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Abstract—This paper introduces a new variational Gaussian
filtering approach for estimating the state of a nonlinear dynamic
system. We first assume that the predictive distribution of the
state is Gaussian and derive an iterative method for updating the
state posterior in the natural parameter space through Kullback-
Leibler divergence minimization. The obtained update rule is the
same as that of the conjugate-computation variational inference
technique in Bayesian learning. The derivation here is simpler
and more insightful. We then impose a Wishart prior on the
inverse of the state prediction covariance to take into account
the impact of approximating the state predictive distribution
using a Gaussian density on the state posterior estimation. The
prediction covariance is identified jointly with the state using
variational inference and the established state posterior update
rule to achieve the desired Gaussian filtering. Simulation study
examines the performance of the proposed filtering framework
in target tracking based on bearing and range measurements.

[. INTRODUCTION

Consider a dynamic system whose state evolves according
to a first-order Markov process. At time step ¢, the system
state x; and measurement z, are modeled as samples from
the state transition density p(x¢|x:—1) and measurement like-
lihood p(z4|x;), i.e.,

Xt ~ p(X¢[x¢—1) and z; ~ p(z¢[xy). ey

We are interested in inferring the state x; from the measure-
ments collected up to time step ¢, z1.;, based on the state-space
model in (1). For this purpose, the filtering posterior p(x;|z1.;)
needs to be computed, which can be achieved recursively [1],
[2] by first finding the predictive distribution of x; using the
Chapman-Kolmogorov equation

p(X¢|Z1:0-1) = /p(Xt|Xt—1)P(Xt—1|let—1)dXt—17 2
and then performing the measurement update by evaluating

(ze|x0)p(x¢|Z1:0-1)
P(ze]Z1:0-1)
The Bayesian filtering recursion given in (2) and (3) admits

a closed-form solution, the celebrated Kalman filter (KF) [3],

for linear Gaussian systems. However, nonlinearity frequently

arises in practice. For example, in radar tracking, the bearing
and range measurements are nonlinearly related to the target

pxelzre) = & 3)

position [4]. Besides, the model for the target motion may be
nonlinear as well due to e.g., the turn rate being unknown [5].
The presence of nonlinearity makes solving Bayesian filtering
equations analytically as in KF no longer feasible, because
evaluating the integral in (2) and/or the normalization factor in
(3), p(z¢|Z1:0—1) = [ p(2Ze|x¢)p(Xe|Z1:4—1)dXy, is intractable.

The assumed density filtering (ADF) with Gaussian assump-
tion, or simply Gaussian filter (GF), is popular among the
methods for coping with nonlinear systems. A wide variety of
GFs are available. They include the Taylor-series expansion-
based extended KF (EKF) [6], [7] and posterior linearization
filter [8], [9]. Through the application of different numeri-
cal integration methods [10], the unscented KF (UKF) [11],
Gaussian-Hermite KF (GHKF) [12]-[14], cubature KF (CKF)
[15], [16] and Gaussian-Hermite quadrature filter (GHQF)
[17] have been developed. These filters approximate the state
predictive distribution p(x;|z1.;—1) in (2) and state posterior
p(x¢|z1:¢) in (3) using Gaussian densities N (xy; fi,, 3¢) and
N (x5 py, B¢). Here, N'(x; u, 2) denotes the Gaussian distri-
bution in x with mean g and covariance X.

This paper introduces a new Gaussian filtering algorithm
that follows the existing GFs’ prediction-correction frame-
work but is different from them in two aspects. First, we
derive an iterative rule for updating the assumed posterior
N (x¢; py, X¢), based on minimizing the forward Kullback-
Leibler divergence (KLD) [18] between it and the ‘true’
posterior in (3). Noting that the Gaussian density belongs to
the exponential family [19], the update equation is established
in the natural parameter space using natural gradient [20]-[22].
In this way, we obtain an update rule identical to the conjugate-
computation variational inference (CVI) developed in [23] for
large-scale Bayesian learning. Our derivation is simpler, since
it does not involve the utilization of the Bregman divergence.

