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Abstract: This study aimed to propose a portable and intelligent rehabilitation evaluation system
for digital stroke-patient rehabilitation assessment. Specifically, the study designed and developed a
fusion device capable of emitting red, green, and infrared lights simultaneously for photoplethys-
mography (PPG) acquisition. Leveraging the different penetration depths and tissue reflection
characteristics of these light wavelengths, the device can provide richer and more comprehensive
physiological information. Furthermore, a Multi-Channel Convolutional Neural Network–Long
Short-Term Memory–Attention (MCNN-LSTM-Attention) evaluation model was developed. This
model, constructed based on multiple convolutional channels, facilitates the feature extraction and
fusion of collected multi-modality data. Additionally, it incorporated an attention mechanism module
capable of dynamically adjusting the importance weights of input information, thereby enhancing the
accuracy of rehabilitation assessment. To validate the effectiveness of the proposed system, sixteen
volunteers were recruited for clinical data collection and validation, comprising eight stroke patients
and eight healthy subjects. Experimental results demonstrated the system’s promising performance
metrics (accuracy: 0.9125, precision: 0.8980, recall: 0.8970, F1 score: 0.8949, and loss function: 0.1261).
This rehabilitation evaluation system holds the potential for stroke diagnosis and identification, laying
a solid foundation for wearable-based stroke risk assessment and stroke rehabilitation assistance.

Keywords: rehabilitation assessment; stroke; photoplethysmography; multi-modality fusion;
MCNN-LSTM-Attention

1. Introduction

According to a study published in the international journal The Lancet, which focused
on 369 common diseases, stroke, ischemic heart disease, and diabetes were identified as the
three major threats to human health. Among these diseases, China bears the most severe
burden of stroke [1]. The China Stroke Prevention and Control Report (2023) states that
China has the highest number of stroke patients globally, and the incidence is increasing
among younger populations [2]. Stroke is a neurological symptom and disease caused
by damage to specific areas of the brain [3,4]. Stroke is considered one of the most severe
diseases in modern society as it can lead to death in severe cases and cause physical and
mental disabilities. Rehabilitation assessment after stroke has been proven to be beneficial
and essential for most stroke patients [5,6]. Julie Bernhardt et al. [7] highlighted the crucial
role of rehabilitation in stroke recovery during the First Stroke Recovery and Rehabilitation
Roundtable. Rehabilitation assessment not only improves patients’ functional abilities but
also enhances their quality of life and social participation.
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Commonly used assessment scales include the Brunnstrom Assessment [8], the Na-
tional Institutes of Health Stroke Scale (NIHSS) [9,10], and the Modified Rankin Scale [11].
The Brunnstrom staging is widely used in clinical practice to classify the rehabilitation
progress of stroke patients due to its simplicity and effectiveness. The Brunnstrom staging
divides stroke recovery patients into stages of flaccidity, spasticity, voluntary movement,
and recovery. By combining changes in neuro-reflex muscle strength and muscle tone at
different stages, specific training methods can be applied to achieve the goal of restoring
patients’ limb and cognitive functions [12–14]. However, most traditional assessment
methods are time-consuming, require significant effort, and lack diversity in approaches.
Moreover, rehabilitation assessment by healthcare professionals heavily relies on personal
experience and subjective judgment, making it difficult to obtain objective and accurate
quantitative assessment results that intuitively reflect the patient’s rehabilitation status.

To address these issues, numerous researchers have proposed digital methods for
assessing the rehabilitation statuses of patients. Common biomedical sensing technologies
include surface electromyography (sEMG), motion analysis systems, electrocardiography,
and photoplethysmography (PPG). For example, Bo Sheng et al. [15] utilized the Kinect
v2 depth sensor to capture motion data and applied singular spectrum analysis and the
multi-ReliefF method to assess upper limb function in stroke hemiparetic patients. Hsin-Ta
Li [16] used inertial measurement units (IMUs) and surface electromyography (sEMG)
to acquire lower limb motion signals and employed the Support Vector Machine (SVM)
algorithm to assess lower limb function in hemiparetic patients. However, the primary goal
of stroke rehabilitation is to restore overall functional abilities, and assessing the functions
of specific muscles or movements may not comprehensively reflect a patient’s overall motor
capabilities. Additionally, in Hsin-Ta Li’s study [16], when participants performed finger
movements or movements such as dorsiflexion and knee extension, the signals for each
action were manually trimmed through a user interface, introducing subjectivity to the
data collection. On the other hand, some researchers have focused on evaluating stroke
patients from the perspective of blood signals. For instance, Pei-Wen Huang et al. [17]
proposed a multi-modality analysis method incorporating electrocardiography, arterial
blood pressure (ABP), and PPG to predict the functional status of stroke patients, achieving
an accuracy of 82.7%. However, these studies faced challenges of low identification accuracy
and precision.

In recent years, the continuous development of biosensing technology has led to
widespread attention to photoplethysmography (PPG) as a convenient and non-invasive
monitoring method. The PPG signal waveform reflects changes in blood volume within
the measured area. It provides important insights into cardiac ejection capacity and hid-
den pathological information during blood propagation along the vascular tree [18–20].
However, different wavelengths of PPG signals exhibit varying sensitivities to patholog-
ical responses, leading to the need for research on multi-sensor PPG systems to obtain
comprehensive and accurate physiological information [21]. Previous studies have shown
a close correlation between green light PPG signals and electrocardiogram (ECG) R–R
intervals [22]. In contrast, red and infrared lights have stronger penetration capabilities, al-
lowing for deeper penetration into deeper layers of vascular tissue [23]. For example, Yuka
Maeda et al. revealed the advantages of green-light PPG in pulse rate measurement while
the performance of infrared-light PPG in this aspect was relatively poorer [24]. Additionally,
Revati Shriram et al. utilized the characteristics of red and infrared lights to investigate the
relationship between arterial stiffness and PPG waveforms, providing a foundation for the
future assessment of cerebrovascular health [25]. However, the application of PPG signals
in the rehabilitation assessment of stroke still faces challenges. In light of this, this study
aimed to explore a multi-sensor PPG evaluation system that comprehensively considers
red, green, and infrared lights, further investigating the application of multi-wavelength
fusion PPG signals in the rehabilitation assessment of stroke.

