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Abstract 

 
Information consumes attention. In the information-rich society, a wealth of information can 

support decision-making, but it can also create poverty of attention to and inability to make 

the best use of information. This study applies the theory of rational inattention in modelling 
traveller’s route choice behaviour, where the attention (costs) to information is non-uniform. 

We establish the mathematical formulation of a generalized rationally inattentive route choice 

model with non-uniform marginal information costs, and prove that the optimal conditional 
route choice probabilities for all the routes always locate within the interior of the feasible 

region of the route choice model. Based on this property, we analytically characterize the 

closed-form expression of the optimal conditional choice probabilities, and devise an efficient 

iterative solution algorithm to compute them. Finally, two numerical examples are conducted 
to demonstrate the theoretical properties of the rationally inattentive route choice behaviour. 

This behavioural modelling approach provides an insight on how the rationally inattentive 

travellers spontaneously learn the optimal route choice from the acquired information. 
 

Keywords: Route choice; Rational inattention; Non-uniform marginal information costs; 

Closed-form expression. 

1 Introduction 

Route choice is a critical area of studies in travel behaviour and transportation network analysis. 

The development of route choice models has been influenced by advancements in random utility-

based discrete choice models (Ben-Akiva and Lerman, 1985). These models typically incorporate 

exogenous random shocks that obey (generalized) independently and identically distributed (i.i.d) 

Gumbel distribution (Duncan et al., 2020; Fosgerau et al., 2013; Knies et al., 2022; Ma and Fukuda, 

2015; Mai, 2016; Mai et al., 2015; Papola et al., 2018). Nowadays, in our information-rich society, 

the introduction of new communication and sensing techniques has changed the way that the 

travellers plan their journeys. For instance, the availability of smart phones, mapping software, 

and social media platforms has significantly increased the amount of traffic information accessible 

to travellers. With the aid of these communication and information technologies, travellers can 

now obtain real-time traffic conditions across the transportation network and use this information 
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to inform their travel choices (Mai et al., 2021). Consequently, the driving force behind route 

choice behaviour has seen a gradually shift from being exogenous to endogenous, with travellers 

spontaneously choosing their routes based on an assessment of the acquired information on traffic 

conditions. This calls for novel forms of models to represent this shift in traveller’s route choice 

behaviour. 

Another behaviour emerging is that information consumes attention. Simon (1955) is among 

the first to establish a link between information and attention, suggesting that attention is a valuable 

but limited resource and a wealth of information creates a poverty of attention. In the route choice 

behaviour, this means that the travellers would align information with their available attentional 

resources to make a choice decision. In contemporary research, the rational inattention (RI) 

framework, initially introduced by Sims (2003, 2006, 2010), quantifies the expenditure of attention 

as the information cost using Shannon entropy (Shannon, 1948). Within this framework, the 

travellers determine what and how much information to acquire, striking a balance between the 

attention consumed by acquiring information and the benefits derived from having more informed 

expectations. Building upon these pioneering works, Matějka and Mckay (2015) bridges the gap 

between RI choice behaviour and discrete choice models. They find that the optimal conditional 

choice probabilities resemble a generalized multinomial logit (GMNL) model, which can be 

regarded as an extension of the standard logit choice model under the random utility modelling 

framework (Wang, 2021). 

The RI framework has found extensive applications across various fields, including 

economics (Caplin et al., 2019; Fosgerau et al., 2020; Steiner et al., 2017), marketing (Boyacı and 
Akçay, 2018; Matějka, 2016; Ravid, 2020), as well as transportation (Fosgerau and Jiang, 2019; 

Habib, 2023; Jiang et al., 2020). In the realm of transportation research, Fosgerau and Jiang (2019) 

develop a theoretical model that features the RI traveller who aims to acquire information on the 

traffic conditions so as to optimally choose the departure time of their daily commuting. Expanding 

upon this work, Jiang et al. (2020) further extend the RI framework to address the route choice 

problem within a stochastic network, wherein the travellers acquire information on the traffic 

conditions so as to optimally choose the routes for their journeys. Habib (2023) proposes 

econometric formulations of rationally inattentive choice models. The proposed models are 

estimated for the commuting mode choices in Greater Toronto and Hamilton Area. Although 

Fosgerau and Jiang (2019) and Jiang et al. (2020) focus on distinct topics, their models exhibit a 

shared characteristic in terms of optimal conditional choice probabilities for the candidates: they 

allow the conditional choice probabilities for a set of candidates locate on the boundary of the 

feasible region. For instance, in Jiang et al. (2020), the optimal conditional choice probabilities for 

the dominated routes (a route is called dominated, if its travel cost is always higher than another 

route with respect to all the acquired information) remain zero, indicating that they always locate 

on the boundary. This pattern of RI choice behaviour, inherited from Matějka and Mckay (2015), 
is prevalent in the existing literature (Caplin et al., 2019; Huettner et al., 2019; Walker-Jones, 

2023).  

On the other hand, while Shannon entropy has proven to be a valuable tool, it does have 

limitations in route choice behaviour modelling framework as they are not what it is designed for.  

For instance, Shannon entropy does not allow for different levels of attention corresponding to 

acquiring information from different sub-components because it is a one-parameter approach for 

quantifying the information cost and thus can only incorporate a unique level of attention. This 

can restrict the effectiveness of applying Shannon entropy in practical settings (Dean and Neligh, 
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2023). In order to ease such a restriction, Huettner et al. (2019) and Walker-Jones (2023) provide 

multi-parameter approaches for quantifying the information cost. Huettner et al. (2019) quantifies 

the information cost across each sub-component of information, whilst Walker-Jones (2023) 

quantifies the information cost across each attribute of information, in which an attribute is a group 

of sub-components.  