Notice that in [24]-[29], a similar problem was considered.
Techniques for updating the mean p, and covariance 3; with
the gradient-based [24], [25], [27]-[29], natural gradient-like
[26] and linearized alternating direction method of multipliers
(ADMM) [29] algorithms were established. The development
of most existing methods assumed additive Gaussian measure-
ment noise. Moreover, to improve numerical stability, they
either applied additional pre-conditioning [24]-[26], [28] or



introduced a Newton-type rule using an approximate Hes-
sian [27]. Our method is more general and applicable to
other nonlinear/non-Gaussian systems. It already includes pre-
conditioning from the use of natural gradient, has theoretically
guaranteed convergence and does not require careful selection
of extra penalty parameters as in [29]. Reverse KLD minimiza-
tion was adopted to optimize p, and X; in [24], [30]. The
obtained moment matching algorithms are non-iterative but
suffer from degraded performance under small measurement
noise [30]. In [31], p, and 3; were found by solving a
constrained KLD minimization problem for approximating the
optimal Bayesian smoothing.

The other difference comes from imposing a Wishart prior
on the inverse of the covariance of the assumed state predictive
distribution N (x¢; f1,, ;). which is A; = %, ' As a result,
A, needs to be estimated together with the system state x;.
Since the joint posterior p(x¢, A¢|z1.+) is difficult to evaluate,
we apply the mean-field approximation [18], and invoke
variational inference and the developed state posterior update
rule to realize Gaussian filtering. This modification is inspired
by [32]-[34]. It adjusts in a structured way the state prediction
covariance 3 using the measurement z; to account for the
impact of approximating the state prediction distribution using
a single Gaussian density on the state posterior estimation.
Different from [34], we do not update the mean of the state
prediction fi, at the same time, which reduces the number
of hyperparameters to be determined. The proposed Gaussian
filtering algorithm is applied to track a maneuvering target,
whose motion is modeled by a nonlinear turn model with
unknown turn rate, based on bearing and range measurements.
Promising results are obtained.

The rest of this paper is organized as follows. Section
II derives the iterative rule for updating the assumed state
posterior on the basis of forward KLD minimization and
natural gradient. Section III presents the whole proposed
Gaussian filtering algorithm. Simulation results are given in
Section IV. Section V concludes the paper.

II. POSTERIOR UPDATE VIA KLD MINIMIZATION
A. Problem Formulation and Preliminaries

Suppose that at time step ¢, the state predictive distribution
in (2) is Gaussian, i.e., p(x¢|z1.¢—1) = N (X¢, fb;, 2¢). In this
case, our goal is to find the Gaussian approximation gy, (X;) =
N (x4; s, 3¢) to the ‘true’ state posterior p(x¢|z1.¢) in (3) that
minimizes the forward KLD between them. The associated
loss function is [18]

Dlan sl iz1)) = [ an (xog P22

x /QAt (x¢)log ax, (xt)

P(Z¢|x¢)p(Xt|Z1:0-1)
where we have put (3) and ignored the normalization factor
p(z¢|z1.¢—1). The definition of A; will be given at the start
of the next subsection, Section II.B. Computing directly the
optimal mean p, and covariance 3; in closed form is difficult.
We shall derive an iterative approach for updating them.

1

“

dXt s

The algorithm development begins with noticing that the
Gaussian density is a member of the exponential family
[19]. This allows us to exploit some appealing statistical and
computational properties of the exponential family. They are
summarized below.

The distributions in the exponential family can be expressed
in the following generic form [19], [35]

p(x) = h(x)exp (n" ¢(x) — A(n)), Q)

where h(x) is the base measure, 0 is the natural parameter
and ¢(x) is the sufficient statistic for 1. A(n) is the log
partition function. The first-order and second-order partial
derivatives of A(n) with respect to the natural parameter 7)
are equal to [35]

0A(n)

S = B((x) = my, (©)
2
ZWAT;”T) — cov((x)) = FIM(r). (6b)

where E(¢(x)) and cov(¢(x)) denote the mean and covari-
ance of the sufficient statistic ¢(x). my,, in (6a) is referred to
as the mean parameter or moment parameter, while FIM(n)
represents the Fisher information matrix (FIM) [36] of the
natural parameter 7).