In previous research, Wei et al. [26] designed a PPG acquisition device and proposed a
model that combines the Convolutional Neural Network (CNN), Long Short-Term Memory
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(LSTM), and an attention mechanism This model achieved a good accuracy rate of 99.1%
in the diagnosis and identification of hypertension. However, when using this model for
stroke-patient rehabilitation assessment, the accuracy rate was found to be relatively low.
To address the aforementioned issues, this paper proposes a new device and system aiming
to provide a more convenient data acquisition solution and higher accuracy assessment
results. Specifically, the objectives are as follows:

1. To design a fusion-based PPG sampling device named “NeuroPulseGuard” with
higher accuracy, safety, reliability, and portability;

2. To propose a multi-modality assessment model (MCNN-LSTM-Attention) based on
the fusion of multiple PPG signals. In this study, a total of eight patients and eight
healthy individuals were recruited for data collection and clinical experiments. Perfor-
mance validation and assessment were conducted by comparing the performance of
different models on the same dataset, using accuracy rate, precision, recall, F1 score,
and computational efficiency as evaluation metrics.

2. Materials and Methods

Figure 1 illustrates the operational workflow of the system developed in this study.
The process consists of the following stages:

1. Designing and implementing a secure, reliable, and portable fusion-based PPG sam-
pling device for collecting PPG data from stroke patients with varying degrees of
severity and transmitting the data via Wi-Fi;

2. Preprocessing the data from patients with different severity levels and healthy volunteers;
3. Analyzing the data using the proposed MCNN-LSTM-Attention model to provide

rehabilitation assessment grades for stroke patients;
4. Physicians can employ these results for more informed clinical interventions, thereby

facilitating better rehabilitation outcomes for the patients.
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Figure 1. The framework of the stroke assessment system.

2.1. Equipment

In order to obtain high-quality raw PPG signals, a comprehensive signal acquisition
process was designed in this study, as shown in Figure 2. The system consists of the
following steps: (1) The PPG photoplethysmography (PPG) sensor module collects PPG
signals from the patient’s finger; (2) The PPG sensor interacts with the microcontroller
through the I2C protocol; (3) The microcontroller exchanges data with the PC via Wi-Fi.
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As shown in Figure 3, the NeuroPulseGuard device’s primary function is to acquire,
transmit, and store PPG signals. The device’s dimensions are 35 mm × 35 mm, with the
core PCB board measuring only 31 mm × 31 mm. The chosen microcontroller for this
device is the ESP32-C3, an IoT chip known for its secure stability, low power consumption,
and cost-effectiveness. It is equipped with a 32-bit single-core RISC-V processor clocked
at up to 160 MHz. The chip supports 2.4 GHz Wi-Fi and Bluetooth 5 (LE) and has ob-
tained CLS-Ready certification, complying with device network security standards [27].
Additionally, the device utilizes the MAX30101 as the core component of its multi-sensor
system. The MAX30101 is a sensor chip integrating green, infrared, and red light sensors,
exhibiting exceptional performance in measuring blood volume changes [28]. As depicted
in Figure 4, the MAX30101 design integrates various components such as photodetectors,
analog-to-digital converters (ADCs), and digital signal processors (DSPs) to achieve high-
precision measurement of blood volume changes. The chip’s LED light sources include
green, red, and infrared lights, with peak wavelengths of 527 nm, 660 nm, and 880 nm,
respectively, chosen based on their correlation with blood reflection characteristics. The
green light wavelength primarily reflects superficial blood volume changes while the red
light wavelength is more sensitive to changes in superficial vessels. The infrared light
wavelength can penetrate deeper into vascular tissues, providing more comprehensive
information [23]. By analyzing signals from these wavelengths comprehensively, a broader
and more accurate assessment of blood volume changes can be obtained, enhancing the
system’s capability for rehabilitation assessment of stroke.
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To validate the functionality and accuracy of the experimental device, a comparative
experiment was conducted involving three participants (including two males and one fe-
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male). The participants’ ages were 45, 52, and 23 years, respectively. During the experiment,
the participants were instructed to maintain a supine position on the bed, ensuring a stable
physiological state. The PHILIPS DB12 pulse oximeter was used to collect data from the
participants’ left index fingers while the experimental device was used to capture PPG
signals from their right index fingers. Each data collection sequence lasted for 5 s. The
obtained blood oxygen saturation and heart rate data were compared with the records
from the PHILIPS DB12 pulse oximeter. To ensure reliability, each participant underwent
three measurements. The experimental results are presented in Tables 1 and 2. In the
experimental device, red and infrared light are highly absorbed by blood and can reflect
the oxygenation level of hemoglobin. Therefore, red and infrared light were utilized to cal-
culate blood oxygen saturation. On the other hand, green light with a wavelength that can
penetrate the skin and superficial blood vessels is highly sensitive to small blood volume
changes caused by cardiac pulsations. Consequently, the green light PPG signal was used to
calculate heart rate [22]. The heart rate and blood oxygen saturation data, obtained through
the acquisition and processing of the PPG signal, were compared with the corresponding
data recorded by the PHILIPS DB12 pulse oximeter. The results demonstrated an error of
less than 1%, ensuring the accuracy of data acquisition.

Table 1. Comparison of device blood oxygen values with the commercial instrument.

No. of Volunteer Experimental Data/% DB12/% Error

1
98 98 0%
98 97 1%
96 97 1%

2
95 95 0%
99 100 1%
97 97 0%

3
95 96 1%
97 97 0%

100 100 0%

Table 2. Comparison of device heart rate values with commercial instruments.

No. of Volunteer Experimental Data/bpm DB12/bpm Error

1
86 86 0%
92 93 1%
89 89 0%

2
89 90 1%
99 100 1%

101 100 1%

3
109 108 1%
101 101 0%
86 85 1%

2.2. Data Processing

The objective of preprocessing filtering is to remove or attenuate noise, artifacts,
and interference to extract the desired physiological signals. PPG signals of different
wavelengths are, fundamentally, intensity signals collected by optical sensors, sharing
similar characteristics and spectral content [29]. Therefore, the same filtering approach was
applied for preprocessing in this study.

In the process of PPG signal acquisition, device component characteristics, external
environment, and unconscious movements can introduce different frequencies of noise.
These noise types can be mainly classified into three categories [30]: random noise, low-
frequency noise, and high-frequency noise. Random noise originates from interference by
light and other electromagnetic signals in the environment, affecting the intensity of the
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PPG signal. Low-frequency noise is primarily caused by baseline drift and motion artifacts,
including baseline drift due to respiration and short-term tissue deformation caused by
motion. High-frequency noise comes from muscle interference and power line interference,
appearing as “spike-like” signal noise. Researchers have developed various types of
filters to address these issues, such as FIR filters [31,32], Kalman filters [33], Butterworth
filters [34,35], moving average filters [36], and Chebyshev Type II filters. According to
relevant researchers’ studies [37], by comparing nine different filters with 10 different
orders, it was found that the Chebyshev Type II filter exhibited superior performance in
improving the quality of the PPG signal. This filter demonstrates frequency selectivity,
effectively filtering out interference and noise while preserving valuable information in the
signal. Additionally, this study also compared the filtering effects of different filters. Based
on the results presented in Table 3, the Chebyshev Type II filter performed the best in terms
of signal-to-noise (SNR) ratio.

