
This is a repository copy of Mitigating IoT Botnet DDoS Attacks through MUD and eBPF
based Traffic Filtering.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/212997/

Version: Published Version

Proceedings Paper:
Feraudo, Angelo, Popescu, Diana Andreea, Yadav, Poonam orcid.org/0000-0003-0169-
0704 et al. (2 more authors) (2024) Mitigating IoT Botnet DDoS Attacks through MUD and
eBPF based Traffic Filtering. In: ACM International Conference Proceeding Series. ACM ,
pp. 164-173.

https://doi.org/10.1145/3631461.3631549

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Mitigating IoT Botnet DDoS Attacks through MUD and eBPF
based Traffic Filtering

Angelo Feraudo
University of Bologna

Bologna, Italy
angelo.feraudo@unibo.it

Diana Andreea Popescu
University of Cambridge

Cambridge, UK
diana.popescu@cl.cam.ac.uk

Poonam Yadav
University of York

York, UK
poonam.yadav@york.ac.uk

Richard Mortier
University of Cambridge

Cambridge, UK
richard.mortier@cl.cam.ac.uk

Paolo Bellavista
University of Bologna

Bologna, Italy
paolo.bellavista@unibo.it

ABSTRACT

As the prevalence of Internet-of-Things (IoT) devices becomes more

and more dominant, so too do the associated management and secu-

rity challenges. One such challenge is the exploitation of vulnerable

devices for recruitment into botnets, which can be used to carry out

Distributed Denial-of-Service (DDoS) attacks. The recent Manufac-

turer Usage Description (MUD) standard has been proposed as a

way to mitigate this problem, by allowing manufacturers to define

communication patterns that are permitted for their IoT devices,

with enforcement at the gateway home router. In this paper, we

present a novel integrated system implementation that uses a MUD

manager (osMUD) to parse an extended set of MUD rules, which

also allow for rate-limiting of traffic and for setting appropriate

thresholds. Additionally, we present two new backends for MUD

rule enforcement, one based on eBPF and the other based on the

Linux standard iptables. The evaluation results reported show that

these techniques are feasible and effective in protecting against

attacks, with minimal impact on legitimate traffic and on the home

gateway.

CCS CONCEPTS

· Security and privacy→ Denial-of-service attacks; Firewalls;

· Networks→ Network monitoring.

ACM Reference Format:

Angelo Feraudo, Diana Andreea Popescu, Poonam Yadav, Richard Mortier,

and Paolo Bellavista. 2024. Mitigating IoT Botnet DDoS Attacks through

MUD and eBPF based Traffic Filtering. In 25th International Conference on

Distributed Computing and Networking (ICDCN ’24), January 04ś07, 2024,

Chennai, India. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/

3631461.3631549

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICDCN ’24, January 04ś07, 2024, Chennai, India

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1673-7/24/01.
https://doi.org/10.1145/3631461.3631549

1 INTRODUCTION

As the use of Internet-of-Things (IoT) devices, in particular in homes

and in open deployment environments, continues to increase, nu-

merous associated security challenges have emerged [27, 35]. Our

focus lies in addressing the specific issue of IoT device hijacking

for botnet recruitment [4]. Such devices are Internet-connected by

design, typically through high-bandwidth home broadband connec-

tions, and are often not directly and actively used by residents. In

the hijacking process of IoT devices, attackers exploit vulnerabil-

ities in the security of the device, gain unauthorized access, and

take control of the device. Once the device is under the attacker’s

control, it can be used to perform a range of malicious activities,

such as generating spam and stealing sensitive information.

Bots commonly target IoT devices using brute-force attacks on

default or weak login credentials. This enables attackers to gain

access to the device and take control of it. Furthermore, IoT devices

that are not regularly updated may have known vulnerabilities that

attackers can exploit to gain control. As a consequence, once an IoT

device is hacked and recruited into a botnet, its intended function

will continue to work, but it can also generate massive amounts of

network traffic as part of a Distributed Denial-of-Service (DDoS)

attack.

