 = Z + 2Re Z + �̃, Z2 = Z̄ + �4, (3.77)

Z3 = Z + 2Re Z + �̃ − �8, Z4 = Z̄ + �4 + �8, (3.78)

which is nothing but the collimation chamber for local P
1 × P

1 from [29], parametrized
in a slightly different way. The new basis for Ŵ f

α
(P1×P

1)
0 := α

(d P2)
1 α

(P1×P
1)

1 := α
(d P2)
0 (3.79)

gives the simple roots of Q(A
(1)
1 ) with intersection matrix (A.27). The limiting BPS

spectrum is

γ �(γ ; y)

γ1 + kv1 1
−γ1 + (k + 1)v1 1

γ3 + kv2 1
−γ3 + (k + 1)v2 1

v1 + kγD0 y + y−1

−v1 + (k + 1)γD0 y + y−1

(k + 1)γD0 y3 + 4y + y−1

(3.80)

with k ≥ 0 and

v1 = γ1 + γ2, v2 = γ3 + γ4, (3.81)

and coincides with the BPS spectrum for the collimation chamber of local P
1 × P

1

computed in [13,28,67].

3.6. Local d P1. To degenerate to local d P1 we instead send Z1, Z5 → ∞ while keeping
Z1 + Z5 finite in (3.69). This limit is slightly less straightforward than the previous ones,
as we have to send �4 → −∞, �̃2, �8 → +∞, while keeping finite the combinations
�̃2 + �4 := �̃3, �4 + �8 := �̃4. After relabeling

γ
(d P1)
1 := γ

(d P2)
2 , γ

(d P1)
2 := γ

(d P2)
3 , γ

(d P1)
3 := γ

(d P2)
4 , γ

(d P1)
4 := γ

(d P2)
1 + γ

(d P2)
5 ,

(3.82)

we obtain the local d P1 BPS quiver in Fig. 9b, and the stability condition

C
(de f )

1 (d P1) : Z1 = Z + 2Re Z + �2 + �̃3 − �̃4, Z2 = Z̄ + �̃3, (3.83)

Z3 = Z + �2, Z4 = Z̄ + 2Re Z + �̃3, (3.84)
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Fig. 9. BPS quivers of local P
1 × P

1 and local d P1 geometries

with 4Re Z + �2 + �̃3 = π
R

. The new basis of Ŵ f is

α
(d P1)
0 :=

1

2
α

(d P2)
0 − α

(d P2)
1 +

1

2
β

(d P2)
0 , α

(d P1)
1 :=

1

2
α

(d P2)
0 + 2α

(d P2)
1 −

1

2
β

(d P2)
0 ,

(3.85)

and involves fractional linear combinations of the local d P2 roots. The limiting spectrum
is still given by (3.80), providing a derivation from decoupling of a proposal made in
[13], where it was conjectured that the BPS spectrum of local P

1 × P
1 and local d P1

should coincide.

3.7. Local P
2. Sadly, our degeneration journey must end here. In order to decouple

(3.83) to local P
2, we should send Z2, Z3 → ∞ while keeping Z2 + Z3, Z1, Z4 all finite,

and this cannot be done whithin the collimation chamber (3.83). This impossibility is
likely due to the fact that the root lattice for this geometry is A

(1)
0 , with only the null

root corresponding to the D0 brane. As a result, there is no nontrivial affine translation
that could correspond to a tilting, which physically corresponds to the absence of a
low-energy gauge theory phase for this geometry.

4. Wild Algebraic Solutions: The Case of Local d P3

Up to now we discussed BPS spectra obtained by either deforming or degenerating the
local d P5 stability condition (3.27) associated to an algebraic solution of q-Painlevé VI.
Importantly, all the algebraic solutions discussed up to now (including local d P3 and
local P

1 × P
1) had an associated stability condition lying away from a wall of marginal

stability. In this section, we will discuss an example where an algebraic solution exists
but lies on a wall of marginal stability: as it turns out, it still signals the presence of an
interesting chamber, as long as one deforms away from the marginally stable collimated
configuration.

Consider local d P3: the algebraic solution (3.61) was obtained from the configuration
invariant under the Z2 involution π3 = (1, 4)(2, 5)(3, 6), and evolved according to the
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time evolution (3.58) on the A
(1)
2 sublattice of Ŵ f ≃ Q(A2 + A1)

(1). We can also consider
the algebraic solution

X1 = X3 = X5 = b
−1/3
0 , X2 = X4 = X6 = qb

1/3
0 , (4.1)

invariant under the Z3 quiver automorphism π2 = (1, 3, 5)(2, 4, 6). It evolves under the
(q-Painlevé IV) time evolution