Finally, it has been shown in [19] that the Jacobian dn/0m,,
is symmetric and equal to

on
omy,

= FIM(n)~". @)

This result is expected, since combining (6a) and (6b) yields

om,  9*A(n)

on  ononT

According to [37], [38], the multivariate Gaussian den-

sity can be written in the form (5) with base measure

h(x) = 1, natural parameter A, log partition function A(\) =
%10g|2ﬂ'2| + %uTE_lu, and

= FIM(n). ®)

N = (A7) 0160 + 30,09 ) . )

Here, we have that for the multivariate Gaussian density, the
natural parameter A and sufficient statistic ¢(x) are given by

A _ ¢1(X)
VCC()\(Z)) , o o(x) = |:VGC(¢2(X)):| ,  (10a)
AW = w1y A2 = —%2—1, (10b)
#1(x) = x, by (x) = xx", (10c)

where vec('Y) represents the column-vectorised version of the
matrix Y.

As a result, the corresponding mean parameter my, from
the definition of ¢(x) in (10a) and (10c), would be equal to

m{)

— _ _ I
ma = B(¢(x) = [Vec(m(f))] N [Vec(E + MHT)} - (D



with m()\l) = p and m(f) =3+ upt.

From (10b), we obtain that the mean p and covariance 3
of the Gaussian density N (x; t, 3) can be recovered from its
natural parameter A\ via

1 -1 1 -1
p=-3(A?) AV ad B=-5(A) . a2
2 2
Besides, according to (11), u and 3 can be deduced from the
mean paramter my as well, using

(@)

I"l‘:mA ’ (2)

and £ =m{) —m’m{H7T. 13
In other words, a Gaussian density is completely specified
by either the natural parameter A or mean parameter my,
when it is written in the generic form of the exponential-family

distributions in (5).

B. Natural Gradient-based Update of the Assumed Posterior

We express the assumed state posterior gy, (x;) and state
prediction distribution p(x;|z1.4—1) = N (xy; ft;, 3¢), which
are both Gaussian as pointed out at the beginning of this
section, in the form (5) with natural parameters A; and ;.
Putting these results simplifies the forward KLD in (4) into

D(gn, (x¢)[Ip(x¢|Z1:))
T
~ /q/\t (x,)log h(x:)exp(A; ¢~(¥t> - AQ\t))~
p(zt|Xt)h(><1t)exl)()\t~ d(xt) — A(Ae))
o< — Ly, (x,) log(p(ze|x1)) — (A — ) o(x)] — A,

= —E,,, xo[log(p(ze[x:))] + (A — A)my, — A(Ny),
(14)

dXt

where in the second line, the factor A(X,) is neglected, and
the last equality is obtained by applying (6a). E, (x,)[]
denotes taking expectation with respect to the Gaussian density
gx,(xt), whose mean parameter is my,. This subscript is
intentionally introduced to improve the clarity of the remaining
algorithm derivation.

We shall present a natural gradient descent-based method
for iteratively updating the natural parameter A; to minimize
the KLD in (14) and achieve the desired optimization of the
assumed state posterior gy, (x¢). To find the natural gradient,
the gradient of the KLLD with respect to A; has to be computed
first. It is equal to

0D(gx, (x0)|Ip(x¢|21.¢))

E2Y
OEq,, (x)llog(p(ze[x:))]  Omy -
i (A — 15
2y T o, MM 1Y)
 OEq,, (x) llog(p(ze[x1))]

= FIM(X;) - (Ar — X
(f))\t + ( t) ( t t)?
where (6a) is applied again to arrive at the first equality, and
(8) has been substituted to obtain the second equality.
Multiplying both sides of (15) with the inverse of the FIM
of the natural parameter \;, FIM(X\;) !, yields the desired

natural gradient, which is

OD(gx, (%) ||p(xt]21:0))

FIM(\;)~*

(A) O\,

OF,. (ol .
— _FIM(At)—l . ax, ( f)[ Og(p(ztlxt))] + (At . )\t)’
O

0N OFEg, (x,)llog(p(z¢]x:))] <
= T omy o, A=),

OE,, (xllo Z: X -
OB )(9[ 2(p(z:[xt))] A,

mAt
(16)

where (7) has been utilized to establish the second equality.
The last equality in (16) is derived by exploiting the symme-
try of the partial derivative OA;/0my, and chain rule (see
Theorem 1 in [39] for an alternative duality-based proof).

