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Device-independent quantum key distribution allows for proving the security of a shared cryptographic

key between two distant parties with potentially untrusted devices. The security proof is based on the

measurement outcome statistics (correlation) of a Bell experiment, and security is guaranteed by the laws of

quantum theory. While it is known that the observed correlation must be Bell nonlocal in order to prove

security, recent results show that Bell nonlocality is in general not sufficient for standard device-

independent quantum key distribution. In this work, we show that conversely, there is no lower bound on

the amount of nonlocality that is sufficient for device-independent quantum key distribution. Even more so,

we show that from certain correlations that exhibit arbitrarily small nonlocality, one can still extract

unbounded device-independent key rates. Therefore, a quantitative relation between device-independent

key rates and Bell nonlocality cannot be drawn in general. Our main technique comprises a rigorous

connection between self-testing and device-independent quantum key distribution, applied to a recently

discovered family of Bell inequalities with arbitrarily many measurement outcomes.

DOI: 10.1103/PhysRevLett.132.210803

Introduction.—Device-independent quantum key distri-

bution (DIQKD) allows two distant parties to establish a

secure cryptographic key without having to trust the

devices they use in the protocol [1–4]. The security of

the key is guaranteed solely by the laws of quantum

physics. DIQKD solves two problems present in other

types of key distribution protocols: it does not rely either

on the hardness of computational problems (like most

nonquantum key distribution schemes [5–7]), or on the

characterization of the devices used in the protocol (like

standard quantum key distribution schemes [8–10]). While

the practicality of DIQKD still poses challenges, the first

proof-of-principle experiments were carried out recently

[11–13], demonstrating that DIQKD can be achieved with

current technology. Remaining challenges include increas-

ing the key rates and the distance over which the protocols

can be implemented, noting that increasing the key rates

naturally leads to an increase in the achievable distance

as well [3,4].

This work is concerned with characterizing fundamental

resources necessary for achieving high key rates. The key

rate of a protocol is the number of secret bits that can be

produced in a given round of the protocol, and we will

compare key rates with Bell nonlocality [14], a naturally

connected notion: in a DIQKD protocol, two parties

measure a bipartite quantum system locally, and the final

key is extracted from the measurement outcomes. It is

known that DIQKD is possible only if these measurement

outcome statistics demonstrate nonlocal correlations (i.e.,

they violate a Bell inequality) [1,2]. It is, however, less clear

how the amount of nonlocality (or Bell inequality violation)

relates to the achievable key rate. In fact, recently it was

shown that nonlocality in itself is not sufficient for the

security of a large class of DIQKD protocols [15]. That is,

there exist correlations that violate a Bell inequality, but

cannot be used for DIQKD using standard techniques. In

this work, we show a somewhat opposing statement: one

can extract unbounded key rates from certain correlations

that violate Bell inequalities arbitrarily weakly. Further-

more, these protocols also only use standard techniques.

Therefore, one can conclude that (standard) DIQKD key

rates and Bell nonlocality are incomparable resources, and

achieving large key rates does not necessarily imply a large

amount of nonlocality.

Preliminaries.—Any DIQKD protocol starts with the

measurement stage: two parties, Alice and Bob, locally

measure their part of a fresh copy of a bipartite quantum

state ρ defined on the tensor product of two Hilbert

spaces, HA ⊗ HB. Every time they measure, it constitutes

a round of the protocol. In every round, they can decide to

perform one of (finitely) many available measurements.

For Alice, these measurement settings are denoted x∈
f0; 1;…; nA − 1g≕ ½nA�, and for Bob, y∈ ½nB�. In each

round they obtain a measurement outcome, labeled by

a∈ ½kA� for Alice and b∈ ½kB� for Bob. Once they have

obtained their respective outcomes, a new round begins

with a fresh copy of ρ. They perform many rounds (in this
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work we are interested in the asymptotic limit of infinitely

many rounds) and record their settings and outcomes,

which concludes the measurement stage.

After this, Alice and Bob estimate the correlation, that is,

the joint probability distribution pða; bjx; yÞ of the out-

comes conditioned on the measurement settings. The

estimation is done by publicly announcing a small subset

of their inputs and outputs, after which this subset of their

data is discarded.

Quantum theory dictates that the correlation will be

given by the Born rule,

pða; bjx; yÞ ¼ tr
��

Ax
a ⊗ B

y
b

�

ρ
�

; ð1Þ

where fAx
aga and fBy

bgb represent positive-operator-valued
measures (POVMs) for every x and y. It is important to note

at this point that certain quantum correlations are nonlocal,

i.e., roughly speaking they do not have a classical physical

description [14]. The nonlocality of a correlation is

witnessed by the violation of a Bell inequality, a linear

inequality on the correlation that is satisfied by all classical

correlations (classical correlations are said to be in the local

set). It is an important prerequisite for a correlation to

violate a Bell inequality in order for it to be useful for

DIQKD [1,2].