In this study, we aim to develop a generalized RI route choice model based on the multi-

parameter approach, and to characterize the general RI route choice behaviour. This study offers 

three key contributions. First, we establish the mathematical formulation of a generalized RI route 

choice model with non-uniform marginal information costs, in which the marginal information 

costs are utilized to quantify the expenditure of attention on acquiring each unit information. 

Different to the existing RI choice models, such as Huettner et al. (2019), Jiang et al. (2020), 

Matějka and Mckay (2015) and Walker-Jones (2023), we introduce the concept of background 

information in our model, which is objectively provided by the transportation network and keeps 

invariant over the entire decision-making process, to describe the environment that the RI traveller 

faces before the information acquisition process launches. We then prove that such a generalized 

RI route choice model makes all the optimal conditional route choice probabilities locate within 

the interior of the feasible region of the route choice model. Second, we analytically characterize 

the closed-form expression for the optimal conditional route choice probabilities associated with 

all the candidate routes, which provide a more comprehensive understanding of the RI route choice 

behaviour. Although Huettner et al. (2019), Jiang et al. (2020), Matějka and Mckay (2015) and 

Walker-Jones (2023) have characterized the structure of the optimal conditional choice 

probabilities, their results can only be served as necessary but insufficient conditions for optimality, 

as such, there is no closed-form expressions of optimal conditional route choice probabilities in 

their works. Third, we devise an iterative solution algorithm based on the closed-form expression, 

which provides a more streamlined solution process by simplifying the requirements of numerous 

additional necessary and sufficient conditions for checking the convergence in Caplin et al. (2019), 

Huettner et al. (2019), Jiang et al. (2020) and Walker-Jones (2023).  

2 An overview of the RI route choice model with uniform 

marginal information costs 

2.1 A brief introduction on Shannon information theory 

The original RI concept is introduced in Sims (2003), which leverages several useful 

instruments provided in the Shannon information theory (Shannon, 1948) to measure the amount 

of acquired information when making choice decisions. It starts with the Shannon entropy (entropy 

for short hereafter) that measures the amount of information carried by a random variable, whose 

unit is “bit”. Entropy measures the uncertainty of a random variable. A higher entropy indicates 

that the random variable carries larger amount of information, which implies a higher level of 

uncertainty. A lower entropy on the other hand indicates the random variable carries lower amount 

of information, which suggests it is more predictable. The definition of entropy applies to 

continuously as well as discretely distributed variables. We take the discrete random variable as 

an illustrative example. For a random variable  with probability mass function , the amount 

of information carried by  can be measured by the unconditional entropy as: 
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,                                            (1) 

where the logarithm function can be of any base, because the base only determines a scale factor 

for the information measure. In practice, it is conventional to take the natural logarithm with Euler's 

number . For instance, suppose  follows a discrete distribution with equal probabilities on  

and , its entropy can be calculated by (1) as 

, 

which means that random variable  carries 0.693 bit of information. In addition, if  is a 

deterministic variable, that is, for all possible values of , then it carries no 

information with . 

Based on the general definition of entropy, Shannon (1948) introduces a conditional entropy 

to measure the amount of information carried by one random variable from observing the other 

random variable(s). For instance, suppose random variable  has been obtained before acquiring 

any information. Then, the amount of information carried by  can be measured by . 

Once the information on another random variable  is acquired, the amount of information carried 

by  from observing can be measured by:  

,                                  (2) 

where  is the probability mass function of  and  is the conditional probability mass 

function of  from observing . The conditional entropy (2) measures the expectation of the 

amount of information carried by the conditional distribution  with respect to . Based 

on the unconditional entropy (1) and conditional entropy (2), the amount of information acquired 

from  given  can be calculated by subtracting (2) from (1)   

.                                      (3) 

For instance, suppose  follows a discrete distribution with equal probabilities on  and , 

and the conditional probabilities of  given  be , 

, , . Then, the conditional 

entropy can be calculated by (2) 

. 

Thus,  can be calculated by (3) as: 

,  

which means that the amount of acquired information on  given  is 0.094 bit.  
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2.2 A brief overview of the RI route choice formulation in Jiang et al. (2020) 

Sims (2003) introduced the concept of marginal information cost to quantify the expenditure 

of attention on acquiring each unit information. Most of the existing RI choice models assume a 

uniform marginal information cost across each sub-component of information. In this section, we 

provide a brief overview of the RI route choice formulation with uniform marginal information 

costs, following Jiang et al. (2020).  

We consider an individual RI traveller who intends to travel through a transportation network. 

We denote  be the set of candidate routes, indexed by . We denote a vector  be the state of 

traffic conditions (state for short hereafter), which belongs to a finite set . The RI traveller has 

his own prior belief  on the states, where  denotes the set of probability 

distributions on . In practice, the RI traveller acquires information on the states with the goal of 

improving his route choice behaviour that are presented by the discrete probabilities 

 conditioned on the states. We denote the travel cost for route  in state  be 

 with . Then, the expected travel cost is defined as  

,                                           (4) 

which is a standard definition in the work on the RI route choice behaviour (Jiang et al., 2020). 

Before acquiring any information, the RI route choice behaviour is independent of the states 

and can be presented by the unconditional route choice probabilities . By the law of total 

probability, the unconditional route choice probabilities can be expressed by the expectation of the 

conditional route choice probabilities with respect to the states, that is,  

                                                 ,                                                            (5) 

in which the unconditional route choice probabilities can be regarded as the habitual route choice 

behaviour of the RI traveller. 