T4 = μ2μ6μ4μ2(1, 4, 3, 6)(2, 5) = (1, 4, 3, 6)(2, 5)μ5μ3μ1μ5, (4.2)

acting on the A
(1)
1 sublattice generated by the roots β0, β1 in (3.54). The action of T4 on

the BPS charges is

T 3n+1
4 ( �γ ) =

⎛
⎜⎜⎜⎜⎜⎝

γ1 + γ3 + γ4 + nδ

−γ1 − nδ

γ3 + γ5 + γ6 + nδ

−γ3 − nδ

γ5 + γ1 + γ2 + nδ

−γ5 − nδ

⎞
⎟⎟⎟⎟⎟⎠

, T 3n+2
4 ( �γ ) =

⎛
⎜⎜⎜⎜⎜⎝

γ2 − (n − 1)δ

−(γ1 + γ3 + γ4) − nδ

γ4 + (n − 1)δ

−(γ3 + γ5 + γ6) + nδ

γ6 − (n − 1)δ

−(γ1 + γ2 + γ5) − nδ

⎞
⎟⎟⎟⎟⎟⎠

, (4.3)

T 3n
4 ( �γ ) =

⎛
⎜⎜⎜⎜⎜⎝

γ1 + nδ

γ2 − nδ

γ3 + nδ

γ4 − nδ

γ5 + nδ

γ6 − nδ

⎞
⎟⎟⎟⎟⎟⎠

, (4.4)

while on the (multiplicative) root variables it acts as

T4(α0, α1, α2, β0, β1) = (α0, α1, α2, β0 + δ, β1 − δ), (4.5)

T4(a0, a1, a2, b0, b1) = (a0, a1, a2, qb0, q−1b1). (4.6)

The corresponding stability condition

C
(alg)

1 (d P3)
′ : Z := Z1 = Z3 = Z5, Z2 = Z3 = Z6 =

2π

3R
− Z (4.7)

lies on a wall of marginal stability, because mutually nonlocal central charges are
aligned. Let us ignore this for a moment and work with it as a formal stability condition.
First note that, up to permutations, if we define

m1 := μ1μ5μ1μ3μ1 m2 := μ2μ6μ2μ4μ2, (4.8)

we have

m1 ∼ T4, m2m1 ∼ T 2
4 , m1m2m1 ∼ T 3

4 , (4.9)

i.e. the mutation sequence m1m2m1 is induced by the affine translation T4.10 Keeping
track of the states that are being acted upon by mutations (in red below), we have

m1 :

⎛
⎜⎜⎜⎜⎜⎝

γ1
γ2
γ3
γ4
γ5
γ6

⎞
⎟⎟⎟⎟⎟⎠

μ1
−→

⎛
⎜⎜⎜⎜⎜⎝

−γ1
γ1 + γ2
γ1 + γ3

γ4
γ5
γ6

⎞
⎟⎟⎟⎟⎟⎠

μ3
−→

⎛
⎜⎜⎜⎜⎜⎝

γ3
γ1 + γ2

−γ1 − γ3
γ1 + γ3 + γ4

γ5
γ6

⎞
⎟⎟⎟⎟⎟⎠

μ1
−→

⎛
⎜⎜⎜⎜⎜⎝

−γ3
γ1 + γ2
−γ1

γ1 + γ3 + γ4
γ3 + γ5

γ6

⎞
⎟⎟⎟⎟⎟⎠

10 It might not seem so, because T4 has 4 mutation while mi have 5. However there are relations between
the mutations because 135 and 246 are closed cycles in the quiver.
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μ5
−→

⎛
⎜⎜⎜⎜⎜⎝

γ5
γ1 + γ2
−γ1

γ1 + γ3 + γ4
−γ3 − γ5

γ3 + γ5 + γ6

⎞
⎟⎟⎟⎟⎟⎠

μ1
−→

⎛
⎜⎜⎜⎜⎜⎝

−γ5
γ1 + γ2 + γ5

−γ1
γ1 + γ3 + γ4

−γ3
γ3 + γ5 + γ6

⎞
⎟⎟⎟⎟⎟⎠

= (1, 4, 5, 2, 3, 6)T4( �γ ), (4.10)

m2 :

⎛
⎜⎜⎜⎜⎜⎝

−γ5
γ1 + γ2 + γ5

−γ1
γ1 + γ3 + γ4

−γ3
γ3 + γ5 + γ6

⎞
⎟⎟⎟⎟⎟⎠

μ2
−→

⎛
⎜⎜⎜⎜⎜⎝

γ1 + γ2
−γ1 − γ2 − γ5

−γ1
2γ1 + γ2 + γ3 + γ4 + γ5

−γ3
γ3 + γ5 + γ6

⎞
⎟⎟⎟⎟⎟⎠

μ4
−→

⎛
⎜⎜⎜⎜⎜⎝

γ1 + γ2
γ1 + γ3 + γ4

γ1 + γ2 + γ3 + γ4 + γ5
−2γ1 − γ2 − γ3 − γ4 − γ5

−γ3
γ3 + γ5 + γ6

⎞
⎟⎟⎟⎟⎟⎠

μ2
−→

⎛
⎜⎜⎜⎜⎜⎝

γ1 + γ2
−γ1 − γ3 − γ4

γ1 + γ2 + γ3 + γ4 + γ5
−γ1 − γ2 − γ5

−γ3
γ1 + 2γ3 + γ4 + γ5 + γ6

⎞
⎟⎟⎟⎟⎟⎠

μ6
−→

⎛
⎜⎜⎜⎜⎜⎝

γ1 + γ2
γ3 + γ5 + γ6

γ1 + γ2 + γ3 + γ4 + γ5
−γ1 − γ2 − γ5

γ1 + γ3 + γ4 + γ5 + γ6
−γ1 − 2γ3 − γ4 − γ5 − γ6

⎞
⎟⎟⎟⎟⎟⎠

μ2
−→

⎛
⎜⎜⎜⎜⎜⎝

γ1 + γ2 + γ3 + γ5 + γ6
−γ3 − γ5 − γ6

γ1 + γ2 + γ3 + γ4 + γ5
−γ1 − γ2 − γ5

γ1 + γ3 + γ4 + γ5 + γ6
−γ1 − γ3 − γ4

⎞
⎟⎟⎟⎟⎟⎠

= (1, 5, 3)(2, 6, 4)T 2
4 ( �γ ) (4.11)

m1 :