Returning to the steps of a DIQKD protocol, once they

have estimated the correlation, Alice and Bob decide

whether the correlation is satisfactory for DIQKD (based

on criteria that we will discuss next). If it is not, they abort

the protocol. If the correlation passes the test, they employ

privacy amplification and error correction on their remain-

ing data (on the recorded inputs and outputs that were not

discarded) [16–18]. This is done via public, but authenti-

cated classical communication channels. At the end of the

privacy amplification and error correction stage, Alice and

Bob are each left with a string of bits that are perfectly

random (as a result of privacy amplification) to any poten-

tial eavesdropper limited by the laws of quantum physics.

Moreover, these strings of bits are exactly the same for

Alice and Bob, as a result of error correction. The asymp-

totic key rate, r, is then defined as the length of this bit

string, divided by the number of rounds, taking the limit of

infinitely many rounds.

One of the seminal results of (device-independent)

quantum key distribution is a universal lower bound on

the achievable key rate from a given correlation. The bound

quantifies the key rate that can be extracted from the

outcomes of the “key settings” x̂ on Alice’s side and ŷ on

Bob’s side, by performing privacy amplification and error

correction via one-way communication from Alice to Bob.

The bound is referred to as the Devetak-Winter rate [19],

and in our context it is given by

r ≥ HðAjEÞ −HðAjBÞ; ð2Þ

where HðAjEÞ ¼ inf jψi;fAx
ag;fBy

b
gfHðAjEÞσg is the infimum

over all states jψi∈HA ⊗ HB ⊗ HE that are a purification

of a state ρ on HA ⊗ HB, and over all POVMs Ax
a on

HA and B
y
b on HB such that the state and the measure-

ments are compatible with the observed correlation,

tr½ðAx
a ⊗ B

y
bÞρ� ¼ pða; bjx; yÞ. Furthermore, HðAjEÞσ is

the conditional von Neumann entropy of the corresponding

classical-quantum state

σAE ¼
X

a∈ ½kA�
jaihaj ⊗ trAB

��

Ax̂
a ⊗ IB ⊗ IE

�

jψihψ j
�

; ð3Þ

and HðAjBÞ is the conditional Shannon entropy of the

distribution pða; bjx̂; ŷÞ. Note that an analogous bound

holds for the case of one-way communication from Bob

to Alice, and that the bound on r only depends on the

observed correlation pða; bjx; yÞ. Furthermore, this bound

is valid against the most powerful, so-called coherent

eavesdropping attacks [20–22]. If Alice and Bob cannot

establish a positive lower bound for their key rate, they

abort the protocol.

The term HðAjEÞ captures the cost of privacy amplifi-

cation (any eavesdropper’s uncertainty of Alice’s outcome),

while the term HðAjBÞ captures the cost of error correction
(Bob’s uncertainty of Alice’s outcome). Since HðAjBÞ
can be directly computed from the correlation, the difficulty

in estimating the Devetak-Winter bound is in bounding

HðAjEÞ. Indeed, various methods have been proposed to

bound this quantity for arbitrary correlations (and not just

based on Bell inequality violation). General analytic tech-

niques are lacking, while numerical techniques scale rather

badly in the number of settings and outcomes [23–27].

It is important to note that while from a given correlation

bounding HðAjEÞ is the main difficulty, a good bound on

HðAjEÞ does not necessarily imply good (or even positive)

key rates. For this, correlations with small HðAjBÞ need to

be found. Indeed, constant-sized device-independent ran-

domness has been established from a small amount of

nonlocality [28,29], but the same has not been done

for DIQKD.

Self-testing and DIQKD.—In this work, we analytically

tackle the problem of bounding private randomness from a

specific type of correlations. In particular, we expose a

rigorous connection between DIQKD and a strong certifi-

cation technique in Bell nonlocality called self-testing [30].