Ideally, IoT devices would not be as susceptible to hacking, but

as long as they remain vulnerable, one approach to detecting and

mitigating the effects of hacked devices is to monitor and control

the traffic they generate. The IETF has attempted to address this

issue through RFC 8520, which is the łManufacturer Usage Descrip-

tion Specification" [23, 24]. This specification allows IoT device

manufacturers or service providers to provide a machine-readable

description of the network interaction in which the device should

engage. This information can be used by the home router to enforce

restrictions on devices’ network activities. Hence, a hacked device

cannot be effectively used as part of a botnet because it will not be

allowed to generate arbitrary Internet traffic.

Specifically, these MUD files allow manufacturers or service

providers to specify to the local network all the permitted incoming

and outgoing source/destination addresses, enabling fine-grained

traffic filtering of each IoT device. However, it does not allow any

further constraint, for example on the rate or mix of traffic genera-

tion. Further, implementing the specified constraints on relatively

resource-limited home routers requires efficient means to intercept

and control network traffic as the number of constraints rises in

164

ICDCN ’24, January 04ś07, 2024, Chennai, India Feraudo and Popescu, et al.

proportion to the number of IoT device types in the home. Thus,

the MUD’s purpose is to restrict traffic while enabling IoT manufac-

turers to provide long-term support and updates for their devices,

facilitating the scalable deployment and management of IoT ecosys-

tems.

This paper advances the state-of-the-art of the related work in

the field by presenting the following original contributions:

(1) we propose extensions to the existing MUD standard that

enable fine-grained rate-limiting of traffic from controlled

devices, alongside means to estimate the relevant parameter

values in realistic deployments ğ2;

(2) we extend the existing osMUD [12] implementation so that

it can be deployed within a virtual machine setup for devel-

opment and testing or within a real-world setup ğ3; and

(3) we develop and integrate new backends for osMUD by using

Linux standard iptables firewalls and eBPF [11] that sup-

port more efficient implementation of these constraints as

expressed in MUD files ğ4.

(4) we report quantitative performance results on how our de-

sign and implementation choices limit high traffic surges

caused by a Botnet attack [22], demonstrating their effec-

tiveness ğ5.

2 EXTENDING MUD

According to the MUD standard [24], a MUD deployment consists

of three architectural building blocks: (i) the device behaviour de-

scription (MUD file), (ii) a uniform resource locator (MUD URL)

and (iii) a mechanism for local management systems that uses the

URLs to request description files. In addition, the standard defines

two main components that guarantee deployment and use of MUD

files: the MUD file server that makes description files available,

and the MUD manager, which requests and receives description

files to and from the MUD file server. The workflow between these

blocks requires the thing or device to emit the MUD URL indicating

where the corresponding MUD file is hosted. For this purpose, three

protocol extensions have been defined by the standard: (i) in DHCP,

a reserved option in request packets is used; (ii) in X.509 through

a certificate extension; and (iii) in Link Layer Discovery Protocol

(LLDP) by exploiting a subtype defined in RFC 7042. Once a MUD

file has been retrieved, the MUD manager validates and enforces

the Access Control Lists (ACLs) produced on the corresponding

firewall.

2.1 The MUD data model

The MUD data model consists of a YANG-based file serialized in

JSON [26]. The YANG language models different types of data, such

as configuration data and notifications for network management

protocols. There are three YANG schema components that are

serialized in a MUD file: (i) ietf-mud allows to verify MUD file

validity as well as the policy to and from the device; (ii) ietf-access-

control-list [20] defines Access Control Lists by using a YANG data

model; (iii) ietf-acldns allows the DNS matching criteria.