⎛
⎜⎜⎜⎜⎜⎝

γ1 + γ2 + γ3 + γ5 + γ6
−γ3 − γ5 − γ6

γ1 + γ2 + γ3 + γ4 + γ5
−γ1 − γ2 − γ5

γ1 + γ3 + γ4 + γ5 + γ6
−γ1 − γ3 − γ4

⎞
⎟⎟⎟⎟⎟⎠

μ1
−→

⎛
⎜⎜⎜⎜⎜⎝

−γ1 − γ2 − γ3 − γ5 − γ6
γ1 + γ2

2γ1 + 2γ2 + 2γ3 + γ4 + 2γ5 + γ6
−γ1 − γ2 − γ5

γ1 + γ3 + γ4 + γ5 + γ6
−γ1 − γ3 − γ4

⎞
⎟⎟⎟⎟⎟⎠

μ3
−→

⎛
⎜⎜⎜⎜⎜⎝

γ1 + γ2 + γ3 + γ4 + γ5
γ1 + γ2

−2γ1 − 2γ2 − 2γ3 − γ4 − 2γ5 − γ6
γ1 + γ2 + 2γ3 + γ4 + γ5 + γ6

γ1 + γ3 + γ4 + γ5 + γ6
−γ1 − γ3 − γ4

⎞
⎟⎟⎟⎟⎟⎠

μ1
−→

⎛
⎜⎜⎜⎜⎜⎝

−γ1 − γ2 − γ3 − γ4 − γ5
γ1 + γ2

−γ1 − γ2 − γ3 − γ5 − γ6
γ1 + γ2 + 2γ3 + γ4 + γ5 + γ6

2γ1 + γ2 + 2γ3 + 2γ4 + 2γ5 + γ6
−γ1 − γ3 − γ4

⎞
⎟⎟⎟⎟⎟⎠
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μ5
−→

⎛
⎜⎜⎜⎜⎜⎝

γ1 + γ3 + γ4 + γ5 + γ6
γ1 + γ2

−γ1 − γ2 − γ3 − γ5 − γ6
γ1 + γ2 + 2γ3 + γ4 + γ5 + γ6

−2γ1 − γ2 − 2γ3 − 2γ4 − 2γ5 − γ6
γ1 + γ2 + γ3 + γ4 + 2γ5 + γ6

⎞
⎟⎟⎟⎟⎟⎠

μ1
−→

⎛
⎜⎜⎜⎜⎜⎝

γ2 − γD0
γ1 + γD0
γ4 − γD0
γ3 + γD0
γ6 − γD0
γ5 + γD0

⎞
⎟⎟⎟⎟⎟⎠

= (1, 2)(3, 4)(5, 6)T 3
4 ( �γ ). (4.12)

Note that this is also the mutation sequence that would be induced by a tilting of the
upper half-plane for the stability condition (4.7), but since we are on a wall of marginal
stability the ordering of mutations in a tilting is ambiguously defined. The solution is to
slightly deform the stability condition, into

C
(de f )

1 (d P3)
′ : Z1 = Z − �1, Z2 = Z̄ − �2, Z3 = Z , (4.13)

Z4 = Z̄ + �1, Z5 = Z + �2, Z6 = Z̄ . (4.14)

For small enough positive �1, �2 the phase ordering of the central charges on the upper-
right quadrant is given by the states in red in the equations above, so that T4 indeed
represents a tilting for this stability condition. The states in the lower-right quadrand
can be obtained in a similar way by performing the tilting counterclockwise. Similarly
to what we saw in Sect. 3, we have Peacock patterns of states with a single limiting ray,
the real axis, and for generic �1, �2 no central charges of mutually nonlocal states are
aligned.

While the states outside the limiting ray are those produced by T4, the ones on
the real axis can be found following [28] using the permutations symmetries of the
quiver, in the following way. First recall that the Kontsevich-Soibelman wall-crossing
invariant/quantum monodromy U is defined as:

U =

�∏

γ∈Ŵ+

∏

m∈Z

�((−y)m Xγ )am (γ ). (4.15)

Here

• Ŵ+ := {γ ∈ Ŵ : Re Zγ > 0};
• The phase ordering � is defined by decreasing arg Zγ ∈

(
π
2 ,−π

2

)
from left to

right;
• �(γ, y) :=

∑
m(−y)mam(γ ) is the Protected Spin Character [47], coinciding with

the BPS index of [48] when y = −1. Geometrically they are respectively the mo-
tivic and unrefined Donaldson–Thomas invariants of the coherent sheaf with Chern
character vector γ ;

• The quantum dilogarithm is �(x) :=
∏∞

n=0(1 + y2n+1x)−1;
• Xγ is a noncommutative deformation of the X -cluster variables, such that Xγ Xγ ′ =

y〈γ,γ ′〉 Xγ +γ ′ .