Then, according to (1), the amount of information possessed by the RI traveller can be 

measured by the unconditional entropy  

 .                                                (6) 

Once the information on the states is acquired, the RI traveller formulates the RI route choice 

behaviour described by . Thus, according to (2), the amount of information possessed 

by the RI traveller can be measured by the conditional entropy  

 .                               (7) 

Accordingly, the total amount of information acquired on the states can be measured according to 

(3) 

                                         (8) 

Consequently, the information cost can be quantified using (8) as 
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                                                   (9) 

where  is the marginal information cost.  

With the definition of the expected travel cost (4) and the information acquisition cost (9), the 

RI route choice behaviour with uniform marginal information costs can then be described by the 

following optimization model: 

               (10) 

                                      (11) 

                                  (12) 

where the RI traveller aims to find the optimal conditional route choice probabilities that minimize 

the sum of the travel cost and information cost. Constraint (11) ensures that at least one route 

should be chosen in any given state, and Constraint (12) ensures the conditional choice 

probabilities are non-negative in all states.  

RI route choice model is related to the bounded rationality choice model and the random 

utility choice model, while it is quite different to the prospect choice model. In the bounded 

rationality choice model, the route travel costs are disturbed by the indifference parameters, which 

can be either random or deterministic. When the indifference parameters are random variables, 

which follow the i.i.d. Gumbel distribution, the bounded rationality choice behaviour can be 

described by the random utility choice model. When the indifference parameters are defined by 

the information cost, the bounded rationality choice behaviour can be described by the RI choice 

model. On the other hand, the prospect choice model allows the individuals learn a choice 

behaviour which does not necessarily minimize the total (expected) cost, because they place other 

considerations above utility, called travel prospects. 

As discussed in Jiang et al. (2020), the structure of the optimal solutions of route choice model 

(10)-(12) can be characterized in the following proposition. 

Proposition 1. If , then the solution of route choice model (10)-(12) is optimal only if 

 ,                                              (13) 

for all  and . 

Condition (13) provides a GMNL formulation of the optimal conditional route choice 

probabilities. In the extreme case of  where the RI traveller can acquire information on the 

states for free, they will make route choice decisions with complete rationality, i.e., they always 

choose the routes with lowest travel costs. Conversely, in the other extreme case of  

where information is too costly to acquire, the RI traveller would not acquire any information on 

the states and would choose the routes with lowest expected travel cost only according to the 

habitual route choice behaviour  (Matějka and Mckay, 2015).  

Important to note that Condition (13) is necessary but insufficient for optimality, since the 
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Karush-Kuhn-Tucker (KKT) conditions can only be applied to the conditional route choice 

probabilities that locate within the interior of the feasible region of the choice model. Whereas 

route choice model (10)-(12) allows the optimal conditional route choice probabilities for the 

dominated routes to be located on the boundary. Caplin et al. (2019) has summarized the key 

limitation of Condition (13), that is, it can determine the RI choice behaviour among the routes 

that are chosen with positive probabilities, but it cannot identify which route is with positive choice 

probability. The existence of the zero-choice-probability routes is the major reason that results in 

the non-existence of the closed-form expression of the optimal conditional route choice 

probabilities. We postulate that the existence of zero-choice-probability routes is caused by the 

freely available habitual information , based on which the information acquisition process 

in the existing RI choice modelling framework has been built. The habitual route choice behaviour 

 was used to represent the choice behaviour before acquiring any information on the states in 

the RI choice models, but it is presented as a linear combination of the RI route choice behaviour 

 according to (5). Note that the RI route choice behaviour  is relevant to the full 

information on the states. Once the habitual information is freely available, the RI traveller can 

then exactly identify which route is dominated before the information acquisition process launches, 

and accordingly, they will not choose the dominated route. In practice, however, the habitual 

information is freely available only when the RI traveller is exceedingly familiar with traffic 

conditions, for instance, his routinely commute routes to work. Otherwise, the RI traveller should 

always consume attention to acquire habitual information, particularly when they intend to conduct 

his travel along unfamiliar routes. In this context, it is more viable to consider the scenario that the 

RI traveller acquires information on the states from null. Therefore, a more tenable RI choice 

modelling framework entails factoring in the expenditure of attention to acquire habitual 

information. 

3 A generalized RI route choice model with non-uniform     

marginal information costs  

3.1 Mathematical formulation of the generalized RI route choice model 

In this section, we consider the scenario where acquiring information from different sub-

component of states entails different levels of attention. Before the information acquisition process 

is launched, the RI traveller should possess null information on the states. Instead, what they face 

is only the background information provided by the transportation network, which keeps invariant 

over the entire information acquisition process. We denote the background information by 

. In this situation, the RI traveller only knows that there are  candidate routes for 

them to choose from the outset. According to the principle of maximum entropy established in 

Jaynes (1957), if nothing is known about a distribution except that it belongs to a certain class, 

then the distribution with the largest entropy should be selected as the least-informative default. 

Entropy maximization with no testable information only respects the universal constraint that the 

sum of the probabilities is one. Under this constraint, the uniform distribution is with the maximum 

entropy among the finite limited number of candidate routes. Thus, before launching the 

information acquisition process, the amount of background information can be measured by 
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,                                     (14) 

which is independent of the RI route choice behaviour. 

Then, the first step to launch the information acquisition process is to acquire information 

from the background so as to learn the habitual information. Once the habitual information 

 is acquired, the amount of information possessed by the RI traveller can be 

measured by 

.                                          (15) 

Then, similar to (8), the amount of acquired information on the habitual information can be 

measured using (14) and (15) as  

                             (16) 

Now, we consider the process that the RI traveller acquires information on the states. We 

denote the state as an -dimensional vector , which belongs to a finite 

set , where  is the set of possible values for the -th sub-component of 

state . For the sake of completeness, hereafter, we denote  for . 