The ACL model incorporates essential network and transport

layer protocols (e.g., IPv4 and TCP) as its key features. Additionally,

it includes actions such as ACCEPT, DROP, or REJECT to specify

the router’s behavior for the traffic flow. For osMUD, REJECT is

the default action to deny device communications with domains

Table 1: Devices’ outgoing traffic in a 60-Second window

Category TCP TCP Max UDP UDP Max

appliances (pkts) 36.7 223.2 5.033 140.28

smart-hubs (pkts) 21.3 1716.8 9.63 152.38

cameras (pkts) 62.2 1471.34 94.40 7863.0

audio (pkts) 52.01 6687.5 293.6 1837.63

home-aut (pkts) 5.20 702.3 14.51 127.5

tv (pkts) 128.9 7560 33.33 729.3

appliances (KB) 2.35 36.76 1.45 24.39

smart-hubs (KB) 2.38 177.39 1.97 38.51

cameras (KB) 75.07 1257.73 81.2 6727.37

audio (KB) 14.62 3430,51 18.76 141291.4

home-aut (KB) 1.08 56.6 3.22 24.96

not in its MUD file. The inclusion of this model in the MUD file

allows manufacturers to define whitelists for their devices’ required

services.

2.2 A rate-limiting extension

ACLs adhere to the structure defined in [20]. They consist of a series

of rules called Access Control Entries (ACEs), each encompassing

a set of match criteria and corresponding actions. According to

the standard, a rate-limit operation belongs to the action group of

an ACE. Therefore, we add rate-limits defined by packet-rate and

byte-rate along with the forwarding field in the actions object.

Manufacturers may use these fields to define rate-limits using

different metrics, such as second, minute, hour, and day. As these

fields belong to the action group, manufacturers can set them for

each allowed communication enabling a more precise and targeted

approach. Furthermore, packet- and byte-rates can vary indepen-

dently. The implementation of this extension is discussed in Sec-

tion 3.

2.3 Learning thresholds

To tune our proposed extension for real deployment environments,

we must extract information to produce valid upper bounds for

outgoing traffic. We have performed this analysis on the widely

accepted data gathered by Ren et al. [35]. This includes different

PCAP files containing network traffic generated by 81 IoT devices

of six different categories: appliances, smart-hubs, cameras, audio

home-automation, and televisions. Those PCAP files were processed

to compute the amounts of packets and bytes sent and received

by each device in a given time window, defined as follows: the

first packet timestamp defines the window start time (𝑤𝑠𝑡); if the

packet falls within the window (𝑤𝑠𝑡 +𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒), the packet/byte

counters corresponding to this window are incremented; otherwise,

while that packet cannot be included within a window, the next

window start time is updated with the end time of the previous

one (𝑤𝑠𝑡𝑡 ← 𝑤𝑠𝑡𝑡−1 +𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒). We analyzed the data using

a window of 60 seconds.

Table 1 summarizes the results of our analysis in terms of devices’

outgoing traffic in a window of 60 seconds, aligning with our goal

of preventing Botnet attacks from IoT devices. The TCP and UDP

165

Mitigating IoT Botnet DDoS Attacks through MUD and eBPF based Traffic Filtering ICDCN ’24, January 04ś07, 2024, Chennai, India

columns refer to the average of TCP and UDP packets/bytes outgo-

ing traffic during device activities, excluding idle periods (e.g., dur-

ing the night). Similarly, the other columns indicate the network

traffic peaks average for each category. For the sake of brevity, we

focus on two device categories: appliances (devices aiding home

activities like cooking and cleaning) and smart-hubs (access points

or controllers providing Internet access to IoT devices using pro-

prietary or low-range protocols). As highlighted in Table 1, both

categories require TCP to work properly.

For each device category analyzed, we establish two MUD files

that describe allowed reliable communications and including two

volumetric policies, namely łpeaksž and łaveragesž. Table 1 reveals

that MUD files using łpeaksž as outgoing traffic threshold set 250

packets per minute and 40 KB per minute for devices belonging to

appliances category, and 1720 packets per minute and 180KB per

minute for smart-hubs devices. On the other hand, MUD files using

łaveragež outgoing traffic during device activities define 40 packets

per minute and 3 KB per minute for appliances, and 22 packets per

minute and 3 KB per minute for smart-hubs. It is worth noting that

selected limits concern all the devices in the categories analyzed.