In a given chamber C, the wall-crossing invariant U can be factorized into an ordered
product U(∡+, C) from states with central charges lying on the upper-right quadrant,
U0(C) from the real axis, and a product on the real axis, and U(∡−, C) from the lower-
right quadrant:

U(C′
1) = U(∡+, C′

1)U0(C
′
1)U(∡−, C′

1). (4.16)
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In the chamber (4.13), we can immediately write down the contributions from states
outside the real axis:

U(∡+, C′
1) =

ր∏

k≥0

(
�

(
Xγ1+kγD0

)
�

(
Xγ1+γ3 + 2kγD0

)
�

(
Xγ3 + kγD0

)

�
(
Xγ3+γ5 + 2kγD0

)
�

(
Xγ5 + kγD0

) )

×

(
�

(
Xγ1+γ2+γ5 + kγD0

)
�

(
X2γ1+γ2+γ3+γ4+γ5 + 2kγD0

)

�
(
Xγ1+γ3+γ4 + kγD0

)

×�
(
Xγ1+2γ3+γ4+γ5+γ6 + 2kγD0

)
�

(
Xγ3+γ5+γ6 + kγD0

) )

×

(
�

(
X−γ4+(k+1)γD0

)
�

(
X−(γ4+γ6) + 2(k + 1)γD0

)
�

(
X−γ6 + (k + 1)γD0

)

×�
(
X−(γ2+γ6) + 2(k + 1)γD0

)

�
(
X−γ2 + (k + 1)γD0

) )
, (4.17)

U(∡−, C′
1) =

ց∏

k≥0

(
�

(
Xγ2+kγD0

)
�

(
Xγ2+γ6 + 2kγD0

)

�
(
Xγ6 + kγD0

)
�

(
Xγ4+γ6 + 2kγD0

)
�

(
Xγ4 + kγD0

) )

×

(
�

(
Xγ1+γ2+γ4 + kγD0

)
�

(
Xγ1+2γ2+γ4+γ5+γ6 + 2kγD0

)
�

(
Xγ2+γ5+γ6 + kγD0

)

×�
(
Xγ2+γ3+γ4+γ5+2γ6 + 2kγD0

)
�

(
Xγ3+γ4+γ6 + kγD0

) )

×

(
�

(
X−γ5+(k+1)γD0

)
�

(
X−(γ3+γ5) + 2(k + 1)γD0

)
�

(
X−γ3 + (k + 1)γD0

)

×�
(
X−(γ1+γ3) + 2(k + 1)γD0

)
�

(
X−γ1 + (k + 1)γD0

) )
(4.18)

where ր means increasing k from left to right, while ց the opposite. To obtain the states
along the real axis, note that under the Z6 permutation symmetry π = (1, 2, 3, 4, 5, 6)

of the quiver 6, the stability condition (4.13) gets mapped to other equivalent ones of
the same type, with spectrum related by the permutation π . Denote by Cn := πn−1(C1),
n = 1, . . . , 6. U is a wall-crossing invariant, so

U(C′
i ) = U(C′

j ), (4.19)

which can be recast into an equation for U0, to be solved order by order in the “size”
of the BPS state, i.e. the total number of elementary charges of which it is composed.
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After re-factoring U0 in quantum dilogarithms, the contributions up to size 8 are

γ : Zγ ∈ R+ �(γ ; y)

γ5 + γ6 1
γ3 + γ4 1
γ1 + γ2 1

γ3 + γ4 + γ5 + γ6 y−2 + 1 + y2

γ1 + γ2 + γ3 + γ4 y−2 + 1 + y2

γ3 + γ4 + 2(γ5 + γ6) y−2 + 1 + y2

γ1 + γ2 + 2(γ3 + γ4) y−2 + 1 + y2

2(γ3 + γ4) + γ5 + γ6 −
(
y−4 + y−2 + 1 + y2 + y4

)

2(γ1 + γ2) + γ3 + γ4 −
(
y−4 + y−2 + 1 + y2 + y4

)
...

...

(4.20)

To complete the spectrum, we have to include all the towers of hypermultiplet states:

γ : Zγ /∈ R �(γ ; y)

γ1,3,5 + kγD0 1
γ2,4,6 + kγD0 1

−γ1,3,5 + (k + 1)γD0 1
−γ2,4,6 + (k + 1)γD0 1
γ1,3 + γ3,5 + 2kγD0 1

γ2,4 + γ4,6 + 2k + γD0 1
−(γ1,3 + γ3,5) + 2(k + 1)γD0 1
−(γ2,4 + γ4,6) + 2(k + 1)γD0 1
γ1,1,3 + γ2,3,5 + γ5,4,6 + kγD0 1

−(γ1,1,3 + γ2,3,5 + γ5,4,6) + (k + 1)γD0 1
2γ1 + γ2 + γ3 + γ4 + γ5 + 2kγD0 1
γ1 + 2γ3 + γ4 + γ5 + γ6 + 2kγD0 1