The natural gradient incorporates the information geometry
of the assumed state posterior g, (x;) through the FIM of
the natural parameter \;. Compared with the gradient-based
methods, using the natural gradient can improve convergence
[20], [21], [39]. With (16), the following rule for iteratively
updating A; can be obtained:

_19D(gx, . (%) |Ip(xt|21:4))
O ’
aEqAM (xnyllog(p(z[x:))]
Omy, ,

)\t,k+1 = )\t,k - OékFIM(/\t.,k)

=Aep — Aok — Ao) +ay,

(17

where \;; denotes the estimated natural paramter A; in the
k-th iteration, k = 1,2, ..., and a3 > 0 is the step size.

To gain more insights, we subtract A;, the natural parameter
of the state predictive distribution p(x;|z1.+—1) that is known,
from both sides of (17) to arrive at

At,k+1 - 5\t = (1 - Oék)()\t,k - S\t)
OEq,, , (x) llog(p(ze[x.))]
8m>\w '

(18)

+ oy

Several observations are in order.

Remark 1: The theoretical development in (14)-(18) is
still valid as long as the assumed state posterior gy, (x:) and
state predictive distribution p(x;|z1..—1) both belong to the
exponential family and have the same functional form in (5).

Remark 2: The update rule (18) is exactly the CVI tech-
nique developed in [23] using the Bregman divergence and
mirror descent. Its convergence is theoretically established in
[40]. On the other hand, the derivation in this paper is based
on the forward KLD minimization, which is equivalent to
maximizing the following evidence lower bound (ELBO) [41]
with respect to the assumed state posterior gy, (X;):

/ x, (Xt)logp(zt|xt)/\[ (45 f, 34)
' Q)\t (Xt)

Note that the ELBO in (19) is just the negative of the KLD loss
in (4). Our formulation simplifies the algorithm development,
and more importantly, makes the obtained update equations

dx;. (19)



easy to be incorporated into other variational methods for
further improving the state estimation (See Section III).

Remark 3: When the iteration in (18) converges, it reduces
to the fixed-point condition

At - S‘t — 5Eq>\t(xf)[10g(p(zt|xt))]

O, . (20)
The term on the right hand side of (20) can be considered
as the natural parameter of the exponential-family approxi-
mation of the measurement likelihood p(z:|x;). This can be
understood by noting that if p(z;|x;) can also be written in
the form (5) with a natural parameter s, the optimal assumed
state posterior would have a natural parameter A\; = S\t + S\t.

To complete the proposed method for optimizing the as-
sumed state posterior g, (x:), we give the expression for
the partial derivative in (18) by exploring the Gaussianity of
g, (x¢). Applying the chain rule and (11), we can show that

OB, e llog(p(zelx)]l— aL(ng) 5 OLALR)
Gm()\lt)k Oy, 9%k Hut
(21a)
OF,,  (x)[log(p(z¢|x))]
q/\t)k( L) (AR - 8[,()\@16). (Zlb)

8m(>i)k B 0 1

Here, L(Aik) = Eqy, , (x)log(p(z:[x¢))] is introduced to
simplify the presentation. From the Bonnet’s theorem and
Price’s theorem [42], we have

OL k) Olog(p(z|x¢))

ZZA\TGR) oY 22
opy g, e 00) 0y ’ (220

OLMg) 1 &log(p(z|x.))

P S e O — 22b
0%, 20 P | T o, 0xT e

This completes the development of the assumed state posterior
update rule in the natural parameter space.

To establish the rule for directly updating the mean g, and
covariance 3, of the assumed state posterior, we put (21) and
(22) into (17), and apply (10b) to arrive at

_ _ ~—1
2t,li+1 =(1- ak)zt,li + apd,
B 9log (p(z|x:)) (23a)
— QO th,,k(x‘) axtaxg‘ )
~ 1 N
My g1 = My — QR k1 2y (Nt,k )

Jlo, Z:|x
+ apXy gt -Eqkhk(x,) [—g(g;t' t))} .
(23b)

Here, p, ;. and 3 are the mean and covariance of gy, , (%¢)
obtained in the k-th iteration. Besides, fi, and 3, are the
mean and covariance of the state predicition distribution
p(X¢|Z1.4—1), and they are known.