We say that a correlation pða; bjx; yÞ self-tests the pure

quantum state jψ̃i∈HÃ ⊗ HB̃ and the measurements Ãx
a

on HÃ and B̃
y
b on HB̃, if for all quantum states ρ on some

Hilbert spaces HA ⊗ HB and all measurements Ax
a on HA

and B
y
b on HB such that pða; bjx; yÞ ¼ tr½ðAx

a ⊗ B
y
bÞρ�, we

have that for every purification jψi∈HA ⊗ HB ⊗ HE of ρ
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there exist Hilbert spaces HA0 and HB0 and local iso-

metries VA∶ HA → HÃ ⊗ HA0 and VB∶ HB → HB̃ ⊗ HB0

such that

ðVA ⊗ VB ⊗ IEÞðAx
a ⊗ B

y
b ⊗ IEÞjψi

¼ ðÃx
a ⊗ B̃

y
bÞjψ̃i ⊗ jauxi ð4Þ

for some state jauxi∈HA0 ⊗ HB0 ⊗ HE and for all x, y, a,
b. The primary aim of self-testing is to characterize

quantum states and measurements solely from the observed

correlation in a Bell experiment, and many examples of

self-testing are known [30].

Our main technical observation linking self-testing and

DIQKD is that whenever a correlation self-tests some

quantum state and measurements, the parties can extract

private randomness from their measurements. In fact, it is

sufficient that the weaker form of Eq. (4),

ðVA ⊗ VB ⊗ IEÞðAx̂
a ⊗ IB ⊗ IEÞjψi

¼ ðÃx̂
a ⊗ IB̃Þjψ̃i ⊗ jauxi; ð5Þ

holds for some fixed x̂ and for all a. Equation (5) follows

from Eq. (4) by fixing x ¼ x̂ and summing up over b, and
note that further summing up over a, we obtain

ðVA ⊗ VB ⊗ IEÞjψi ¼ jψ̃i ⊗ jauxi: ð6Þ

The reason why condition (4) is sufficient for certifying

private randomness is because the term HðAjEÞ in Eq. (2)

can be computed analytically if the correlation is self-

testing [or the weaker condition (5) holds] as follows. For

all tripartite states jψi and measurements Ax
a compatible

with the observed correlation, we have

σAE ¼
X

a

jaihaj ⊗ trAB½ðAx̂
a ⊗ IB ⊗ IEÞjψihψ j� ¼

X

a

jaihaj ⊗ trAB
�

ðV†

AVA ⊗ V†
BVB ⊗ IEÞðAx̂

a ⊗ IB ⊗ IEÞjψihψ j
�

¼
X

a

jaihaj ⊗ trÃA0B̃B0
�

ðVA ⊗ VB ⊗ IEÞðAx̂
a ⊗ IB ⊗ IEÞjψihψ jðV†

A ⊗ V†
B ⊗ IEÞ

�

¼
X

a

jaihaj ⊗ trÃA0B̃B0
��

ðÃx̂
a ⊗ IB̃Þjψ̃iÃ B̃ ⊗ jauxiA0B0E

��

hψ̃ jÃ B̃ ⊗ hauxjA0B0E

��

¼
X

a

jaihaj ⊗ tr
�

ðÃx̂
a ⊗ IB̃Þjψ̃ihψ̃ jÃ B̃

�

trA0B0ðjauxihauxjA0B0EÞ ¼
�

X

a

pAðajx̂Þjaihaj
�

⊗ σE; ð7Þ

where σE ¼ trA0B0 jauxihauxjA0B0E is some fixed quantum

state onHE, pAðajx̂Þ ¼
P

b pða; bjx̂; yÞ is Alice’s marginal

distribution, and we used the conditions (5) and (6). The

conditional von Neumann entropy in Eq. (2) is then given

by (for all states and measurements compatible with the

correlation)

HðAjEÞσ ¼ HðAEÞσ −HðEÞσ

¼ H

�

X

a

pAðajx̂Þjaihaj ⊗ σE

	

−HðσEÞ

¼ H

�

X

a

pAðajx̂Þjaihaj
	

þHðσEÞ −HðσEÞ

¼ HðfpAðajx̂ÞgaÞ ¼ HðAÞ; ð8Þ

where we used that the von Neumann entropy is additive

under the tensor product. Therefore, the entropy HðAÞ of
Alice’s outcome from measurement x̂ is private, that is, no

eavesdropper can guess it better than random. Note that a

similar argument is used in the proofs of Ref. [29].

In order to promote this device-independent randomness

certification statement to device-independent quantum key

distribution, we need a measurement on Bob’s side such

that its outcome is correlated with the outcome of setting x̂

of Alice. Such a choice maximizes the Devetak-Winter

bound in Eq. (2) by minimizing HðAjBÞ. While such a

highly correlated measurement setting ŷ might already be

part of the setup that gives rise to the self-testing corre-

lation, notice that adding an extra setting on Bob’s side does

not change the calculation for Alice’s private randomness.