Before acquiring information from  with , the RI traveller has already obtained the 

partial state that contains the first  sub-components of state , which is denoted by 

 belongs to the set . The prior belief on the 

partial state  is given by . For ease of presentation, we denote 

 for  and . For the sake of completeness, 

we set  for . 

In this context, the RI route choice behaviour is presented by . Then, the 

amount of information possessed by the RI traveller can be measured by  

.     (17)             

Once the information from  is acquired, the RI traveller obtains partial state that contains 

the first  sub-components  of state . The prior belief on the partial state 

 is given by . In this context, the RI route choice behaviour is presented by 

. Then, similar to (17), the amount of information possessed by the RI traveller can 

be measured by  

  .             (18) 

Accordingly, using (17) and (18), the total amount of information acquired for the -th sub-

component can be measured by  
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.                (19) 

Consequently, the information cost can be quantified according to (16) and (19) across all the 

sub-components of  

 ,                                 (20) 

where  is the marginal information cost for acquiring each unit of information from . 

Then, with the definition of the travel cost (4), the information cost (20), we formulate the 

following optimization model that describes the RI route choice behaviour with non-uniform 

marginal information costs 

        (21) 

                                                       (22) 

                                                   (23)                       

In the following, we make an assumption on the marginal information costs. 

Assumption 1.  The marginal information costs follow an ascending order with respect to the 

subscripts, that is, . 

In the RI route choice model (21)-(23), information acquisition process is a superposition 

process, that is, the amount of acquired information on one additional sub-component is derived 

from the entropy conditioned on the previous sub-components minus the entropy conditioned on 

the product of the new and the previous sub-components. For example, when the RI traveller 

acquires information from  with marginal information cost  for each unit of information, the 

information cost is calculated by  

, 

where the RI traveller has already possessed the background information  and needs to acquire 

information from the product . When the RI traveller acquires information from 

 with marginal information cost , the information cost is calculated by  

, 

where the RI traveller has already possessed the information from  and needs to acquire 

information from the product . Since  is a part of , the 

latter contains more information than the former. Thus, the consumption of attention on acquiring 

each unit information from   should be higher than that from  . Hence, . 

Following the similar analogy, we can get that Assumption 1 is reasonable.   

According to the principle of maximum entropy, the total amount of acquired information is 

always non-negative, with zero if  is uniformly distributed in each given state . When 



10  

, the RI traveller acquires the candidate information without any attentional expenditure, 

then RI route choice model (21)-(23) would degenerate into the choice model proposed in Huettner 

et al. (2019). Furthermore, on the basis of  and uniform marginal information costs for the 

sub-components, e.g., , RI route choice model (21)-(23) would degenerate into 

the RI route choice model (10)-(12) presented in Jiang et al. (2020). Therefore, RI route choice 

model (21)-(23) is a generalization of the choice model considered in the existing works as 

Huettner et al. (2019), Jiang et al. (2020), Matějka and Mckay (2015). Naturally, a question arises: 

would the generalized RI route choice model (21)-(23) gives rise to a different pattern of RI route 

choice behaviour to those in the existing works? In the next sub-section, we will analytically 

characterize the RI route choice behaviour described in the route choice model (21)-(23). 

3.2 Optimal route choice behaviour 

The marginal information costs reflect the difficulty of acquiring information from the 

corresponding subcomponents: subcomponents with higher marginal information costs associated 

with them are more costly to learn about (Walker-Jones, 2023). Two extreme cases of marginal 

information costs, e.g.  and , are similar to those discussed in 

Huettner et al. (2019).  

In order to characterize the closed-form expression of the optimal conditional route choice 

probabilities, the following result that ensures the positivity for the optimal solutions of route 

choice model (21)-(23) should be established in prior. 

Theorem 1. Let  be the optimal solution of route choice model (21)-(23). Under 

Assumption 1 ,  for all  and . 

Theorem 1 guarantees that the optimal solutions of route choice model (21)-(23) locate in the 

interior of the feasible region of the model. This is a prerequisite to apply the KKT conditions to 

characterize the closed-form expressions of the optimal route choice probabilities. Theorem 1 is 

proven by contradiction. We start by supposing that there exists an optimal solution of route choice 

model (21)-(23) that assigns a zero conditional choice probability for a certain route. We then show 

that it is possible to construct another feasible solution that can reduce the objective function (21) 

by introducing a small perturbation to the zero conditional choice probability. More importantly, 

we find that such a small perturbation relies on a positive , which theoretically demonstrates 

that the route choice models without incorporating the background information fail to guarantee 

the optimal conditional route choice probabilities locate within the interior of the feasible region 

in all states. Indeed, the choice models considered in Huettner et al. (2019), Jiang et al. (2020), 

Matějka and Mckay (2015) and Walker-Jones (2023) allow the optimal conditional choice 

probabilities for the dominated alternatives locate on the boundary, i.e., the optimal choice 

probabilities for such alternative are always zero. Therefore, route choice model (21)-(23) 

describes a different pattern of RI route choice behaviour that differs from those in the existing 

works. The full proof is presented in Appendix A. 

Now, we are ready to characterize the closed-form expression of the optimal conditional route 

choice probabilities. 

Theorem 2. Let  be the solutions of route choice model (21)-(23). Under Assumption 1,  
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 is optimal, if only if  and satisfies 

                                                (24) 

for all  and , where . The conditional route 

choice probability   on partial state   is given by 

 , 

for all  and , where  is the conditional prior belief on 

partial state  given . For the sake of completeness, we denote  and 

  for . 

The proof is presented in Appendix B. 