For the linear Gaussian model where the measurement
likelihood is p(z:|x:) = N(z;; Hxy, Ry), where H is the
measurement matrix and R; is the noise covariance, the update
rules (23) reduce to the KF. We can verify this by setting

the assumed state posterior initially as the state predictive
distribution, and noting that in this case, the two partial
derivatives are —H"R; 'H and H'R; !(z, — Hf,).

Different from the mean update in [24], ours in (23b)
already includes the updated covariance 341 as the pre-
conditioning matrix. In [27], a mean update similar to (23b)
is obtained through using the Newton-type method with an
approximated Hessian, but the covariance update is different
from (23a). Our derivation, on the contrary, is based the exact
expression of the natural gradient of the KLD loss in (4).

When realizing the proposed assumed state posterior update
equation in (18) or (23), we set the initial natural parameter
A¢,0 to be that of the state predictive distribution A, to start
the iteration. The main challenge in algorithm implementation
is the evaluation of the expected partial derivatives in (22).
We may approximate the expectations in (22) by sampling
from the posterior ¢y, , (x;) and performing Monte Carlo
integration. This leads to the well-known stochastic gradient
descent (SGD) technique [35]. In this work, we utilize the low-
discrepancy generalized Fibonacci grid from [43] to realize
deterministic Gaussian sampling-based integration to evaluate
(22). The iterative updating process converges if the KLD
between the state posteriors from two successive iterations is
smaller than a certain threshold § = 1076,

III. PROPOSED VARIATIONAL GAUSSIAN FILTER
A. Gaussian Filtering via Variational Inference

The method in the previous section for optimizing the as-
sumed state posterior ¢y, (X;) requires that the state predictive
distribution p(x;|z1..—1) is obtained already and is Gaussian.
However, this may be an approximation, as the state transition
density p(x¢|x;—1) could involve nonlinearity, making the true
state predictive distribution deviate from being Gaussian.

Note that the approximated state predictive distribution is
used as the initial state posterior estimate. To account for the
impact of approximating p(x;|z;.,—1) with a Gaussian density
N (xy; fi;, 3,) on the state posterior estimation, we impose an
‘extra’ Wishart prior on the inverse of the obtained covariance
S Ay =3, |, which is [18], [44]

v_ng—1

P(Ar) = W(AWy,v) oc [Ay| 2

exp( — %tr(Wt’lAt)).

(24)
The scale matrix W and degree of freedom (DoF) v > n, —1
are the hyperparameters. n, is the dimensionality of the state
x¢. Note that the state prediction mean ft, is left unchanged
once it has been found.

Because the state prediction covariance 3, is now stochas-
tic, it needs to be identified jointly with the system state x;.
This allows the adjustment of 3, using the current measure-
ment z;, which may in turn benefit the state estimation. With
the prior on the inverse of f]t in (24), compared with the
original state-space model in (1), we in fact have an augmented
model whose measurement likelihood is still p(z¢|x;) but the
predictive distribution becomes

P(Xty Ag|Z1—1) = N (x4 fig, Ay Dp(A). (25)



Computing the joint filtering posterior p(x;, A¢|z1.;) based
on the augmented state-space model mentioned above is hard.
To bypass the difficulty, we apply the following mean-field
approximation [18]

p(xt’At|Z1:t) ~ th(Xt)q(At)v (26)

and then invoke variational inference to find the state posterior
g, (x¢), which is Gaussian with natural parameter A;, and the
posterior of A;, ¢(A¢) to achieve Gaussian filtering.

Mathematically, gx,(x;) and g(A;) are calculated through
maximizing the ELBO [41]

' p(ze|x)p(Xe; Ag|z1:4—1)

v ot og ST
We solve the maximization problem of interest through apply-
ing the coordinate ascent technique, where in each iteration,
we carry out the following two optimization steps in sequence.

Step-1: The state posterior ¢y, (x;) is updated in Step-1,
with the posterior of Ay, ¢(A;), fixed. In this case, the ELBO
in (27) becomes, after substituting (25) and neglecting the
terms that do not depend on Xy,

[antx) [logw+ [ atAoeN Gxi . A7 A Jax.
ax, (Xt) (28)

By the definition of the multivariate Gaussian density, we have

/ QAN (xs; fig A H)dA, o Tog (3 . 217 L).