Table 3. Comparison of filtering effects among different filters.

Chebyshev
Type II Filter Gaussian Filter Savitzky–Golay

Filter Smooth Filter

SNR (dB) 81.9626 40.845 76.5083 45.2653

The Chebyshev Type II filter is a type of digital filter characterized by having minimal
ripple within the passband and maximum attenuation within the stopband. This filter
allows for the existence of ripples within the passband to achieve a steeper filter response
and provides maximum attenuation within the stopband to suppress unwanted frequency
components. To describe the transfer function, we use the following formula(s):

H(s) = 1/sqrt
(

1 + ε2 × C2
2(s)

)
(1)

Here, H(s) represents the transfer function of the filter, where s is a complex variable.
C2 denotes the polynomial form of the transfer function for the Chebyshev Type II filter. ε
represents the maximum passband ripple parameter. The expression for C2(s) is given by
the following equation:

C2(s) = (s2 − 1)2/(C1(s)× C2(s)× . . . × Cn(s)) (2)

Here, n represents the order of the filter, and D1(s), D2(s), . . ., Dn(s) are first-order
polynomials. They can be expressed using the following formula:

Dk(s) = s + αk (3)

Here, αk represents constants associated with the poles of the filter.
From Figure 5a,b and the 10-min processed graph, it can be observed that the signal,

after undergoing Chebyshev Type II processing, removed a significant portion of baseline
drift, and the waveform distribution is more concentrated around the central axis. From
Figure 6a,b and the 10-s processed detailed graph, it can be seen that the signal curve, after
Chebyshev Type II processing, appeared smoother. From Figure 6b,c and the processed
detailed graph, it can be observed that the residual offset component in the signal, after the
previous processing, was removed using cubic spline interpolation [38].
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2.3. Model Architecture

This study aimed to achieve automated classification of stroke patients to provide
convenient and accurate rehabilitation assessment. To this end, we have designed an end-to-
end deep learning model for extracting features and classifying strokes from preprocessed
raw signals. Figure 7a illustrates the overall architecture of the model, consisting of a
feature extractor module, depicted in Figure 7b, and a classifier module, shown in Figure 7c.
Initially, the preprocessed green, red, and infrared light signals are fed into a Multi-Channel
Convolutional Neural Network (MCNN) module, which extracts both shallow and deep
features from each signal and subsequently combines them. The fused features from
different PPG signals are then input into a Long Short-Term Memory (LSTM) module for
further fusion learning. The output of the LSTM module is subsequently passed through
an attention module. Finally, the features from the attention module are fed into a classifier
for rehabilitation assessment of stroke.
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Figure 7b showcases the feature extractor module using the preprocessed green light
signal as an example. It comprises two one-dimensional Convolutional Neural Networks
(CNNs) with different kernel sizes and depths. These CNNs simultaneously process the
preprocessed green light signal as input and extract features in different frequency domains.
The larger receptive field is employed for extracting shallow features while the smaller
receptive field is utilized for extracting deep features. Using one-dimensional CNNs as
feature extractors offers several advantages: firstly, they can automatically learn the under-
lying meanings of different PPG signals; secondly, weight-sharing strategies significantly
reduce the number of parameters in high-dimensional input vectors. The classifier module
depicted in Figure 7c consists of hierarchical Long Short-Term Memory (LSTM) networks,
an attention layer, and fully connected layers. These components construct a complex non-
linear model that captures the relationship between inputs and outputs. In this architecture,
the LSTM module further integrates the features extracted from different PPG signals and
serves as an input to the attention layer. The attention mechanism identifies and emphasizes
the most important features as determined by the model, thereby enhancing classification
performance. The output of the attention layer is then passed to the fully connected layers
for classification. Finally, the softmax function is applied to obtain classification results at
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different levels. Dropout strategies and 10-fold cross-validation were employed to mitigate
overfitting during model training.

2.3.1. Single-Signal Fusion Module

Convolutional Neural Networks (CNNs) are feedforward neural networks with con-
volutional computations and deep structures that are widely used in image processing and
natural language processing [39]. They extract features from input data by performing con-
volutional computations and deep structures, providing effective feature representations.
Multi-Channel Convolutional Neural Networks (MCNNs) have been applied in various
fields. Liang et al. [40] utilized a multi-channel CNN structure where each channel received
a different pre-trained word vector as input. These multiple channels captured additional
semantic information from input sentences, enabling the model to learn more discrimi-
native semantic features and have stronger representation capability in natural language
processing. X. Chen et al. [41] employed two CNNs with different kernel sizes to extract
signal features of different frequencies from raw data and used Long Short-Term Memory
(LSTM) networks to classify fault types based on these features. When applying MCNNs
to process one-dimensional pulse waveforms (PPG) signals, the following advantages can
be obtained:

1. Capturing multi-modal features: PPG signals are measurements of changes in blood
volume caused by heartbeats obtained through optical sensors. PPG signals contain
components with different frequencies and amplitudes that are related to physiologi-
cal parameters such as heart rate and blood pressure. By using multiple channels in
convolutional layers, MCNN can capture features at different scales simultaneously.
For example, lower-frequency channels can capture the overall shape and fluctua-
tions of heartbeats while higher-frequency channels can capture subtle variations in
heartbeats [42–44].

2. Multi-modal fusion: PPG signals can be obtained from three different light sources,
each providing slightly different characteristics in PPG signals. MCNN can process
PPG signals from different lights simultaneously and extract feature representations
for light sources through multi-channel convolutional layers. By applying multi-
channel convolution and pooling operations, MCNN can fuse the information from
different light sources into a unified feature representation, enhancing the model’s
understanding of PPG signals.