However, as described in section 2.2, the proposed MUD data model

allows manufacturers to define multiple limits for each device, i.e.,

one for each allowed destination. Defining a limit per destination

will create fine-grained policies for each device, preventing DoS

attacks originating from devices whose category aggregate rate

limit is higher than their peak rate.

We leverage this analysis to establish the rate limits that we use

to validate the effectiveness of our MUD model proposal for both

normal and abnormal IoT network traffic.

3 LIBERATING MUD

Open Source MUD (osMUD) [12] is an open-source implementation

of MUD manager, developed by a consortium of device manufac-

turing and network security companies. As shown in Figure 1,

the MUD manager is designed to be easily built, deployed, and

run on Open Wireless Router (OpenWRT) platform. The imple-

mentation requires a customized version of dnsmasq to enable

MUD URL extraction, provide network infrastructure services, and

minimize resource usage. From the MUD data model perspective,

the current implementation does not support MUD file rules for

lateral movement attacks (e.g., same-manufacturer, controller, my-

controller) [24]. Thus, after compromising a device inside the MUD

compliant network, adversaries can progressively move through

other systems, searching for targeted key data and assets, which

are exploited to gain access to other hosts or applications within

the network.

Figure 2 shows the deployment of our prototype: a Linux Virtual

Machine (VM) emulating a Linux-based router and running an os-

MUD version using the extended MUD parser described in section

2.2 (thereafter VMMUD), an external MUD file server, a VM that

represents the IoT device (called IoT-1), and a VM that represents

traffic from or to the Internet (called SERVER). This design priori-

tizes easy replication of configurations, settings, and functionalities

onto physical hardware.

After finalizing the configurations of this environment, we pro-

ceeded to install the osMUD dependencies on the VMMUD envi-

ronment and deployed it in its generic form. However, although the

DHCP
(MUD-URL)

dnsmasq

Internet

MUD
Enabled

IoT devices
DHCP Server DNS

MUD File Server

MUD
Manager

Router OpenWRT

Firewall

Figure 1: MUD-enabled IoT devices in a home network send

and receive traffic to the Internet through the OpenWRT

router. The MUD File Server supplies MUD files parsed by

the osMUD manager, obtaining rules. The router firewall

enforces these rules for IoT devices’ traffic.

osMUD designers provided all necessary tools to build this version,

there is still no support for a firewall other than OpenWRT. As a

result, it becomes imperative to investigate rule enforcement meth-

ods for widely used firewalls. To this end, the osMUD Manager

structure allows developers to define additional rule enforcement

methods by exploiting two main folders containing firewall inte-

gration code. The first includes several scripts that focus on rules

enforcement and removal in an OpenWRT firewall, while the sec-

ond folder is provided as a sample code modelling for new firewall

integration. Hence, we consider these folders as containers of an

adapter that enables the MUD manager’s independence from the

underlying firewall (marked with red dotted line in Figure 3). We

develop two new adapters which are described in Section 4. The

first one, eBPF-IoT-MUD leverages eBPF for rule enforcement, and

the second adapter leverages iptables. Using either of these two new

adapters, our system can be deployed on a standard Linux-based

router or other constrained devices such as RaspberryPi.

To store and enforce rules produced from the new rate limit

fields introduced in Section 2, the osMUD manager parsing proce-

dure needs to be updated accordingly. To achieve this, the MUD file

parser (green block in Figure 3) analyses a new string of symbols in

the group of action. Moreover, in order to properly store features

enabling rate-limit operations, the parser uses an extended version

of data types modelling MUD rules. Once the MUD manager re-

ceives these customised data types from the parser, it enforces the

extended rules on the selected underlying firewall mechanism. It

is worth noting that while the emulated environment illustrated

in Figure 2 currently focuses on a single compromised IoT device,

manufacturers typically define MUD files for each device they pro-

duce. Therefore, the considerations that apply to our environment

can easily be extended to the DDoS scenario, wherein multiple IoT

devices serve as sources of attack.