€2))

1 29)
X _§(Xt - ,D't)TQt(Xt — i),

where Q; = Eya,)(A¢) is the expected value of A; with
respect to g(Ay).
Putting (29) into (28) converts the ELBO into

/q}\t (xt)logp(zt|xt)N(Xt;ﬁt’ﬂ;l)
ax, (xt)

which has the same functional form as the one in (19).

This indicates that updating the state posterior gy, (x;) by

maximizing (30) can be achieved through applying the iterative

method in Section II with the state predictive distribution

replaced with N (x;; fi,, 2;71).

Step-2: We fix the state posterior gy, (x;) just obtained in
Step-1 and then optimize the posterior of Ay, ¢(A;), in Step-
2. Substituting (25) and ignoring the terms not related to Ay
simplify the ELBO in (27) into

A
Jatan [log”(—t) n / o, (xlogN (x5 iy, A V)| dA.
Q(At) 31)

With slight abuse of notations, we denote gy, (x;) =
N (x4; ey, 3¢), since it is constrained to be Gaussian. Again,
by applying the definition of the multivariate Gaussian density,
we arrive at

N _ 1
/q)\t (x¢)logN (x5 iy, A7 H)dx, o 510g|At|

dx, (30)

1 (32)
- §tr (At (Et + (Nt - Ilt,)(ut - I]t)T)) .

Moreover, from (24), logp(A;) is equal to
1 1 _
logp(Ay) o 5 (v = ny = Dlog|Ay| — (WA, (33)

Putting (32) and (33) into (31) reveals that the ELBO attains
the maximum value of 0 when the posterior of Ay, q(Ay),
satisfies [34]

1 1 -
logq(Ay) o 5 (v = na)log|A¢| = S(W A, (34)
where Wt is defined as
~ _ - - —1
W= (W, + 3+ (g — ) (e — 2)7) . (39)

Comparing (34) with (33) implies that given the Gaussian state
posterior gy, (x;), the optimal estimate for the posterior of A,
q(Ay), is still a Wishart distribution but with DoF v + 1 and
scale matrix Wt given in (35).

With the updated posterior g(A;) in (34), the proposed
Gaussian filtering algorithm goes to Step-1 again to obtain
a new state posterior ¢y, (x¢), which will then be explored in
Step-2 to further refine g(A,). The above process is repeated
until the KLD between the state posteriors in two successive
iterations is smaller than the threshold § = 1076,

B. Algorithm Summary

The main computations conducted by the proposed Gaus-
sian filter at each time instant are summarized below.

1). At the time instant ¢, the proposed Gaussian filter first
computes a Gaussian approximation N (x¢; ft,, ﬁ]t) to the state
predictive distribution in (2) using the prediction step of a
conventional GF, such as those in [6]-[17].

2). Next, we fix the prediction mean fi,. The hyperparam-
eters of p(A;) in (24), namely, the DoF v and scale matrix
W;, are chosen to be v = n, and W; = 13, ' The initial
posterior of A, g(Ay), is set to its prior p(Ay).

3). Step-1 described in Section III.A is executed using the
initial posterior of A; and the iterative method in (18) or (23)
to produce an estimate of the state posterior ¢y, (x;). Step-
2 developed in Section IIL.A is then executed to obtain an
updated version of g(A;), which is given in (34).

4). We replace the initial posterior of A; with its updated
version, and run Step-1 and Step-2 again. The above process
is repeated until convergence.

5). Finally, the proposed Gaussian filter propagates the state
posterior gx,(x:) to the next time instant while at the same
time, outputting it for estimating the system state.

C. Selection of the Hyperparameters v and W,

We shall justify setting the hyperparameters of the Wishart
prior p(A;) tobe v = n, and W; = %2;1 This setup is done
right after the state prediction but before the measurement
update begins (see Section III.B). Consistent with the measure-
ment update of the proposed Gaussian filter (see Section III.A),
we select the hyperparameters of p(A;) by maximizing the
ELBO in (27). At this point, the two posteriors in (27) should
be g, (x¢) = N (x¢; i1, 2¢) and q(A¢) = p(Ay), Le., they are
equal to their corresponding prediction/prior distributions.