−(2γ1 + γ2 + γ3 + γ4 + γ5) + 2(k + 1)γD0 1
−(γ1 + 2γ3 + γ4 + γ5 + γ6) + 2(k + 1)γD0 1

(4.21)

where the notation γi, j + γk,l means that both the states γi + γk and γ j + γl are present,
and k ≥ 0. Note that, even though we deformed the original chamber, marginally stable
states are still present, although these are only the higher-spin states on the real axis.
Thus, the stability condition (4.13) still lies on a wall of marginal stability, although in
a less evident way. However, since all the marginally stable states lie only on the real
axis, the factorization (4.16) and the wall-crossing invariant we computed still makes
sense, and in fact marginally stable stability conditions have already been used in the
four-dimensional setting to efficiently compute the wall-crossing invariant U [66].

Let us conclude this section with the following remark: it was proposed in [13] that the
BPS spectrum produced by the time evolution T4 is naturally associated to a 5d uplift of
the nonlagrangian Argyres–Douglas (A1, A3) theory: upon decoupling the nodes 3 and
6 from the local d P3 quiver, one obtains the appropriate four-dimensional BPS quiver,
see Fig. 10a. In this respect, it is worth noting that in the q-Painlevé confluence diagram
in Fig. 2 there are also arrows from local P

1 × P
1 to the (A1, A2) Argyres–Douglas

theory (A
(1)
1 in the bottom row), and from local P

2 to the (A1, A1) theory (A
(1)
0 in the

bottom row).
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34

Fig. 10. BPS quiver for local d P3 and one of its four-dimensional subquivers

The analysis of this section shows that such an uplift should display a wild spectrum,
as opposed to the finite spectrum of the four-dimensional theory. Indeed, to fully go
away from the wall of marginal stability we must further deform (4.13) in such a way
that Z1, Z3, Z5 no longer have the same imaginary part, and similarly for Z2, Z4, Z6.
This takes us away from the collimation region, as it opens up a cone where all the
higher-spin states will lie.

5. Conclusions and Outlook

The existence of algebraic solutions of the cluster Integrable System proved to be a
powerful tool to investigate BPS spectra: it allowed to find collimation chambers, both
of tame and wild type (albeit this latter only seem to signal a marginally stable region near
a properly wild chamber), and compute the corresponding BPS spectra and solutions to
the TBA equations. BPS spectra of geometries that do not admit algebraic solutions can
be obtained from those that do by an appropriate decoupling procedure. Having explored
the correspondence between BPS spectra and algebraic solutions of cluster integrable
systems for the five-dimensional theories with low-energy SU (2) gauge theory phases
with fundamental matter, there are still many directions to be pursued.

Foldings of cluster integrable systems and collimation chambers. In this work we stud-
ied algebraic solutions of cluster integrable systems characterized by invariance under
appropriate permutations symmetries of the corresponding quiver, and showed that they
can be identified with solutions of the conformal TBAs associated to the BPS spectrum.
However, there can be more general algebraic solutions invariant under foldings, i.e.
cluster automorphisms involving also mutations [11]. Do these algebraic solutions have
a counterpart from the point of view of the BPS spectral problem? If so, the discussion
of this paper would need to be quite nontrivially generalized, as (for example) a cluster
automorphism involving mutations necessarily does not preserve a choice of positive
half-plane, so that we cannot think in terms of a single stability condition anymore.

Another intriguing point is the following: folding transformations in general send
solutions of one q-Painlevé equation to solutions of a different one, so that algebraic
solutions solve more than one q-Painlevé equation, after appropriate redefinitions.11

This could point to some new duality between different geometries, where the BPS

11 The author thanks M. Bershtein for drawing his attention to this point.
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spectra of two different theories could be identified in appropriate regions of moduli
space, and is certainly a question worth investigating.

Decoupling limits and four-dimensional theories. In Sect. 3 we studied degeneration
limits of stability conditions corresponding to the decoupling of a fundamental hyper-
multiplet in the low-energy gauge theory phase. Another natural limit from the physical
point of view is the four-dimentional one, connecting the five-dimensional theory with
the corresponding four-dimensional gauge theory. In the four dimensional setting, on the
one hand there is the differential Painlevé equation, whose solution is an appropriate limit
of the q-Painlevé solutions and whose connection to the four-dimensional gauge the-
ory is well-understood through the Painlevé-gauge theory correspondence; on the other
hand, the cluster variables appear in this setting as coordinates on the monodromy vari-
ety corresponding to the Painlevé equation [23]. In some sense, in the five-dimensional
setting monodromy and isomonodromy seem to be unified in a mysterious way begging
for an explanation.