4 ADAPTING MUD

MUD enforcement is carried out at the router using a backend that

enables control over traffic. After introducing eBPF, XDP (eXpress

Data Path) and tc ğ4.1, we describe in more detail the structure of an

eBPF program ğ4.2, and then describe how we use eBPF and XDP

in one backend implementation ğ4.3. For comparison purposes, we

also describe a second adapter that uses the Linux iptables firewall

support ğ4.4.

166

ICDCN ’24, January 04ś07, 2024, Chennai, India Feraudo and Popescu, et al.

MUD URL extraction

iptables/ebpf
DNSMASQ

DHCP
Server DNS

OSMUD

dhcpmasq.txt

DROPIoT-1

VirtualBox Environment

Host Machine

iot-interface

SERVER

netbneta

virtual-internet

MUD File
Server

ACCEPT

VMMUD

Rules
enforcement

(a) Output flow (traffic originating from the IoT device)

MUD URL extraction

iptables/ebpf
DNSMASQ

DHCP
Server DNS

OSMUD

dhcpmasq.txt

DROPIoT-1

VirtualBox Environment

Host Machine

iot-interface

SERVER

netbneta

virtual-internet

MUD File
Server

ACCEPT

VMMUD

Rules
enforcement

(b) Input flow (traffic originating from the Internet

Figure 2: Network deployment flows
osMUD

MUD
Manager

MUD
Parser

OpenWRT

LINUX
EBPF

IPTABLES

UCI Firewall

...

Figure 3: osMUD architectural blocks

4.1 eBPF, XDP, and tc

The extended Berkeley Packet Filter (eBPF) is a set of instructions

and a virtual machine (VM) for executing programs written in

restricted C-language [10, 39]. An eBPF program is łattachedž to a

specific code path in the kernel. When the code path is traversed,

any attached eBPF programs are executed. They can be installed

into the Linux kernel without modifying the kernel source code.

Thus, eBPF enables a variety of applications. For instance, an

eBPF program can be attached to a network socket to perform tasks

such as traffic classification or packet filtering. Furthermore, eBPF

is useful for debugging the kernel and carrying out performance

analysis, since eBPF programs can access kernel data structures.

The eXpress Data Path (XDP) [19] uses eBPF to enable fast packet

processing at the lowest layer of the Linux network stack, immedi-

ately after a packet is received. XDP is the lowest layer of the Linux

kernel network stack. It is present on the RX path, inside a device’s

network driver, meaning that it can process only the incoming pack-

ets. It allows packet processing at the earliest stage in the network

stack, making it suitable for applications such as DDoS mitigation.

The context received by an XDP program is defined by the type

struct xdp_md. The action returned by an XDP program is one of

the following actions: the packet is dropped and raise an exception

(XDP_ABORTED), dropped silently (XDP_DROP), passed along to the

kernel stack (XDP_PASS), retransmit on the same interface (XDP_TX)

or redirect to another target (for example, to another interface)

(XDP_REDIRECT).

Finally, the TC layer allows processing both egress traffic (trans-

mitting packets) and ingress traffic (receiving packets). Traffic con-

trol policies on Linux are applied at this layer, with different queuing

disciplines (qdisc) being configured for the different packet queues

available in the system. Additionally, there is the possibility to add

filters to drop or modify packets.

4.2 eBPF program structure

eBPF programs can be loaded during runtime inside the Linux

kernel, and they can interact with different kernel elements, such as

kprobes, perf events, sockets and routing tables. An eBPF program

can be attached to different network hooks, eXpress Data Path (XDP)

and Traffic Control (TC). It is executed whenever an event appears

on the interface it is attached to. For example, in the case of an eBPF

program that does custom packet processing, it will be executed

whenever a packet is sent or received.

eBPF programs have a program type which defines which layer

or subsystem of the Linux kernel the eBPF program is attached to.