3. Hierarchical feature extraction: Hierarchical feature extraction is an important charac-
teristic of MCNN, typically comprising multiple convolutional and pooling layers.
This hierarchical structure enables the progressive extraction of features at different
levels of abstraction from PPG signals. As shown in Figure 8, taking the green light
PPG signal as an example, MCNN utilizes CNNs to extract deep and shallow fea-
tures separately. These features originate from different layers and exhibit distinct
characteristics. The shallow convolutional layers aim to capture low-level features of
PPG signals, such as the shape and fluctuations of heartbeats, to preserve the local
information of the signals better. As the network layers deepen, the deep feature
encoder can capture more abstract and complex patterns in the signal, such as pat-
terns of heart rate variations or cardiac pathologies [45,46]. By combining these two
types of features from different levels, MCNN can fully leverage both global and
local information in the signal, resulting in more comprehensive and accurate feature
representations. The fused features are then input into the Long Short-Term Memory
(LSTM) network for further temporal modeling and processing. Consequently, hierar-
chical feature extraction enables MCNN to represent and classify PPG signals better,
thereby improving the model’s performance and robustness.
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One-dimensional convolution is used for feature extraction for one-dimensional time
series data such as PPG signals.

yk+1
i (j) = wk

i × Xk(j) + bk
i (4)

Here, w and b are the weights and biases of the i-th layer filter and the k-th layer,
respectively, and X represents the j-th local input in the k-th layer.

The i-th layer of the k + 1 channel after pooling can be described as follows:

Pk+1
i (j) = max(j−1)W+1≤t≤jW

{
qk

i (t)
}

(5)

q represents the t-th neuron in the i-th channel of the k-th layer and W is the width of the
pooling kernel.

In PPG signal processing, one-dimensional convolutional neural networks can be used to
extract temporal features from the signals. The convolutional layer learns filters suitable for PPG
signals to capture important features while the pooling layer further reduces the dimensionality
of the features and retains the main signal patterns. These features can be utilized in various
applications such as heart rate detection, emotion analysis, and disease diagnosis.

2.3.2. Multi-Signal Fusion Module

Pulse wave data belong to the category of one-dimensional temporal data, and the re-
current neural network (RNN) structure in deep learning algorithms has shown promising
results in processing time series data [47]. However, RNNs are prone to gradient vanishing
or exploding problems. Therefore, in this paper, the Long Short-Term Memory (LSTM)
network structure is employed as a substitute for the RNN model.
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As shown in Figure 9, the LSTM consists of three gating mechanisms: the forget
gate, the input gate, and the output gate. The PPG signal features extracted by the Multi-
Channel Convolutional Neural Network (MCNN) are fed into the input gate. The forget
gate determines the amount of information to retain in the previous time step’s state. It
computes the activation value of the forget gate by considering the current input, the
previous output, and the state information, followed by applying the sigmoid function.
The activation value of the forget gate is multiplied by the state of the previous time step,
controlling which information should be forgotten from the previous state.
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The specific formulas are as follows; the information received by the forget gate
includes the current input xt, the previous node’s output ht−1, and the previous node’s
state Ct−1. The activation calculation formula for the forget gate (where b and W are bias
and weight vectors, and σ denotes the sigmoid function) is presented below:

ft = σ(Wf × [xt, ht−1, Ct−1] + bf) ∗ Ct−1 (6)

it = σ(Wi × [xt, ht−1, Ct−1] + bi) (7)

Ct = ft + it × tanh(Wc × [xt, ht−1, Ct−1] + bc) (8)

Based on the new state Ct of this neuron node, the LSTM structure can output the
current neuron’s output by using the output gate based on ht−1, xt, and the new state Ct.

ot = σ(Wo × [xt, ht−1, Ct] + bo) (9)

ht = tanh(Ct)× ot (10)

2.3.3. Accuracy Improvement Module

The attention mechanism simulates the behavior of human vision or attention, allow-
ing the model to focus more on important parts of the input sequence [48,49]. General
attention mechanisms are based on the Encoder–Decoder framework, as shown in Figure 10.
The purpose of this model is to address the task of mapping variable-length input sequences
X = (x1, x2, . . . , xn) to variable-length output sequences Y = (y1, y2, . . . , ym). The Encoder
is responsible for receiving the input sequence X and transforming it into an intermediate
abstract representation C through nonlinear transformations: C = f(x1, x2, . . . , xn). The
primary role of the Encoder is to encode the input sequence into a fixed-dimensional
representation, capturing the semantic and contextual information of the input sequence.
The Decoder’s task is to predict and generate the output at time step i, yi, based on the
intermediate abstract representation C of the input sequence X and the previously gener-
ated partial outputs y1, y2, . . . , yi−1 : yi = g

(
y1, y2, . . . , yi−1, C

)
. The Decoder utilizes the

intermediate representation C and the already generated partial outputs to infer the next
output, gradually constructing the output sequence.
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Hm−1 represents the hidden state of the Decoder at time step m−1, ym is the target
value, and Ci is the context vector. Therefore, the hidden state at time step m can be defined
as follows.

ym = f
(
Hm−1, ym−1, Ci

)
(11)

Ci depends on the hidden vectors of the input sequence on the Encoder side and can
be represented after weighted processing, as shown in Equation (12).

Ci =
Lx

∑
j=1

αijhj (12)

hj represents the hidden vector of the j-th value on the Encoder side, which contains
information from the entire input sequence but focuses on the surrounding portion of the
j-th value. Lx is the length of the input side, αij represents the attention allocation coefficient
of the j-th value on the Encoder side to the i-th value on the Decoder side, and the sum of
αij probabilities is 1. The calculation formula for αij is shown in Equation (13).

αij =
exp

(
αij

)
∑Lx

j=1 exp
(
αij

) (13)

αij = a
(
ym−1, hj

)
(14)

αij represents an alignment model that measures the alignment degree between the
value at position j on the Encoder side and the value at position i on the Decoder side.
Introducing an attention mechanism in the model can help capture the temporal correlation
in the signal better and enable the model to adapt to the signal characteristics of each
patient individually, improving the personalization effect of classification.

In summary, this model uses MCNN for feature extraction to learn signal features
in different frequency domains automatically. Then, LSTM–Attention networks are used
for temporal modeling and internal feature extraction, followed by fully connected layers
for classification. This structure effectively handles PPG signals and converts them into
classification results for different levels of stroke patients.

3. Experiments
3.1. Participants

The subjects were divided into two groups: the stroke patient group and the healthy
group. The stroke patient group consisted of 8 individuals diagnosed with ischemic stroke
at the Sunshine Rehabilitation Center in Shanghai, China. Correspondingly, during the
same period, 8 male volunteers of similar age were selected as the healthy group, with an
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age range of 50 ± 10 years (Table 4). The average age of the healthy control group was
54.125 years, with a standard deviation of 4.0510, while the average age of the stroke patient
group was 49.875 years, with a standard deviation of 8.9512. Previous studies have shown
that age is a key factor influencing pulse wave characteristics [50], and many researchers
are exploring methods for assessing vascular aging [51,52]. Parameters such as pulse transit
time [53] and pulse wave velocity [54] are considered standards for evaluating vascular
stiffness. Some researchers have noted a significant correlation between PPG features
obtained from the finger and age [55]. This feature resembles the age-related progression of
arterial stiffness assessed through pulse wave velocity (PWV). Therefore, age is a factor
that influences the evaluation of the model. It is worth noting that both groups included
only male participants, ensuring gender consistency in the study.