Putting these results and ignoring the terms independent of
the hyperparameters to be determined transform (27) into

/p(At)/N(xt;ﬁt,f]t)log/\f(xt;ﬂt,A;l)dxtdAt

o /p(At) |:10g|A.t| — tr(Atflt)} dl\.t7 (36)

N ‘ 41— ~
x>0 () + Rl Wil - W),

where t(-) is the digamma function. The first equality in
(36) comes from substituting the expression of the multivariate
Gaussian density and carrying out the inner integral. Deriving
the second equality used the following results of the Wishart
distribution (see (B.80) and (B.81) of [18]):

By (oglAd) x 3 (
=1

Ep(AL)(A-t) = I/Wt.

v+1—1
T) FloglWi, (37

(37b)

Taking the partial derivative of the ELBO in (36) with respect
to Wy, using %“V,‘:*I = Wt_1 and %Wiz*) = l/flt from
[45], and setting the result to zero yield the optimal initial
value for Wy, which is exactly our setting W, = %f]; g

We proceed to justify choosing the DoF v to be v = n,.
Note that according to the algorithm summary in Section III.B,
Step-1 in Section III.A, when being executed for the first time,
is based on the state predictive distribution with covariance
Q; L (VW) = flt. In the remaining iterations, however,
the state prediction covariance used for updating the state
posterior becomes, from (34) and (37b),

-1 v
T 41

3+ VL—H (Et + (e — o) (g — ﬁt)T) .

(38)
This shows how the proposed Gaussian filter combines the
prior information on the state prediction covariance, which is
found by approximating (2) with a Gaussian density, with that
from the state posterior obtained through measurement update.
We set the DoF v to be the smallest possible value n,, to allow
Q 'in (38) to be better adjusted by the measurement.

IV. SIMULATION RESULTS
A. Simulation Scenario

The simulated tracking scenario is similar to the ones used
in [38], [46], [47]. A stationary sensor located at the origin
measures the bearing and range of the target to estimate its
trajectory. The measurements are obtained with a sampling
period of 3s, and are subject to independent Gaussian noise
with standard deviations o, = 0.3° and o, = 50m [48].

At the beginning of the tracking process, the target is 180km
away from the sensor with a true bearning of 30°. It moves
towards southwest with velocity [—100, —173.2]"m/s. The
target trajectory has five segments. In the first segment (Os to
100s), the third segment (132s to 200s) and the fifth segment
(232s to 300s), the target motion follows a constant velocity
(CV) model with the process noise having a standard deviation

of 0.01m/s2. The target makes two 90° turns, one in the second
segment (100s to 132s) and the other in the fourth segment
(200s to 232s). Both turns have an acceleration of 1.07g and
are modeled by the constant turn (CT) model with the process
noise having a standard deviation of 0.01m/s?. The true target
trajectory in a certain ensemble run is shown in Fig. 1.
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Fig. 1. True target trajectory in a certain ensemble run. The upper triangle
denotes the sensor position. The circle is the initial target position. The arrow
shows the target moving direction.

B. Implementation of the Proposed Gaussian Filter

The proposed Gaussian filter assumes that the target motion
is modeled using the CT model with unknown turn rate [5]
0
oo | Xt—1 + GwWir,  (39)
where x; = [xt,yt,vmyt,vymwt]T is the state vector at time
step t. [z, 4" and [v,,v,,]" are the target position and
velocity at time step ¢, while w; is its turn rate. « = 0.1 is the

inverse of the correlation time constant for the turn rate. The
nonlinear state transition matrix F(w;_1,T) is defined as

1 0 sin(wy,—17") _ 1—cos(wr—1T)
eos(0/ 1 T)  sin(wi 3 T)
—cos(w¢_1 sin(wy_ 1
F(wt_l,T) = 01 Wi—1 Wi—1
0 0 cos(wi1T) —sin(w;_1T)
0 0 sin(w—1T)  cos(wi—1T)