The type provides information about: (i) what is the input passed

to it (its context), (ii) which helper functions it is allowed to use,

and (iii) to which kernel hook it will be attached to. For example,

BPF_PROG_TYPE_SOCKET_FILTER is a program that does socket fil-

tering, while BPF_PROG_TYPE_XDP is program attached to the eX-

press Data Path hook. A different category of programs are those

for kernel tracing and monitoring.

eBPF maps are key-value stores, where the keys and values can

be user-defined data structures and types. Maps can be accessed

from userspace as well as from eBPF programs loaded in the kernel,

which makes them a powerful tool for communication between

the two. Two common examples are BPF_MAP_TYPE_HASH (which

is similar to a hash table) and BPF_MAP_TYPE_ARRAY (where entries

are indexed by a number similar to an array). eBPF programs can

use helper functions, such as functions for interacting with maps,

for processing packet headers and others.

An eBPF program returns a code, which depends on the program

type. For example, an XDP program returns a code indicating what

action regarding the packet after processing (pass packet, drop

packet, redirect etc.). Similarly, TC returns different codes (deliver

the packet in the TC queue, drop packet, reclassify packet etc.).

The eBPF in-kernel verifier performs a number of checks. The

first check ensures that the eBPF program terminates and does not

contain any loops. In the second check, the verifier simulates the

execution of the eBPF program one instruction at a time to ensure

that register and stack state are valid. Also, if pointer arithmetic

167

Mitigating IoT Botnet DDoS Attacks through MUD and eBPF based Traffic Filtering ICDCN ’24, January 04ś07, 2024, Chennai, India

is allowed, all pointer access are checked for type, alignment, and

bounds violations. Uninitialized registers cannot be read. Certain

registers are marked as unreadable, and checks are carried out to

ensure that the read-only frame-pointer is not being written to.

Lastly, the verifier restricts which kernel functions can be called

from the eBPF programs, and which data structures can be accessed

depending on their type.

4.3 eBPF-IoT-MUD adapter

The osMUD manager can use the eBPF-IoT-MUD adapter to en-

force MUD rules in the lowest layer of the Linux kernel network

stack. We implemented eBPF-IoT-MUD as an XDP program, at-

tached to the XDP hook. Specifically, there are two programs:

xdpfw_from_device and xdpfw_to_device. The former is inserted

on the LAN interface of the home router (Figure 2a), while the latter

is injected on theWAN interface of the home router (Figure 2b). The

xdpfw_from_device is the program used to filter and/or rate-limit

the connections made by the IoT devices to the Internet, while the

xdpfw_to_device is the program used to filter and/or rate-limit

the connections from the Internet to the IoT devices. In this paper,

we are focusing only on xdpfw_from_device, as our aim is to stop

DDoS attacks from IoT botnets. We note that xdpfw_to_device

program functions in the same manner, enforcing MUD rules to

prevent unauthorized access from the Internet to the IoT device in

this case, thus minimizing the possibility of compromising an IoT

device by an outside attacker [32].

We implemented a userspace program which attaches or de-

taches the programs from the specified network interface, and that

can insert the appropriate MUD rules in allowlists. There are two

allowlists per protocol (IPv4 v4_allowlist and IPv6 v6_allowlist). The

XDP programs use the allowlists to determine whether the packets

will be allowed or dropped. The allowlists are implemented using

eBPF maps (BPF_MAP_TYPE_HASH).

The key and value for the hash map can be seen in Figure 4. The

key in the hash map is represented by a structure flow_ipv4_key

(and correspondingly flow_ipv6_key).

The key comprises the destination and source IP addresses for

the from_device program, or the source and destination IP address

for the to_device program, the destination port for from_device, or

the source port for to_device, the protocol type and the type of rule

(whether it is a from_device or a to_device rule). The type of rule

is implicitly specified in the command line when specifying the

type of port (source or destination port). The value in the hash map

is represented by a structure counters_rate, which records the

number of bytes and the number of packets seen a rule. Additionally,

the structure has a static maximum byte rate and maximum packet

rate extracted from the extended MUD file model when the rule

was created and inserted in the map. A default value of zero means

that there is no rate-limit.