In particular, Eq. (5) still holds, as deriving this equation

does not refer to the extra setting on Bob’s side, which also

highlights the general utility of condition (5). Therefore, for

every correlation certifying Eq. (5), one can aim to find the

best possible measurement for Bob that maximizes the

device-independent key rate, i.e., given jψ̃i and fÃx̂
aga from

condition (5), one can attempt to find a measurement fBŷ
bgb

minimizing HðAjBÞ.
Unbounded key from arbitrarily small nonlocality.—

Using the above techniques, we will now prove that from

correlations arbitrarily close to the local set (and therefore

violating any Bell inequality arbitrarily weakly) one can

extract logðdÞ bits of device-independent key for any integer
d ≥ 2. For this purpose, we need to use Bell inequalities

with d outcomes. Various recent works have looked at

such scenarios (also in the context of DIQKD) [31–34],

and a family of inequalities particularly suitable for our

purposes was introduced in Ref. [35]. The inequalities are
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parametrized by an integer d ≥ 2 and overlap matrix O,

whose elements are characterized by two orthonormal bases

on C
d, which we choose to be fjjigd−1j¼0

and fjekigd−1k¼0
. The

elements of the overlap matrix are then given by

Ojk ¼ jhjjekij: ð9Þ

In the Bell scenario, Alice has 2 measurement settings with d

outcomes each and Bob has d2 settings with 3 outcomes

each, and we denote the settings of Bob by the pair jk, where
j; k∈ ½d� (notice that we swapped the role of Alice and Bob

compared to Ref. [35]). For every d ≥ 2 and every overlap

matrix such that Ojk < 1 for all j, k (equivalently, Ojk > 0

for all j, k) the authors of Ref. [35] construct a nontrivial Bell
inequality, i.e., a Bell inequality that has a quantum

violation:

Bd ¼
X

d−1

j;k¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −O2

jk

q

�

pðj; 0j0; jkÞ − pðj; 1j0; jkÞ

þ pðk; 1j1; jkÞ − pðk; 0j1; jkÞ
�

−
1

2

X

d−1

j;k¼0

�

1 −O2

jk

��

pBð0jjkÞ þ pBð1jjkÞ
�

; ð10Þ

where pBðbjjkÞ is Bob’s marginal distribution.

Moreover, the authors of Ref. [35] show that the

maximal quantum violation can be achieved by sharing

a locally d-dimensional maximally entangled state jϕþ
d i ¼

ð1=
ffiffiffi

d
p

Þ
P

d−1
j¼0

jjji, and Alice’s measurements being

fjjihjjgd−1j¼0
for x ¼ 0 and fjekihekjgd−1k¼0

for x ¼ 1 (together

with appropriate measurements for Bob that we do not

describe here for the sake of simplicity).

While the maximal violation of these inequalities does

not provide a self-test in the usual sense, in Ref. [35] it is

shown that for every state ρ onHA ⊗ HB giving rise to the

maximal violation, there exist local isometries VA∶ HA →

C
d ⊗ HA0 and VB∶ HB → C

d ⊗ HB0 (with HA0 isometric

to HA and HB0 isometric to HB) such that

ðVA ⊗ VBÞρðV†

A ⊗ V†
BÞ ¼ jϕþ

d ihϕþ
d j ⊗ σA0B0 ð11Þ

for some quantum state σA0B0 on HA0 ⊗ HB0 . Our new

contribution to this certification is to show that the maximal

violation implies that Alice’s measurement corresponding

to setting x ¼ 0 satisfies

VAA
0
aV

†

A ¼ jaihaj ⊗ Ã ∀ a∈ ½d� ð12Þ

for some fixed operator Ã on HA0 and that

VBV
†
B ¼ ICd ⊗ B̃; ð13Þ

for some fixed operator B̃ on HB0 [36]. Note that

Eqs. (11)–(13) do not constitute self-testing in the usual

sense: Eq. (11) is expressed in terms of mixed states, the state

and measurement certification are decoupled, and only one

measurement of Alice and none of Bob’s measurements are

certified. Nevertheless, using recent results on the general

theory of self-testing [38], we can show that Eqs. (11)–(13)

imply condition (5) [36]. Therefore—by the earlier

arguments—the resulting conditional von Neumann entropy

will again satisfy

HðAjEÞσ ¼ HðAÞ ¼ logðdÞ ð14Þ

for the setting x̂ ¼ 0 of Alice [the specific value logðdÞ
follows from the fact that pAðaj0Þ ¼ ð1=dÞ [35] ]. Then,

introducing a d-outcome measurement for Bob that is

perfectly correlated to the x̂ ¼ 0 setting of Alice (e.g., in

the ideal realization one can choose B
ŷ
b ¼ jbihbj), we get a

lower bound on the key rate,

r ≥ HðAjEÞ −HðAjBÞ ¼ logðdÞ ð15Þ

for all d ≥ 2 and for all overlap matrices withOjk > 0. That

is, we obtain a family of correlations that certify logðdÞ bits
of secret key. Notice that while these correlations max-

imally violate a Bell inequality (the one characterized by d
and Ojk), in some cases they might be arbitrarily close to

the set of local correlations.