Table 4. Comparison of basic information of volunteers in group 2.

Group Gender
(Male %) Age (Years) Mean Age

(Years)

Standard
Deviation of
Age (Years)

Hypertension
(%)

Hemiplegia/
Right (%)

Right-
Handedness

(%)

Healthy 8 (100) 40-60 54.125 4.0510 0 - 8(100)
Patient 8 (100) 40-60 49.875 8.9512 62.5 75 8(100)

The Brunnstrom Assessment Scale is a grading system used to describe the ex-tent of
limb movement recovery in patients. This system consists of six stages, numbered from
1 to 6, representing different levels of limb movement recovery. However, in this paper, the
seventh stage is defined as representing normal activity exhibited by individuals who have
fully recovered and are in a healthy state. The specific stages are illustrated in Table 5. The
stroke patients all experienced their first ischemic stroke within three months. Among these
individuals, 6 patients exhibited right-sided hemiplegia and 2 patients exhibited left-sided
hemiplegia. Of these individuals, 4 patients were classified as being in stage V and 4 patients
as being in stage VI. The selection of participants in stages V and VI was primarily based on
the feasibility of data collection and the practical applicability of the study. Firstly, patients
in stage I are in the acute phase, during which their neurological and physiological states
undergo significant changes and adjustments [56–59]. Therefore, collecting data during
this stage may cause secondary harm to the patients. Secondly, patients in stages II, III,
and IV typically exhibit more pronounced spasms [12,14], and the significant fluctuations
caused by spasms introduce excessive noise, making the collected data less accurate and
reliable. Please note that the study design was intended for individuals aged 40 to 60, in
stages V and VI, and for healthy individuals. Participants outside this range may not be
applicable to this model.

Table 5. Brunnstrom assessment scale [8].

Stage Description

I Flaccid Stage No movement was initiated or elicited.

II Spasticity Appears Synergies or components are first appearing.
Spasticity is developing.

III Increased Spasticity Synergies or components are initiated voluntarily.
Spasticity is marked.

IV Decreased Spasticity Movements are deviating from basic synergies.
Spasticity is decreasing

V Complex Movement Combinations There is relative independence of basic synergies.
Spasticity is waning

VI Spasticity Disappears Movement coordination is near-normal.
Spasticity is minimal.
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The basic information on all volunteers, including age, gender, type of hemiplegia, and
alcohol history, was collected. Simultaneously, the patients’ PPG signals were recorded. The
control room temperature was maintained at 23 ◦C while the finger temperature was set at
32 ◦C. Participants were instructed to remain in a stationary state. The PPG signals from
the right index finger of each volunteer were collected continuously for 30 min during the
sampling period, which took place between 17:00 and 19:00 in the afternoon. The sampling
frequency was set at 100 Hz. The data collection experiment is depicted in Figure 11.
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3.2. Testing Protocol

The engagement of stroke patients in this study’s voluntary activities underwent a
stringent ethical review process, adhering to the principles outlined in the Helsinki Dec-
laration [60]. The primary objective was to safeguard the participants’ rights and ensure
ethical compliance throughout the activities. A comprehensive set of measures was imple-
mented to protect the participants’ welfare. Firstly, prior to commencing the experiments,
detailed procedural instructions were provided to each participating subject, accompanied
by comprehensive disclosure regarding the data collection requirements and the research
objectives, processes, and objectives for which the data would be utilized. Secondly, this
study placed utmost importance on preserving the privacy and confidentiality of the par-
ticipants, ensuring the proper handling and protection of their personal information and
medical records. The volunteers were given the autonomy to participate in the activities
willingly and possessed the right to withdraw at any point without facing any detrimental
repercussions. Stringent adherence to ethical principles was maintained throughout the
study, ensuring that the activities were conducted in alignment with the highest moral
standards while safeguarding the interests and safety of the participants to the greatest
extent possible. The volunteers provided informed consent and signed consent forms
while the research protocol underwent thorough deliberation and approval by the Ethics
Committee of Shanghai University.

3.3. Validation
3.3.1. K-Fold Cross-Validation

As shown in Figure 12, K-fold cross-validation is a commonly used technique in
machine learning to evaluate and validate model performance [61]. Firstly, the original
dataset is divided into 10 equally sized subsets, and then, 10 iterations are performed.
In each iteration, one of the subsets is selected as the validation set while the remaining
9 subsets are used as the training set. Each subset is used as the validation set once, allowing
for multiple rounds of training and validation, which provides a reliable estimate of the
model’s performance. Ten-fold cross-validation helps detect whether a model is overfitting
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the training data. If the model performs well on each validation set, it indicates a strong
generalization capability.
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3.3.2. Performance Evaluation

The model’s performance was comprehensively evaluated by calculating the proba-
bility distribution of the dataset being stroke-related and the overall accuracy, precision,
recall, and F1 score.

The accuracy was computed using Formula (15):

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

The precision was calculated as shown in Formula (16):

Precision =
TP

TP + FP
(16)

The recall was calculated as shown in Formula (17):

Recall =
TP

TP + FN
(17)

The F1 score was calculated as shown in Formula (18):

F1 =
2 × Precision × Recall

Precision + Recall
(18)

The relationships between TP, TN, FP, and FN are summarized in Table 6.

Table 6. Correspondence of TP, TN, FP, and FN.

Confusion Matrix
Ground Truth

Positive Negative

Predicted value
Positive TP FP
Negative FN TN

4. Results

The training process is illustrated in Figure 13, showing the accuracy and loss curves
during a training iteration. The figures indicate that as the number of iterations increases,
the model’s accuracy gradually improves and reaches its peak while the loss value gradually
decreases and eventually stabilizes. The validation accuracy is slightly lower than the
training accuracy.
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Based on the confusion matrix obtained from the test set (as shown in Figure 14),
the model’s recognition accuracy can be calculated as 91.25%, precision as 89.80%, recall
as 89.70%, and F1 score as 89.49%. It is important to note that in Figure 14, “Level VII”
represents healthy individuals.
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The classification results of different models on the same dataset are presented in
Table 7, representing the average values from 10-fold cross-validation. The MCNN-LSTM-
Attention model achieves the highest accuracy of 91.25% while the CNN–LSTM model has
the lowest accuracy at only 69.04%. The MCNN-LSTM-Attention model outperforms the
CNN–LSTM–Attention model by 25.4% in terms of accuracy, and the MCNN–LSTM model
surpasses the CNN–LSTM model by 24.8%. The MCNN-LSTM-Attention model achieves
a 10.5% higher accuracy than the MCNN–LSTM model, and the CNN–LSTM–Attention
model achieves a 5.1% higher accuracy than the CNN–LSTM model.
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Table 7. Classification results of different models on the dataset.