(40)
The gain matrix G for the process noise w; is equal to
G =diag([g1,82],1), where g1 = [T?/2,0,T,0]", g, =
[0,72/2,0,T]" and diag(A,B) denotes a block diagonal
matrix with A and B being the diagonal blocks. The process
noise is Wy = [wy, +, Wy, ¢, w,,]T', whose elements correspond
to the acceleration in the z and y directions, as well as the
turn rate. w; is zero-mean white Gaussian with covariance
diag(0.01m?/s*,0.01m?/s*,1°/s?) [4]. The sampling interval
is T = 1s, which is smaller than the measurement period
of 3s to construct a smoother target trajectory. We adopt the
prediction stage of GHKF [2] with 32 sigma points to obtain
the (initial) state predictive distribution (see Section III.B).
For the 2D tracking problem in consideration, the logarithm
of the measurement likelihood is logp(z:|x;) oc —2i(z¢ —

2
h(x;))"R*(z; — h(x;)), where R = diag(c7,0?2) is the

”



measurement noise covariance (see Section IV.A). h(x,) is the
measurement function. To evaluate the expectations in (22), we
apply the generalized Fibonacci grid [43] with 32 grid points
to realize deterministic sampling-based integration.

C. Results and Discussions

Figs. 2 and 3 plot the root mean square errors (RMSEs)
for target position and velocity estimates generated by the
proposed Gaussian filter (‘Proposed’) at time instants when
measurements are available. The results are obtained by aver-
aging over 2,000 ensemble runs. The estimation RMSEs of the
EKF [6] (‘EKF’), CKF using the 3rd-order spherical cubature
rule [15] (‘CKF’) and GHKF with 32 sigma points for both
state prediction and update [2] (‘GHKF’) are also included. For
a fair comparison, we initialize all the filters using the first set
of bearing and range measurements. Their initial velocity and
turn rate estimates are set to zero. In Figs. 2 and 3, four dotted
vertical lines are added to indicate the starting time instants
and ending time instants of the two 90° turns.

First, we observe that EKF performs the best before the first
turn of the target, because its estimate of the turn rate remains
closer to zero than other filters. However, the estimation ac-
curacy of the EKF significantly degrades afterwards, showing
that it has poor tracking ability. It is found (data not shown
due to page limit) that this can be mitigated by increasing the
variance of the process noise w; in the motion model (39).

Besides, Fig. 2 shows that the proposed Gaussian filter
offers evidently better target position estimation accuracy over
CKF and GHKEF, especially after the target makes a turn. Some
improvement in the target velocity estimation performance can
be seen from Fig. 3. Recall that the proposed filter uses the
same prediction stage as the simulated GHKF to start the
prediction-correction cycle when a new pair of bearing and
range measurements becomes available (see Section IV.B).
This indicates that the performance enhancement comes from
the use of the newly developed KLD minimization-based state
posterior update and state prediction covariance adjustment.

In Fig. 4, we plot the average normalized estimation error
squared (NEES) over time for the four Gaussian filters consid-
ered. As the state x; has five elements, the ideal NEES value
is five as well [6]. It can be seen that the target turns render
all the simulated filters over-confident but the proposed filter
still provides the most consistent state estimation results.

In this simulation, the state posterior estimation of the
proposed variational Gaussian filter (i.e., Stages 2) - 4) in
Section III.B) takes on average 4.15 iterations and 0.07s to
finish, which is much longer than 0.0014s of the non-iterative
GHKEF. Stage 3) in Section III.B finds the optimal assumed
state posterior and needs on average 2.7 iterations to converge.

V. CONCLUSIONS

This paper presented a new Gaussian filtering algorithm. It
continues to follow the prediction-correction framework as the
conventional GFs do, and it introduces two enhancements. The
first one is the KLD minimization-based state posterior update,
which was derived through exploring that the Gaussian density
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is a member of the exponential family. The obtained update
rule is identical to the CVI technique in Bayesian learning lit-
erature. But our derivation was simpler. The developed update
rule was integrated into the VI method, leading to the second
enhancement that adjusts the state prediction covariance using
the measurements to improve performance. Implementation
details of the proposed Gaussian filter were given. Simulations



demonstrated the superiority of the new algorithm over several
existing GFs. In future work, we shall consider employing
the a-divergence, which includes the KLD as a special case,
to derive new state posterior update rules. Another possible
extension is to perform fixed-lag smoothing such that the state
posteriors at the current and previous time instants may both
be identified using the KLD minimization.
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