It is noteworthy that  can be regarded as a correction term in the closed-

form expression (24). Such a correction term is constructed endogenously according to the RI 

choice behaviour conditioned on the partial states. Whereas the correction terms in the exiting logit 

models, such as the link size logit model (Fosgerau et al., 2013), the nested recursive logit model 

(Mai et al., 2015), the path size logit model (Duncan et al., 2020), and the choice aversion logit 

model (Knise et al., 2022), and so on, are constructed using the exogenous ingredients that are 

independent of the choice behaviour. This distinct construction of correction term makes RI route 

choice model (21)-(23) differ from the logit models and its generalized variants in terms of 

prediction results. 

Theorem 2 highlights the impact of the route travel costs, the marginal information costs, as 

well as the partial-information-based conditional route choice probabilities on the optimal RI route 

choice behaviour. In fact,  in Condition (24) is a multiplication of the rescaled 

conditional route choice probabilities based on partial information, where the exponent 

 highlights the impact of the non-uniform marginal information costs on the RI 

route choice behaviour. As we can observe,  reverts to  when  and 

. Thus,  is an extension of the habitual choice behaviour  

in Condition (13).  

Theorem 1 plays an indispensable role in characterizing the closed-form expression (24) by 

applying the KKT conditions to the route choice model (21)-(23). A vital step to establish the KKT 

conditions is to take partial derivatives on the Lagrangian of route choice model (21)-(23) with 

respect to each interior point . The Lagrangian incorporates the objective function (21) and 

the constraints (22)-(23) into a single equation, which quantifies the trade-off between the change 

of the total cost and the gain of updating the RI route choice behaviour. Theorem 1 ensures all the 

optimal conditional route choice probabilities locate within the interior of the feasible region. Thus, 

the KKT conditions guarantee that the optimal route choice probabilities can be achieved, only if 
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the marginal trade-offs are zero with respect to all the ’s, which gives Condition (24). The 

necessity is thus guaranteed. Conversely, the condition that  is positive enables us to choose 

zero Lagrangian multiplier for Constraint (23) so as to satisfy the complementary slackness 

condition. In addition, substituting Condition (24) into the Lagrangian of route choice model (21)-

(23) make us possible to choose the proper Lagrangian multiplier for Constraint (22), such that the 

KKT conditions for route choice model (21)-(23) are satisfied. This guarantees the sufficiency. 

Thus, Condition (24) can be served as the closed-form expression of the optimal conditional route 

choice probabilities.  

3.3 Solution Algorithm 

Based on the closed-form expression (24), we devised a solution algorithm for route choice 

model (21)-(23).  

Algorithm 1 Optimal Conditional Choice Probabilities 

Step 1: Given prior beliefs  on partial and full states and the marginal information costs 

. Start with initial conditional choice probabilities 

 that satisfy . Set an iteration counter  and an accuracy gap 

. 

Step 2: According to , compute the unconditional route choice probability  for all 

, and the route choice probability  conditioned on partial state  for 

all  and . Then, update  as 

                                   (25)    

Step 3: Check whether  satisfies 

 ,                                          (26) 

for all  and . 

If yes, abort with  as the optimal solution. 

Otherwise, go back to Step 2. 

Note that the updating process in (25) guarantees  satisfies  

and  for all  and . Criterion (26) is a relaxation of criterion 

 so as to accelerate the convergence of Algorithm 1. In the following, we 

will prove that iteration (25) in Step 2 always reduces the objective  until 

 is satisfied for all  and .  
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Theorem 3. Under Assumption 1, Algorithm 1 converges to the optimal solution of route choice 

model (21)-(23) when  for all  and . 

The proof be derived simply by combining Theorem 2 and Proposition 2 in Huettner et al. 

(2019). 

Theorem 3 ensures that Algorithm 1 converges to the optimal solutions of route choice model 

(21)-(23). In the existing works of Caplin et al. (2019), Huettner et al. (2019), Jiang et al. (2020) 

and Walker-Jones (2023), the structure of optimal conditional choice probabilities can only be 

served as necessary but insufficient condition for optimality. This gives rise to the consequence 

that a series of additional necessary and sufficient conditions must be introduced to guarantee the 

optimality of the solutions of their choice models, e.g., Proposition 1 in Caplin et al. (2019), 

Theorem 2 in Huettner et al. (2019), Proposition 2 in Jiang et al. (2020) and Theorem 3 in Walker-

Jones (2023). In this study, because of the characterization of the closed-form expression (24), a 

much simpler criterion (26) is enough to check the convergence of Algorithm 1. 

In terms of the behavioural implications, the RI model provides a framework to model how 

information can influence traveller’s route choice and lead them towards more optimal choices. 
More specifically, when the information on the states are given, the RI traveller would formulate 

the initial RI route choice behaviour according to his individual cognition, which may not be 

optimal. The solution algorithm provides a feasible way for the RI traveller to learn the optimal 

route choice behaviour from the initial one. In Algorithm 1, the set of states and the initial route 

choice behaviour (the initial conditional choice probabilities) are considered as inputs. Then, the 

RI traveller keeps adjusting the conditional route choice probabilities according to the rule of 

updating, until the optimality criterion is satisfied for all routes and states. From which, the optimal 

route choice behaviour can be identified by the RI traveller. 

4 Numerical examples 

In this section, we present two numerical examples to illustrate the theoretical findings 

presented in the previous section. The first example is conducted on a toy network, which is 

designed to illustrate the convergence performance of the solution algorithm and to highlight the 

impact of marginal information costs on the optimal conditional route choice probabilities. The 

second example is conducted in the Nguyen-Dupuis network, which demonstrates the 

effectiveness of the theoretical results over a large-scale route choice model. Algorithm 1 is coded 

in Matlab R2023a on a Windows machine with Intel(R) Core(TM) i9-11950H and 64 GB RAM. 

The initial conditional choice probabilities  in Algorithm 1 are randomly selected according to 

Constraints (22) and (23). 