Method Accuracy Precision Recall F1 Score Loss

CNN–LSTM 0.6904 0.6560 0.6508 0.6534 0.5128
CNN–LSTM–Attention 0.7273 0.6946 0.6362 0.6928 0.4907

MCNN–LSTM 0.8679 0.8861 0.8419 0.8634 0.3677
MCNN-LSTM-Attention 0.9125 0.8980 0.8970 0.8949 0.1261

Table 8 presents the training times required for different algorithm models in a single
training iteration. It is worth noting that models with attention mechanisms significantly
increase the training time compared to those without attention mechanisms. The difference
in training time between the multi-scale CNN model and the single-scale CNN model
is minimal.

Table 8. Training times for different models (one epoch).

Model Time/s

CNN–LSTM–Attention 7.3
CNN–LSTM 1.3

MCNN–LSTM 1.5
MCNN-LSTM-Attention 7.6

5. Discussion

The main findings of this study were as follows: (1) The fusion-based PPG signal ac-
quisition system designed and investigated using ESP32C3 meets the experimental require-
ments and exhibits advantages such as portability, low cost, and good accuracy. (2) The pro-
posed multi-modality approach significantly improves the accuracy compared to the single-
modal approach, with the CNN–LSTM–Attention stroke recognition model achieving an
accuracy of 91.94%. Compared to feature extraction from a single modality, the proposed
model better captures the interdependencies among types of PPG sequence information, en-
hancing the feature representation capability and resulting in performance improvement.

5.1. Fusion-Type Device

This paper presents the design of a precision Pulse Plethysmography (PPG) signal
acquisition device. The device utilizes an ESP32-C3 microcontroller as its core, offering
several advantages over traditional approaches. Firstly, the ESP32-C3 microcontroller
enables the collection of PPG signals from the fusion sensor MAX30101, including green,
red, and infrared light, facilitating comprehensive signal acquisition for more accurate data
in the rehabilitation assessment of stroke. Secondly, the device ensures stable data transmis-
sion, high accuracy, low power consumption, and a compact form factor, measuring only
31 mm × 31 mm. It also has a relatively low cost, making it portable and cost-effective.

As shown in Figure 15, in comparison to Wei’s previously designed device, which
required multi-level data transmission through sensors, STM32, ESP8266, and Wi-Fi to
the PC, the ‘NeuroPulseGuard’ microcontroller ESP32-C3 directly acquires data from the
sensor and transmits it via Wi-Fi, simplifying the system architecture and improving system
stability and robustness. The device has a smaller form factor, lower power consumption,
and lower cost. Table 1 demonstrates that the ‘NeuroPulseGuard’ device, after collecting
and processing PPG signals, achieves a heart rate measurement with an error within 1%
compared to the heart rate data recorded by the PHILIPS DB12 pulse oximeter, further
enhancing accuracy compared to Wei’s device with 2% precision.
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Additionally, the ‘NeuroPulseGuard’ device, when compared to those developed by
other researchers such as the wrist-worn PPG signal monitoring devices designed by Zhang
et al. [62] and Lee et al. [63], offers advantages. Despite sharing the same portability, the
‘NeuroPulseGuard’ device does not suffer from the weaker PPG signal strength that can
result from the small and shallow blood vessels at the wrist. Compared to PPG signals
obtained from the fingertip, wrist-worn devices may result in higher levels of signal noise.
These issues limit their suitability and performance in real-world applications.

5.2. Multi-Modality Approach

The proposed multi-modality approach in this paper primarily included feature extrac-
tion fusion for a single PPG signal and feature fusion for multiple PPG signals. Specifically,
the following statements can be made: (1) The feature extraction fusion for a single PPG
signal utilized a MCNN, which introduced multiple convolutional channels compared to
a traditional single-channel CNN. This design allowed the MCNN to comprehensively
capture features at different levels (deep and shallow), thereby enhancing the model’s
feature extraction capability. By utilizing PPG signals from green, red, and infrared light
as inputs, the MCNN could extract comprehensive physiological data, providing richer
feature information for the rehabilitation assessment of stroke. (2) In terms of feature fusion
for multiple PPG signals, previous research has indicated that LSTM exhibited higher
accuracy in the field of multi-signal fusion [64,65]. In this study, by integrating PPG signal
features from green, red, and infrared light, a temporal dependency was established. This
temporal dependency effectively captured the correlation between features and further
improved the model’s performance. Additionally, an attention mechanism was introduced
to enhance the model’s performance. The attention mechanism dynamically adjusted
weights based on the importance of input data, enabling the model to focus more on crucial
parts and improve its perception of key features [66].

From the perspective of overall model performance, the proposed MCNN-LSTM-
Attention model achieved an accuracy of 91.25% in rehabilitation assessment, surpassing
the accuracy of 72.73% for the CNN–LSTM–Attention model and 86.79% for the MCNN–
LSTM model. Furthermore, compared to other models, the MCNN-LSTM-Attention model
demonstrated good precision (0.8980), recall (0.8910), F1 score (0.8949), and loss func-
tion (0.1261) values. These findings indicated that the model exhibited good accuracy
and reliability in the rehabilitation assessment of stroke. To fully consider the utilized
dataset in the experiments, 10-fold cross-validation was employed to effectively reduce
biases arising from uneven dataset partitioning; improve the reliability, stability, and
generalization ability of model evaluation; and ensure consistent performance across dif-
ferent data subsets, thus enhancing the credibility of the experimental results. In terms of
overall model efficiency, the MCNN-LSTM-Attention model required 7.6 s per training
cycle. In comparison, the CNN–LSTM–Attention model required 7.3 s, the MCNN–LSTM
model required 1.6 s, and the CNN–LSTM model required 1.3 s. The introduction of the
MCNN feature extraction module only increased the training time by 0.2–0.3 s but achieved
performance improvement.
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In the field of pulse wave analysis using photoplethysmography (PPG), traditional
machine learning has been a significant topic. However, previous research has shown that
deep learning networks outperform traditional machine learning algorithms in PPG signal
processing tasks [18,67,68]. Therefore, in this paper, the deep learning algorithm for PPG
patient data is not compared with traditional machine learning algorithms. During the
feature extraction process of machine learning, researchers found that the waveform in
stroke patients is influenced by vascular wall elasticity, making it difficult to locate the
dicrotic wave and even resulting in the disappearance of the dicrotic wave. This leads to
missing feature points and limited dimensions of manually extracted features, making it
challenging to discover deep-level features and correlations between features.