One could also consider some physically unexpected degenerations, that might be
indicating the existence of (to the author’s knowledge) unstudied limits from five-
dimensional SCFTs to four-dimensional N = 2 theories. For example, we could con-
tinue the degeneration scheme of Sect. 3, starting from the collimation chamber stability
condition (3.77), that we write as

C
(de f )

1 (P1 × P
1) : Z1 = Z , Z3 = Z − �1, Z2 = Z̄ + �2, Z4 = Z̄ + �1 + �2,

(5.1)

and take the limit �1 → ∞. This decouples the nodes γ3, γ4 while keeping finite γ3 +γ4.
The resulting quiver is the 2-Markov quiver in Fig. 11, which is the BPS quiver of the
N = 2∗ theory [4], i.e. four-dimensional SU (2) SYM with an adjoint hypermultiplet.
It is the quiver associated to the character variety of the one-punctured torus C1,1. After
relabeling γ3 + γ4 �→ γ3, the local P

1 × P
1 spectrum (3.80) in this limit becomes the

following:

γ �(γ ; y)

γ1 + kv1 1
−γ1 + (k + 1)v1 1

v1 + kγ f y + y−1

−v1 + (k + 1)γ f y + y−1

(k + 1)γ f y3 + 4y + y−1

(5.2)

with k ≥ 0 and

v1 = γ1 + γ2, γ f = γ1 + γ2 + γ3. (5.3)

This is almost the same as the BPS spectrum of the N = 2∗ theory from [65], eq.
(1.18): the D0 brane did not decouple, but became the flavour charge γ f of the adjoint
hypermultiplet in the 4d theory γ f := γ1 + γ2 + γ3, associated to the monodromy
coordinate around the puncture. The difference is that in the N = 2∗ spectrum computed
in [65] one has a single state γ1 +γ2 +γ f , while from the deocupling we obtained an entire
tower of states γ1 + γ2 + kγ f . At the moment, the author does not have a geometrical
or physical intuition for this peculiar degeneration, nor does he understands why the
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1

23

Fig. 11. BPS quiver for four-dimensional N = 2∗ theory

limiting BPS spectrum is almost, but not completely, identical to that of the N = 2∗

theory.
Another application of Theorem 1 would be to study directly four-dimensional the-

ories, where to the author’s knowledge the existence of semiclassically exact solutions
to the TBA equations (1.2) has not previously been observed. The simplest example
for which this would occur is the four-dimensional Argyres–Douglas theory of type
(A1, D4), with BPS quiver shown in Fig. 10b. Theorem 1 implies that for this theory
the stability condition (3.77), that was used in the case of P

1 × P
1, would provide a

semiclassically exact solution in this case as well.

Higher del Pezzo and higher rank geometries. We want to conclude by pointing out that,
while all cases we discussed in this paper had only one compact divisor, corresponding to
SU (2) gauge theories and genus 1 mirror curves, this is not a requirement of Theorem 1.
Indeed, it is important to generalize to geometries with more than one compact divisors,
which would have SU (N ) gauge theory phases and higher genus mirror curves, and
were related to cluster integrable systems of the Toda chain type in [9]. An obstacle to
doing this is that the permutation symmetry alone does not seem to completely fix the
BPS spectrum, as it happened in the rank-1 case.

Another interesting generalization would be to higher local del Pezzos, that can-
not be described as 5d uplift of UV complete four-dimensional gauge theories (for
example, note the absence of vertical arrows on the upper leftmost cases in the conflu-
ence diagram 2), but are likely related to a five-dimensional uplift of the so-called En

Minahan-Nemeschansky theories [69,70], whose BPS spectrum displays complicated
structures already in four dimensions, and was studied by spectral network methods in
[31,54,55]. While a tame collimation chamber might not exist for these cases, we saw
that the wall-crossing invariant can be computed by finding marginally stable collimation
regions.
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A. Affine Weyl Groups Through Cluster Transformations

This Appendix summarizes the realization in the cluster modular group of affine Weyl
groups associated to local del Pezzos, as in [8,71]. For a review on the relation between
q-Painlevé equations and affine Weyl groups, see the review article [59] and the book
[58]. In the following, we denote by si a simple reflection along the i-th simple root of
the lattice.

A.1. Local d P5 and Q(D
(1)
5 ). The quiver for this case is shown in Fig. 3. The flavor

lattice is Ŵ f ≃ Q(D
(1)
5 ) with simple roots given by [71]

α0 = γ2 − γ1, α1 = γ6 − γ5, α2 = γ1 + γ5,

α3 = γ3 + γ7, α4 = γ4 − γ3, α5 = γ8 − γ7, (A.1)

and null root

δ =

8∑

i=1

γi = α0 + α1 + 2α2 + 2α3 + α4 + α5. (A.2)

The intersection pairing between the cycles corresponding to αi in the underlying del
Pezzo geometry is (minus) the Cartan matrix of D

(1)
5 :

(
αi |α j

)d P5 = −C
(D

(1)
5 )

i j , C (D
(1)
5 ) =

⎛
⎜⎜⎜⎜⎜⎝

2 0 −1 0 0 0
0 2 −1 0 0 0

−1 −1 2 −1 0 0
0 0 −1 2 −1 −1
0 0 0 −1 2 0
0 0 0 −1 0 2

⎞
⎟⎟⎟⎟⎟⎠

. (A.3)

http://creativecommons.org/licenses/by/4.0/
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The generators of the extended affine Weyl group associated to simple reflections are
realized through mutations and permutations as

s0 = (1, 2), s1 = (5, 6), s2 = (1, 5)μ1μ5,

s3 = (3, 7)μ3μ7, s4 = (3, 4), s5 = (7, 8), (A.4)

while the Dynkin diagram Z4 automorphism

π : (α0, α1, α2, α3, α4, α5) �→ (α5, α4, α3, α2, α0, α1) (A.5)

is realized as

π = (1, 3, 5, 7)(2, 4, 6, 8). (A.6)