4.1 A toy network 

Consider a toy network shown in Figure 1, which contains two candidate routes. Thus, the set 

of candidate routes is defined by .  
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Figure 1: A toy network for illustration. 

We assume that there are two (fixed) travel costs for each route associated with the states of 

traffic conditions: non-congested and congested. The traffic conditions are noted in Figure 1, 

where the first value in the bracket for each route is the travel cost in the non-congested state, 

whilst the second value is the travel cost in the congested state. The set of sub-components are 

denoted by  and  respectively. Then, the set of all possible states is 

denoted by . For presentation convenience, we 

denote the states in  by , , , . The 

corresponding travel costs in these states are given by , , where   

and  are the first and second sub-component of state  respectively. We assume the two sub-

components in each state occur independently with equal probability. The accuracy gap  is set to 

be , that is, Algorithm 1 terminates if  is satisfied for all 

 and . 

First, we test the impact of  on the optimal conditional route choice probabilities. To this 

end, we fix the values of  and  at  and  respectively, and take the values of  from the 

set . The simulation results are presented in Figures 2 and 3. Figure 2(a)-(d) depict 

the convergence performance of the conditional route choice probabilities for Route 1 in each 

specified state for the different values of . The convergence performance of the conditional route 

choice probabilities for Route 2 are omitted, because they can be simply calculated by 

 for all . Note that the optimal conditional route choice probabilities 

with  is computed by Algorithm 1 in Huettner et al. (2019). Figure 3 depicts the amount of 

acquired information from  for the different values of . 
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                                        (a)                                                                       (b) 

 
                                        (c)                                                                       (d)                 

Figure 2: Convergence performance of conditional route choice probabilities for Route 1 in each 

specific state with : (a) , (b) , (c) , (d) . 

We observe from Figure 2 that the conditional route choice probabilities for Route 1 converge 

to the optimal values in all states, which verifies the convergence of Algorithm 1. In addition, it is 

noteworthy that the travel cost for Route 2 is higher than that for Route 1 in all states, which means 

that Route 2 is dominated by Route 1. When , Figure 2 shows that the optimal conditional 

route choice probabilities for Route 1 are always one in all states, which are consistent with the 

results in Huettner et al. (2019), Jiang et al. (2020), Matějka and Mckay (2015) and Walker-Jones 

(2023) that all the optimal conditional route choice probabilities locate on the boundary of the 

feasible region. However, when  is positive, we can observe from Figure 2 that the optimal 

conditional route choice probabilities for Route 1 are strictly less than one in all states, which 

means that all the optimal conditional route choice probabilities locate within the interior of the 

feasible region. This comparison demonstrates that introducing the background information before 

launching the information acquisition process gives rise to a substantial change of the RI route 

choice behaviour.  

From an alternative perspective, we observe from Figure 2(a) that the optimal value of 

 decreases, and correspondingly, the optimal value of  increases, as  

increases. Simultaneously, the same changing trends for the optimal values of  for 
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 can also be observed in Figures 2(b)-2(d). Moreover, as illustrated in Figure 3, the 

amount of acquired information from  decreases markedly with respect to increasing  for 

fixed  and . Combining the observations from Figure 2 and 3, we find that larger 

amount of acquired information from  gives rise to higher conditional route choice probabilities 

for Route 1, and vice versa. The reason is that when more information from  is acquired, the RI 

traveller would be more confident that Route 1 is with lower travel cost than Route 2, and 

correspondingly, choose Route 1 with a higher chance.  

 

Figure 3: Amount of acquired information from  with respect to different values of . 

Next, we test the impact of  and  on the optimal conditional route choice probabilities. 

To this end, we fix the value of  at , and take the values of  from the set 

. The simulation results are presented in Figure 4 and 5. Figure 4(a)-

(c) depict the convergence performance of the conditional route choice probabilities for Route 1 

in all states for each specified  and . Figure 5 depicts the amount of acquired information 

from  and  for the different values of  and . 

 
                                        (a)                                                                       (b) 
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    (c)                                                                        

Figure 4: Convergence performance of the conditional route choice probabilities for Route 1 in the 

four states for specified marginal information costs. (a) , , , (b) , 

, , (c) , , . 

When ,  and , we can observe from Figure 4(a) that the conditional 

route choice probabilities for Route 1 exhibit significantly discrepancies in different states, i.e. 

, because the mild marginal information costs 

enable the RI traveller acquire adequate information to clearly distinguish the travel costs for both 

routes, i.e. the information acquired from ,  and  are good enough.  

When ,  and , a different result can be observed from Figure 4(b), which 

illustrates that  and . This observation indicates that 

the travel costs for Route 2 can not be identified, which means that the information acquired from 

 and  are good enough and the effort in acquiring information from  is not worth it. This 

statement can be demonstrated by Figure 5(b), which illustrates the amount of acquired 

information from  with respect to four different values of  for fixed  and . We 

can observe that the amount of acquired information from  decreases as  increases and the 

amount of acquired information from  is only  bit when . The comparison 

between Figure 4(a) and Figure 4(b) demonstrates that there exists a cutoff point of , which can 

be observed by gradually increasing it from  to .  

When ,  and , the observations from Figure 4(c) yields a consequence 

that , which indicate that the RI traveller can only 

identify the habitual information. This observation means that the information acquired from  

is good enough and the effort in acquiring information from  and  is not worth it. This 

statement can be demonstrated by Figure 5(a), which illustrates the amount of acquired 

information from  with respect to four different values of  for fixed  and . We 

can observe that the amount of acquired information decreases as  increases and the amount of 

acquired information from  is only  bit when . The comparison between 
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Figure 4(b) and Figure 4(c) demonstrates that there exists a cutoff point of , which can be 

observed by gradually increasing it from  to .  