In comparison with other studies in various multi-signal research fields, this study
compared the proposed method with other research results, as shown in Table 9. These
studies all involved the rehabilitation assessment of stroke. In the first study [26], Wei
et al.‘s model (CNN–LSTM–Attention) achieved only 72.73% accuracy. In the second
study [17], based on the NIHSS scale, 234 features were extracted from EKG, ABP, and PPG
signals, and a linear kernel SVM classifier was employed, resulting in an accuracy of 82.7%.
Furthermore, in the third study by Zhe Zhang et al. [69], patients’ levels were evaluated
based on the Brunnstrom scale using a fuzzy inference system, achieving an accuracy of
87.5%. In the fourth study, the C4.5 decision tree algorithm was used for patient-level
recognition based on the HINSS scale [70], and an accuracy of 91.11% was achieved. The
classification accuracies in these four studies were lower than those of the proposed model
in this paper. In comparison, the MCNN-LSTM-Attention rehabilitation assessment of
the stroke model proposed in this study can effectively extract deep-level features from
PPG signals and improve accuracy through multi-modality feature extraction. In the fifth
study [16], based on the Brunnstrom scale, the lower limb movement signals of patients
were obtained through inertial measurement units (IMUs) and surface electromyography
(sEMG). A total of 480 features were extracted, and an SVM classifier was utilized, resulting
in an accuracy of 95.2%. However, in the assessment process, the signals for each movement
were manually trimmed from a user interface. The experimental process was complex and
cumbersome, and subjective factors were involved, limiting its applicability.

Table 9. Classification performance comparison.

Method Feature
Numbers Stroke Scale Classifier Accuracy

PPG - Brunnstrom MCNN-LSTM-Attention 91.25%
PPG [26] - Brunnstrom CNN–LSTM–Attention 72.73%

EKG-ABP-PPG [17] 234 features NIHSS Linear kernel SVM 82.7%
Motion data
samples [69] 27 features Brunnstrom Fuzzy inference system 87.5%

HINSS [70] 13 features HINSS C4.5 decision trees 91.11%
IMU and ECG

feature [16] 480 features Brunnstrom SVM 95.2%

Furthermore, as observed in Table 9, traditional machine learning algorithms seemed
to outperform deep learning algorithms in the rehabilitation assessment of stroke. How-
ever, the relevant literature suggests that deep learning networks outperform traditional
machine learning algorithms in many cases. The reason for this apparent contradiction is
that traditional machine learning algorithms make use of multiple signal sources, such as
combinations of IMU-ECG, IMU-ECG, EKG-ABP-PPG, and others. These combinations
of different signal types provide richer feature information, resulting in improved classi-
fication accuracy. Therefore, the high accuracy achieved by traditional machine learning
methods is closely tied to the comprehensive utilization of multi-signal data. In contrast,
this study focused on the classification of multi-modal PPG signals for the rehabilitation
assessment of stroke. The MCNN-LSTM-Attention rehabilitation assessment of the stroke
model proposed in this study achieved high accuracy despite using only multi-modal
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PPG signals and not combining multiple signal sources. This suggests that deep learning
methods have an advantage in handling multi-modal data from a single signal source. If
multiple signal sources are combined in the future, it is likely that further improvements
in accuracy can be achieved. This indicates the potential of the proposed deep learning
method in the future.

5.3. Limitations and Future Work

The study had certain limitations that could impact the results. Firstly, similar to many
studies, the number of volunteers in this experiment was limited. However, the proposed
MCNN-LSTM-Attention model focused on the raw data rather than the traditional feature-
based algorithms that require feature extraction from raw data. In this preliminary study, a total
of 8,640,000 data points (three wavelengths × 100 Hz × 60 s × 30 min × 16 participants) were
collected, and 91.25% accuracy was achieved. Secondly, age is a crucial factor influencing
PPG features, and this study only targeted participants aged 40 to 60. The model might not
be applicable to individuals outside this age range. Lastly, this study only involved stroke
patients in stages V and VI, as well as healthy individuals, limiting the generalizability of
the model to all stroke patients undergoing rehabilitation.

In the future, the further validation and improvement of the model, as well as the
enhancement of its accuracy, generalization, and robustness, can be achieved by collecting
more patient data and increasing the sample size. Additionally, seeking higher-quality
sensors to enhance hardware and continuously optimizing the deep learning model used
in this study will broaden its applicability and scope. Finally, the NeuroPulseGuard data
acquisition device, which enables the convenient collection of multi-modal PPG signals,
holds the potential to assist post-recovery stroke patients and is suitable for community-
wide adoption.

6. Conclusions

This paper presents the design and investigation of a fusion-based photoplethys-
mography (PPG) and capacitive volume pulse acquisition device for the rehabilitation
assessment of stroke. Subsequently, a recognition model based on MCNN-LSTM-Attention
has been proposed. The incorporation of a multi-modality fusion mechanism and attention
mechanism enhances the model’s capability to represent features, leading to improved
recognition accuracy. Experimental results demonstrate that the MCNN-LSTM-Attention
rehabilitation assessment of the stroke model achieves an average accuracy of 91.9% in
10-fold cross-validation. The proposed model outperforms other deep learning models in
terms of precision, accuracy, and F1 score metrics.
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53. Jannasz, I.; Sondej, T.; Targowski, T.; Mańczak, M.; Obiała, K.; Dobrowolski, A.P.; Olszewski, R. Relationship between the Central

and Regional Pulse Wave Velocity in the Assessment of Arterial Stiffness Depending on Gender in the Geriatric Population.
Sensors 2023, 23, 5823. [CrossRef] [PubMed]

54. Liao, S.; Liu, H.; Lin, W.-H.; Zheng, D.; Chen, F. Filtering-induced changes of pulse transmit time across different ages:
A neglected concern in photoplethysmography-based cuffless blood pressure measurement. Front. Physiol. 2023, 14, 1172150.
[CrossRef] [PubMed]