A.2. Local d P4 and Q(A
(1)
4 ). The quiver for this case is shown in Fig. 5. The flavour

lattice is Ŵ f ≃ Q(A
(1)
4 ), with simple roots given by

α0 = γ1 + γ3 + γ6, α1 = γ2 − γ1, α2 = γ1 + γ5,

α3 = γ3 + γ7, α4 = γ4 − γ3, (A.7)

and null root

δ =

4∑

i=0

αi . (A.8)

The intersection pairing between the cycles corresponding to αi in the underlying del
Pezzo geometry is (minus) the Cartan matrix of A

(1)
4 :

(
αi |α j

)d P4 = −C
(A

(1)
4 )

i j , C (A
(1)
4 ) =

⎛
⎜⎜⎜⎝

2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1

−1 0 0 −1 2

⎞
⎟⎟⎟⎠ . (A.9)

A.3. Local d P3 and Q((A2 + A1)
(1)). The quiver for this case is shown in Fig. 6. The

flavour lattice is Ŵ f ≃ Q((A2 + A1)
(1)), with simple roots given by

α0 = γ3 + γ6, α1 = γ1 + γ4, α2 = γ2 + γ5,

β0 = γ2 + γ4 + γ6, β1 = γ1 + γ3 + γ5, (A.10)

and null root

δ =

2∑

i=0

αi +
1∑

i=0

βi . (A.11)

The extended affine Weyl group is generated by the reflections

s0 = (3, 6)μ6μ3 s1 = (1, 4)μ4μ1, s2 = (2, 5)μ5μ2, (A.12)

r0 = (4, 6)μ2μ4μ6μ2, r1 = (3, 5)μ1μ3μ5μ1, (A.13)
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and by the outer automorphisms generating Dih6

π = (1, 2, 3, 4, 5, 6), σ = (1, 4)(2, 3)(5, 6)ι . (A.14)

Of these, π is an order-six Dynkin diagram automorphism that permutes simple roots,
see Fig. 7. The intersection pairing between the cycles corresponding to αi , βi in the
underlying del Pezzo geometry is (minus) the Cartan matrix of (A2 + A1)

(1):
((

αi |α j

)d P3 0

0
(
βi |β j

)d P3

)
= −C

((A2+A1)
(1))

i j ,

C ((A2+A1)
(1)) =

⎛
⎜⎜⎜⎝

2 −1 −1 0 0
−1 2 −1 0 0
−1 −1 2 0 0
0 0 0 2 −2
0 0 0 −2 2

⎞
⎟⎟⎟⎠ . (A.15)

We consider three affine translations that leave fixed the A
(1)
1 sublattice

T1 = π2s2s1, T2 = π2s0s2, T3 = π2s1s0, (A.16)

T1(�α, �β) =
(
α0 + δ, α1, α2 − δ, �β

)
, T2(�α, �β) =

(
α0 − δ, α1 + δ, α2, �β

)
,

T1T2T3 = id,

and an affine translation that leaves fixed the A
(1)
2 sublattice

T4 = r0π
3, T4(�α, �β) = (�α, β0 + δ, β1 − δ) . (A.17)

A.4. Local d P2 and Q((A1 + A1)
(1)). The quiver for this case is shown in Fig. 8. The

flavour lattice is Ŵ f ≃ Q((A1 + A1)
(1)), with simple roots given by

α0 = γ2 + γ4 + γ5, α1 = γ1 + γ3,

β0 = 2γ1 + γ2 + 3γ4 − γ5, β1 = −γ1 + γ3 − 2γ4 + 2γ5, (A.18)

and null root

δ =

2∑

i=0

αi +
1∑

i=0

βi . (A.19)

The extended affine Weyl group is generated by the reflections

s0 = (4, 5)μ2μ5μ4μ2, s1 = (1, 3)μ1μ3, (A.20)

The translation

T = (2, 1, 4, 5, 3)(μ4), (A.21)

and the involution

σ = ι(1, 3)(4, 5)T . (A.22)
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The intersection pairing between the cycles corresponding to αi , βi in the underlying
del Pezzo geometry is (minus) the Cartan matrix of (A1 + A1)

(1) (with a nonstandard
normalization of the simple roots for the second A

(1)
1 root lattice):

( (
αi |α j

)d P2 0

0
(
βi |β j

)d P2

)
= −C

((A1+A1)(1))
i j

, C((A1+A1)(1)) =

⎛
⎜⎜⎝

2 −2 0 0
−2 2 0 0
0 0 14 −14
0 0 −14 14

⎞
⎟⎟⎠ . (A.23)

A.5. Local d P1 and Q(A
(1)
1 ). The quiver for this case is shown in Fig. 9b. The flavour

lattice is Ŵ f ≃ Q(A
(1)
1 ), with simple roots given by

α0 = γ1 − γ2 + 2γ3, α1 = γ2 − γ3 + γ4,

and null root

δ = α0 + α1. (A.24)