From the observations in Figure 2 to Figure 5, we find that the marginal information costs 

impact the RI route choice behaviour through controlling the amount of acquired information from 

the corresponding set of sub-components. 

 
                                        (a)                                                                       (b)                                                            

Figure 5: The amount of acquired information from each set of sub-components. (a) The first sub-

component , (b) The second sub-component .  

Then, we consider the RI route choice behaviour with ,  and , 

which represents an extreme case that the marginal information costs are too high for the RI 

traveller to afford. As a result, both habitual information and the sub-component information 

become too expensive for the RI traveller to acquire. Figure 6 illustrates the numerical result, in 

which the optimal conditional route choice probabilities are nearly  in all states, whilst the 

total amount of acquired information is  bit. This observation demonstrates that if no 

information is available, the RI traveller would choose the candidate routes with equal probability 

in all states. This result is consistent with the principle of maximum entropy introduced in Section 

3.1.  

 
Figure 6: Convergence performance of the conditional route choice probabilities for Route 1 in the 

four states with , , . 
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Figure 7 illustrate the comparisons of the optimal conditional route choice probabilities 

between RI route choice model (21)-(23) and the corresponding random utility choice model. We 

compute the optimal conditional route choice probabilities of RI route choice model (21)-(23) for 

Route 1 with ,  and . We also compute the optimal 

choice probability of the random utility model for Route 1 in each specific state, in which the 

random disturbances for the route travel costs are assumed to follow the i.i.d. Gumbel distribution 

with scale parameter . In Figure 7, the grey dash lines depict the route choice behaviour 

described by the random utility model, whilst the colour lines depict the RI route choice 

behaviours. We can observe from Figure 7 that RI route choice behaviour gradually approaches to 

the random-utility-based route choice behaviour as  approaches to . This observation infers 

that RI route choice model (21)-(23) would describe a random-utility-based route choice behaviour 

when . In fact, by letting , closed-form expression (24) 

degenerates into , which is consistent with the optimal choice 

probability of a random utility model. This result not only validates the above inference on the 

observations in Figure 7, but also demonstrates that the RI choice behaviour characterized by 

closed-form expression (24) always contains one random-utility-based choice behaviour as a 

special case. 

 
                                        (a)                                                                       (b) 

 
                                        (c)                                                                       (d)                 
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Figure 7: Comparisons of the optimal conditional route choice probabilities between RI route 

choice model (21)-(23) and the corresponding random utility model: (a) , (b) , 

(c) , (d) . 

4.2 Nguyen-Dupius Network 

In this subsection, we adopt the Nguyen-Dupius (ND) network to further illustrate the RI 

choice behaviour described by the route choice model (21)-(23). Figure 8 depicts the layout of the 

ND network, where the circles represent the nodes and the solid lines with arrows represent the 

directed links. In total, the ND network contains 4 O-D pairs, 19 links and 25 routes. The links are 

labelled by the numbers above them. Table 1 illustrates the link-route relationship of the ND 

network. Similar to Section 3.1, we assume that there are two (fixed) travel costs for each link 

associated with the states, which are shown in the brackets under each link in Figure 8. We further 

assume that these states as well as their sub-components occur independently with equal 

probability. There are therefore totally 219=524288 possible states, each of them contains 19 sub-

components. The route travel cost in each state can then be calculated as the accumulation of the 

link cost in the state according to the link-route relationship. 

We consider four scenarios of marginal information costs. In each scenario,  are 

assumed to be an arithmetic sequence. For scenario , we set ,  and common 

difference be . Since this problem encounters a large amounts of states, we set the accuracy gap 

be 10-3, that is, Algorithm 1 terminates if  is satisfied for all  

and . 

 
Figure 8: The Nguyen-Dupius Network. 

Table 1: Link-Route incidence relationship of the ND network. 

O-D pair Route no. Link sequence O-D pair Route no. Link sequence 

 1 1, 10, 19  9 2, 5, 8, 12 

2 

3 

4 

2, 6, 9, 16, 19 

2, 6, 9, 15, 17 

2, 6, 14, 11, 17 

10 

11 

12 

2, 6, 9, 15, 18 

2, 6, 14, 11, 18 

2, 5, 7, 11, 18 
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5 2, 5, 7, 11, 17 13 1, 13, 9, 15, 18 

6 1, 13, 9, 16, 19 14 1, 13, 14, 11, 18 

7 1, 13, 9, 15, 17 20 4, 8, 12 

8 1, 13, 14, 11, 17 21 4, 7, 11, 18 

  15 

16 

17 

18 

19 

4, 7, 11, 17 

3, 6, 14, 11, 17 

3, 6, 9, 16, 19 

3, 6, 9, 15, 17 

3, 5, 7, 11, 17 

 22 

23 

24 

25 

3, 5, 8, 12 

3, 6, 9, 15, 18 

3, 6, 14, 11, 18 

3, 5, 7, 11, 18 

 
                                       (a)                                                                        (b) 

 
                                         (c)                                                                        (d) 

Figure 9: Optimal unconditional route choice probabilities for some typical routes. (a). Route 1 

between ; (b). Route 9 between ; (c). Route 15 between ; (d). Route 20 

between . 