55. Lin, W.H.; Zheng, D.; Li, G. Age-Related Changes in Blood Volume Pulse Wave at Fingers and Ears. IEEE J. Biomed. Health Inform.
2023. [CrossRef] [PubMed]

https://doi.org/10.1016/j.bspc.2022.104291
https://doi.org/10.6109/jicce.2010.8.2.201
https://doi.org/10.1186/1475-925X-13-139
https://www.ncbi.nlm.nih.gov/pubmed/25252971
https://doi.org/10.1371/journal.pone.0076585
https://www.ncbi.nlm.nih.gov/pubmed/24167546
https://doi.org/10.3233/THC-140798
https://www.ncbi.nlm.nih.gov/pubmed/24704660
https://doi.org/10.1038/sdata.2018.76
https://www.ncbi.nlm.nih.gov/pubmed/29714722
https://doi.org/10.1109/TBCAS.2013.2279103
https://doi.org/10.3390/electronics10202470
https://doi.org/10.1007/s10845-020-01600-2
https://doi.org/10.3390/s23156681
https://doi.org/10.3390/s22228903
https://doi.org/10.1038/s41746-019-0207-9
https://www.ncbi.nlm.nih.gov/pubmed/31934647
https://doi.org/10.3389/fphys.2021.808451
https://www.ncbi.nlm.nih.gov/pubmed/35300400
https://doi.org/10.3390/electronics10141715
https://doi.org/10.1109/TKDE.2021.3126456
https://doi.org/10.1016/j.neucom.2021.03.091
https://doi.org/10.1038/s41598-022-15240-4
https://doi.org/10.3389/fphys.2023.1191272
https://www.ncbi.nlm.nih.gov/pubmed/37538374
https://doi.org/10.3390/s23135823
https://www.ncbi.nlm.nih.gov/pubmed/37447671
https://doi.org/10.3389/fphys.2023.1172150
https://www.ncbi.nlm.nih.gov/pubmed/37560157
https://doi.org/10.1109/JBHI.2023.3282796
https://www.ncbi.nlm.nih.gov/pubmed/37276108


Sensors 2024, 24, 2925 23 of 23

56. Aguilar-Salas, E.; Rodríguez-Aquino, G.; García-Domínguez, K.; Garfias-Guzmán, C.; Hernández-Camarillo, E.; Oropeza-Bustos,
N.; Arguelles-Castro, R.; Mitre-Salazar, A.; García-Torres, G.; Reynoso-Marenco, M.; et al. Acute Stroke Care in Mexico City: The
Hospital Phase of a Stroke Surveillance Study. Brain Sci. 2022, 12, 865. [CrossRef]

57. Duloquin, G.; Graber, M.; Baptiste, L.; Mohr, S.; Garnier, L.; Ndiaye, M.; Blanc-Labarre, C.; Hervieu-Bègue, M.; Osseby, G.V.;
Giroud, M.; et al. Prise en charge de l’infarctus cérébral à la phase initiale. Rev. Méd. Interne 2022, 43, 286–292. [CrossRef]

58. Dziedzic, T. Clinical significance of acute phase reaction in stroke patients. Front. Biosci. 2008, 13, 2922–2927. [CrossRef]
59. Finley Caulfield, A.; Wijman, C.A.C. Critical Care of Acute Ischemic Stroke. Crit. Care Clin. 2006, 22, 581–606. [CrossRef]

[PubMed]
60. Association, W.M. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human

subjects. Bull. World Health Organ. 2001, 79, 373.
61. Wong, T.-T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recognit.

2015, 48, 2839–2846. [CrossRef]
62. Zhang, Z.; Pi, Z.; Liu, B. TROIKA: A general framework for heart rate monitoring using wrist-type photoplethysmographic

signals during intensive physical exercise. IEEE Trans. Biomed. Eng. 2014, 62, 522–531. [CrossRef] [PubMed]
63. Lee, E.; Lee, C.-Y. PPG-based smart wearable device with energy-efficient computing for mobile health-care applications.

IEEE Sens. J. 2021, 21, 13564–13573. [CrossRef]
64. Mellouk, W.; Handouzi, W. CNN-LSTM for automatic emotion recognition using contactless photoplythesmographic signals.

Biomed. Signal Process. Control. 2023, 85, 104907. [CrossRef]
65. Kumar, A.K.; Ritam, M.; Han, L.; Guo, S.; Chandra, R. Deep learning for predicting respiratory rate from biosignals. Comput. Biol.

Med. 2022, 144, 105338. [CrossRef] [PubMed]
66. Park, S.-A.; Lee, H.-C.; Jung, C.-W.; Yang, H.-L. Attention mechanisms for physiological signal deep learning: Which atten-

tion should we take? In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Singapore, 18–22 September 2022; pp. 613–622.

67. Pereira, T.; Ding, C.; Gadhoumi, K.; Tran, N.; Colorado, R.A.; Meisel, K.; Hu, X. Deep learning approaches for plethysmography
signal quality assessment in the presence of atrial fibrillation. Physiol. Meas. 2019, 40, 125002. [CrossRef] [PubMed]

68. Ortiz, B.L.; Gupta, V.; Chong, J.W.; Jung, K.; Dallas, T. User Authentication Recognition Process Using Long Short-Term Memory
Model. Multimodal Technol. Interact. 2022, 6, 107. [CrossRef]

69. Zhang, Z.; Fang, Q.; Gu, X. Fuzzy inference system based automatic Brunnstrom stage classification for upper-extremity
rehabilitation. Expert Syst. Appl. 2014, 41, 1973–1980. [CrossRef]

70. Yu, J.; Park, S.; Lee, H.; Pyo, C.-S.; Lee, Y.S. An elderly health monitoring system using machine learning and in-depth analysis
techniques on the NIH stroke scale. Mathematics 2020, 8, 1115. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/brainsci12070865
https://doi.org/10.1016/j.revmed.2021.08.003
https://doi.org/10.2741/2897
https://doi.org/10.1016/j.ccc.2006.09.001
https://www.ncbi.nlm.nih.gov/pubmed/17239745
https://doi.org/10.1016/j.patcog.2015.03.009
https://doi.org/10.1109/TBME.2014.2359372
https://www.ncbi.nlm.nih.gov/pubmed/25252274
https://doi.org/10.1109/JSEN.2021.3069460
https://doi.org/10.1016/j.bspc.2023.104907
https://doi.org/10.1016/j.compbiomed.2022.105338
https://www.ncbi.nlm.nih.gov/pubmed/35248805
https://doi.org/10.1088/1361-6579/ab5b84
https://www.ncbi.nlm.nih.gov/pubmed/31766037
https://doi.org/10.3390/mti6120107
https://doi.org/10.1016/j.eswa.2013.08.094
https://doi.org/10.3390/math8071115

	Introduction 
	Materials and Methods 
	Equipment 
	Data Processing 
	Model Architecture 
	Single-Signal Fusion Module 
	Multi-Signal Fusion Module 
	Accuracy Improvement Module 


	Experiments 
	Participants 
	Testing Protocol 
	Validation 
	K-Fold Cross-Validation 
	Performance Evaluation 


	Results 
	Discussion 
	Fusion-Type Device 
	Multi-Modality Approach 
	Limitations and Future Work 

	Conclusions 
	References