Exploiting precisely this fact, we now show that for

every d ≥ 2, there exist correlations arbitrarily close to the

local set but still certifying logðdÞ bits of secret key. To do

so, for every dwe need to provide an overlap matrixO such

that the correlation maximising the corresponding Bell

inequality from Ref. [35] is arbitrarily close to the local set.

Consider the trivial case of jeki ¼ jki for all k∈ ½d�, leading
to an overlap matrix Ojk ¼ δjk. The corresponding corre-

lation that arises by measuring jϕþ
d i with the measurements

fjjihjjg for both settings x ¼ 0 and x ¼ 1 is local (irre-

spective of the measurement choices of Bob), since Alice’s

measurements are compatible [39]. Now let us perturb

fjekig by a small unitary transformation in a way that leads

to a nontrivial overlap matrix with all elements strictly

positive. One particularly symmetric way to achieve this is

by taking the generalized Pauli X operator

X ¼
X

d−1

j¼0

jjþ 1ihjj ¼
X

d−1

j¼0

ω
j
djχjihχjj ¼ eG; ð16Þ

where ωd ¼ eð2πi=dÞ is the dth root of unity, jχji ¼
ð1=

ffiffiffi

d
p

Þ
P

d−1
k¼0

ω
jk
d jki is the Fourier basis and G ¼

P

d−1
j¼0

½ð2πi=dÞj�jχjihχjj. Then, consider the unitary oper-

ator parametrized by ε∈ ½0; 1�,
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Uε ≔

X

d−1

j¼0

ω
εj
d jχjihχjj ¼ eεG: ð17Þ

Clearly, U0 ¼ I, and Uε is continuous in ε, a consequence

of the well-known fact that the map t ↦ etM is continuous

in t for any matrix M (see, e.g., [40], Chap. 2). Also, for

every ε∈ ð0; 1Þ we have that the overlap matrix of fjjigd−1j¼0

and fUεjkigd−1k¼0
is nontrivial, that is, all of its elements are

strictly positive [36]. As such, by the above arguments, the

correlation that arises by measuring jϕþ
d i with the mea-

surements fjjihjjgd−1j¼0
and fUεjkihkjU†

εgd−1k¼0
(and the

appropriate measurements for Bob) certifies logðdÞ bits

of secure key for every ε∈ ð0; 1Þ and every integer d ≥ 2.

If we now choose ε to be arbitrarily small (but positive),

the resulting correlation, pεða; bjx; yÞ gets arbitrarily close

(e.g., in l1 norm) to the local correlation pε¼0ða; bjx; yÞ,
since the correlation is also continuous in ε (it is quadratic

in Uε ¼ eεG) [36]. Therefore, for any integer d ≥ 2, for

arbitrarily small ε > 0 the correlation pεða; bjx; yÞ certifies
logðdÞ bits of device-independent key, but the correlation

is arbitrarily close to the set of local correlations. That is,

from arbitrarily small nonlocality, one can still certify

unbounded (with increasing d) device-independent key.
Conclusion.—In this work, we exposed a rigorous con-

nection between self-testing and DIQKD as well as device-

independent randomness generation. Thanks to this

connection and the latest developments in high-dimensional

Bell nonlocality, we showed that unbounded device-inde-

pendent key rates can be certified from correlations with

arbitrarily small nonlocality. This result together with recent

findings indicates that DIQKD and Bell nonlocality might be

incomparable resources, and in the search for a fundamental

quantum resource for DIQKD, the amount of nonlocality is

not the right quantity to consider.

It is important to point out that the correlations in this

work that are arbitrarily close to the local set cannot

tolerate even arbitrarily small noise (naturally, as this noise

would map the correlation into the local set). It would

be a practically motivated further research direction to

investigate the relation of robust self-testing and noise-

robust DIQKD. On the fundamental side, further character-

ising what correlations allow for certifying the relations (5)

would lead to insights on the correlations useful for

DIQKD.

Note added.—Recently, the author became aware of the

related independent work of Ref. [41]. The authors there

derive new self-testing statements in the simplest Bell

scenario and prove that constant DIQKD rates (1 bit) can be

achieved from arbitrarily small nonlocality.

M. F. would like to thank Jędrzej Kaniewski and Laura

Mančinska for fruitful discussions.
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