In this case the Cremona isometries lead only to a translation

T = (1, 3, 2, 4)μ3 (A.25)

and an involution

σ = ι(1, 4)(2, 3). (A.26)

The intersection pairing between the cycles corresponding to αi in the underlying del
Pezzo geometry is (minus) the Cartan matrix of A

(1)
1 with an unusual normalization:

(
αi |α j

)P
1×P

1

= −C
(A

(1)
1 )

i j ,

C (A
(1)
1 ) =

(
8 −8

−8 8

)
. (A.27)

A.6. Local P
1×P

1 and Q(A
(1)
1 ). The quiver for this case is shown in Fig. 9a. The flavour

lattice is Ŵ f ≃ Q(A
(1)
1 ), with simple roots given by

α0 = γ1 + γ3, α1 = γ2 + γ4,

and null root

δ = α0 + α1. (A.28)

The extended affine Weyl group is generated by the reflections

s0 = (1, 3)μ1μ3, s1 = (2, 4)μ2μ4 (A.29)

and the involution

π = (1, 2, 3, 4). (A.30)

The intersection pairing between the cycles corresponding to αi in the underlying del
Pezzo geometry is (minus) the Cartan matrix of A

(1)
1 :

(
αi |α j

)P
1×P

1

= −C
(A

(1)′

1 )

i j , C (A
(1)′

1 ) =

(
2 −2

−2 2

)
. (A.31)
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B. Discrete Equations for 4d Super Yang–Mills, and the 2-Krönecker Quiver

It has been remarked in the main text that q-Painlevé equations can be regarded as Y-
systems of the TBA equations (1.2). The usual notion of Y-system, however, arises by
shifting the phase of ǫ, while in q-Painlevé we have shifts of the moduli. This seems to
be the correct generalization of a Y-system to the case of an infinite chamber, and is not
limited to12 five-dimensional theories. To show this, I will now show how this perspective
can be adopted in the case of weakly coupled 4d Super Yang–Mills, corresponding to
the infinite chamber of the 2-Krönecker quiver in Fig. 12.

1 2

Fig. 12. BPS quiver of four-dimensional pure SU (2) SYM

The moduli space of stability conditions is divided into two chambers: a finite (strongly
coupled) chamber with arg Z1 < arg Z2, and an infinite (weakly coupled) chamber
with arg Z1 > arg Z2. The spectrum in the weakly coupled chamber, displayed in Fig.
13, consists of a vector multiplet with charge γ1 + γ2, and infinite towers of dyons
±γ1+k(γ1+γ2), k ∈ Z. The central charges are periods of the Seiberg–Witten differential
λSW := ydx on the Seiberg–Witten curve

� : y2 = Q0(x), Q0(x)x2 = �2
(

x +
1

x

)
+ u. (B.1)

Let a := lim�→0 Zγ1+γ2 , and let η ∼ lim�→0 Z1, where ∼ includes a renormalization
factor because η is singular in the limit. We can view these as Fenchel–Nielsen coor-
dinates, since the limit � → 0 corresponds to a degeneration of the Seiberg–Witten
curve. The requirement of a renormalization factor leaves ambiguities in the definition
of η, which however do not affect our discussion. See [25] for a discussion on how to
fix such ambiguities, but in our present case this albiguities correspond to the choice of
different solutions in our difference equations.
Using the same arguments of Sect. 3.1, observe that if we send Z1 �→ Z1 + (Z1 + Z2),
Z2 �→ Z2−(Z1+Z2), which we can interpret as the discrete time evolution T = (1, 2)μ1,
acting on our coordinates as

T (a, η) = (a, η + a). (B.2)

It leads to the following equations for X1, X2:

X1(a, η + a)X1(a, η − a) =
(

1 + X1(a, η)−1
)−2

,

X2(a, η + a)X2(a, η − a) = (1 + X2(a, η))2 . (B.3)

Similar equations appeared in [21], eq. 2.18, where a “would be Y-system" associated
to this chamber was written as a formal recurrence relation Yn+1Yn−1 = (1 + Yn)2 (in
fact this equation can already be found in Appendix A of [46], where also an explicit

12 I am grateful to K. Ito for many interesting discussions about Y-systems and the ODE/IM correspondence,
that led me to better appreciate this point.
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Fig. 13. Weakly-coupled spectrum of four-dimensional pure SU (2) SYM

solution to the recursion is provided), which would correspond to the second of the
above equations. However, the discrete variable n therein had the meaning of a shift in
the phase of �. For infinite chambers, such a shift is not constant, so it is not clear how
the recursion relation can be turned into a difference equation involving �. Instead, it is
easy to check that these equations are solved by

X1(a, η) = −

(
sin 2πa

sin 2πη

)2

, X2(a, η) = −

(
sin 2π(a + η)

sin 2πa

)
, (B.4)

which matches exactly with the change from Fock–Goncharov coordinatesXi to Fenchel–
Nielsen coordinates a, η from [25]. This should also be related to equation (5.44) in
[51], representing the transformation between Borel resummed quantum periods and
quantum periods from instanton counting.
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