Figure 9 depicts the unconditional route choice probabilities for Routes 1, 9, 15 and 20. These 

routes are with the lowest travel costs between the corresponding O-D pairs in all states, and thus 

their unconditional route choice probabilities are the highest. We observe from Figure 9 that the 

convergence of Algorithm 1 is reached and within a reasonable time (4000 or 5000 seconds) for a 
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network with a large number (219) of decision variables. In addition, we observe that the optimal 

values of these unconditional route choice probabilities for specific route decrease as the marginal 

information costs increase. For instance, by comparing Figures 9(a) and 9(b), we can see that the 

optimal values of  in Scenario 1 is greater than which in Scenario 2. Similar observations can 

be obtained by comparing the optimal values of  in Figures 9(b) and 9(c) as well as in Figures 

9(c) and 9(d). Correspondingly, it can be observed in Figure 10 that the total amount of acquired 

information decreases as marginal information costs increase. These observations are consistent 

with the consequence exemplified through a toy network in Section 4.1, which states that high 

marginal information costs make the RI traveller acquires less information, and thus, more difficult 

to distinguish the different travel costs for these routes in each state. Therefore, we demonstrate 

that the marginal information costs can also impact the RI route choice behaviour in a large-scale 

route choice model to a great extent. 

 
Figure 10: Total amount of acquired information for four different scenarios of marginal 

information costs. 

5 Conclusions and future research directions 

This study focuses on the RI route choice behaviour by taking the non-uniform marginal 

information costs into account. Unlike the traditional choice models based on the random utility 

model framework, which rely on exogenous random shocks, our model considers the endogenous 

incentive for the RI traveller to acquire information on the states throughout the transportation 

network. This novel perspective sheds light on the impact of marginal information costs on the RI 

route choice behaviour. We establish a generalized RI route choice model with non-uniform 

marginal information costs, which incorporates the background information that contains all the 

candidate routes. These candidate routes are flexibly given, which can be considered either as the 

whole feasible routes of the entire network, or the routes that the traveller knows about.  

We prove that such generalized RI route choice model ensures that all the optimal conditional 

route choice probabilities locate within the interior of the feasible region, that is, all the candidate 

route are assigned a positive choice probability in all states. This behaviour differs significantly to 

the RI route choice behaviour described in the existing works, the latter allows a set of candidate 

routes to remain unchosen. This property enables us to characterize the closed-form expression of 

the optimal conditional choice probabilities and devise an iterative solution algorithm. Whereas 

there is no closed-form expression of the optimal conditional choice probabilities in the existing 
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works. Our work also presents a feasible way to characterize the closed-form expression of the 

choice behaviour in the general RI choice modelling framework. 

It is worth noting that, although our work considers the route choice behaviour from the 

perspectives of individual RI traveller, this RI route choice modelling framework can also be 

applicable from the perspective of the system operator (including that for the AVs and navigation 

apps). In the era of AVs and navigation apps, travellers may no longer need to acquire information 

by themselves. Instead, the information acquisition can be done by the navigation system. Such 

system-led process is still costly, that is, the navigation system has to consume its limited resources, 

such as storage, computing power and communication, to acquire information on the traffic 

conditions and to generate recommendation (i.e., optimal route choice probability) for its users. 

Our proposed RI framework can also be used by the navigation system to formulate the 

recommendation of travelling routes. 

The proposed model has some limitations that warrant further investigation. Firstly, the model 

does not explicitly consider the timing of information acquisition process. In reality, the RI 

traveller needs not only determine what and how much information to acquire, but also when to 

do so. Thus, incorporating a dynamic route choice model that accounts for the timeliness of 

information acquisition would provide a more realistic representation of RI route choice behaviour 

in this information-rich society. Secondly, the solution algorithm (Algorithm 1) is computationally 

challenging when facing large-scale RI route choice models. In the ND network, it takes more than 

4000 seconds to solve the RI route choice model of 524288 possible states. Addressing this 

computational challenge will help pave the way for practical application of the RI route choice 

model. In addition, the marginal information costs in the choice model require further calibration 

to align with different engineering application scenarios. While it may be intuitive to estimate these 

costs from historical data using statistical estimation methods such as maximum likelihood 

estimation, the calibration of marginal information costs has not been thoroughly explored in 

existing RI models. Future research should focus on developing methodologies to accurately 

estimate these costs and tailor them to specific contexts. Addressing these limitations will enhance 

the practical applicability and realism of the proposed model, allowing for a better understanding 

of the dynamics of RI route choice behaviour and facilitating its implementation in real-world 

transportation networks. 
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Appendix A. 

Proof of Theorem 1. By contradiction, we suppose that there exist optimal solutions 

of route choice model (21)-(23) such that for certain and 

. By Constraint (22), there must exist a route  other than  such that . 

In the following, we construct another feasible solution  by perturbing the conditional 

route choice probabilities  and , whilst other conditional route choice 

probabilities remain unchanged. To this end, we define  as follows 

 

 

 

 

 

where  is a sufficiently small perturbation. 

Then, we make a difference between  and , which is exhibited as follows 

 

where   

Then, following a similar way to Du et al. (2014), if , then we can derive upper 

bounds ,  and  for ,  and , respectively, such that  
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; 

if , then we can derive upper bounds ,  and  for ,  and , 

respectively, such that  

. 

Note that the upper bounds , ,  and  are independent of . Thus, we can 

properly choose an  such that  

 

which contradicts to  are optimal solutions of route choice model (21)-(23). 

Appendix B. 

Proof of Theorem 2. The necessity part of proof can be obtained according to the derivation 

of Theorem 1 in Huettner et al. (2019). Thus, we omit it. In the following, we focus on the 

sufficiency part of proof.  

If  and satisfies (24) for all  and  , then by substituting (24) into 

, we can get that  

 

By logarithm calculation and cancellation, we get an alternative formulation of  

 

Applying Theorem 2 in Huettner et al. (2019), we get  is convex. Then, taking partial 

derivative of   with respect to  yields that 

 

Let the Lagrangian multiplier for Constraint (22) be 
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and let the Lagrangian multiplier for Constraint (23) be 

 

which guarantees the satisfactory of the complementary slackness condition for inequality 

constraint (23). Thus, KKT conditions hold, which means that  are optimal.   
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