Whenever a packet arrives, the headers are parsed (layer 2, layer

3 and layer 4) and a key for the maps is built using the header

information. The first header parsed is the Ethernet header, the

second one is the IP header and, lastly, the transport header. The

key is built using information from layer 3 and layer 4, accord-

ing to the MUD standard. This key (struct flow_key_ipv4 or

struct flow_key_ipv6) is searched for in the allowlists. If the key

is not found in the allowlists, the packet is dropped (using action

s t r u c t f l ow_key_ ipv4 {

__u8 i p _ a d d r e s s _ s r c [4] ;

__u8 i p _ a d d r e s s _ d s t [4] ;

enum addr_ type type ;

enum po r t _ p r o t o c o l p ro to ;

__u16 po r t ;

} ;

s t r u c t f l ow_key_ ipv6 {

__u8 i p _ a d d r e s s _ s r c [1 6] ;

__u8 i p _ a d d r e s s _ d s t [1 6] ;

enum addr_ type type ;

enum po r t _ p r o t o c o l p ro to ;

__u16 po r t ;

} ;

s t r u c t c o u n t e r s _ r a t e {

__u64 pa ck e t s ;

__u64 by t e s ;

__u64 max_pkt_ra te ;

__u64 max_by t e s_ ra t e ;

} ;

Figure 4: eBPF-IoT-MUD maps

XDP_DROP). If it is found, the following actions will take place. First,

the flow statistics for the matching entry (MUD rule) are updated

according to the time window they fall in. If the current time win-

dow has expired, the statistics are first reset, and only then are

updated. If the current time window has not expired, the flow sta-

tistics are updated directly. Next, the conditions for the maximum

packet rate and/or maximum byte rate are checked. If these are not

met (the current flow statistics for the current window are above

the maximum thresholds), the packet is dropped (action XDP_DROP),

else it is passed along (action XDP_PASS).

Moreover, an eBPF map of type BPF_MAP_TYPE_ARRAY is used

to store the current time to determine whether the packet falls in

the current time window or whether the time window should be

updated. Also, another eBPF map of type BPF_MAP_TYPE_HASH is

used to set the window size for updating statistics (by default one

minute) from the userspace program.

4.4 iptables firewall adapter

Referring to Figure 3, in this section we describe the iptables adapter

that we implemented by analyzing the firewall integration with os-

MUD. The iptables firewall relies on two main concepts: tables and

chains, where tables are made of chains, while chains are made of

rules. From our perspective, the rules included in a MUD file are en-

forced in the FORWARD chain, which handles filtering procedures

on packets passing through the firewall.

Thus, after parsing a MUD file, the osMUD manager produces

two types of rules: ACCEPT and DROP-ALL. The former represents

the allowed communications described by device manufacturers,

while the latter is added by the osMUD manager to blacklist all

the other domains not described in the MUD file. We employ the

custom chain concept provided by the iptables tool to improve rules

management. It allows us to define programs acting only on MUD-

related policies, thus without interfering with those system-related.

For everyday IoT device categories, rate-limiting can further im-

prove the protection against DoS attacks. To support these policies

in the MUD model, we propose an extension allowing manufactur-

ers to define device behaviours based on the traffic volume. Towards

this end, our iptables adapter uses the hashlimit module enabling

the rate-limit match for a group of connections.

168

ICDCN ’24, January 04ś07, 2024, Chennai, India Feraudo and Popescu, et al.

0 2500 5000 7500 10000

Insert rule time [ns]

0.0

0.5

1.0

C
D

F

(a) Rules insertion time in the IPv4 allowlist

0 2500 5000 7500 10000

Delete rule time [ns]

0.0

0.5

1.0

C
D

F

(b) Rules deletion time in the IPv4 allowlist

0 500 1000 1500 2000

Packet processing time [ns]

0.0

0.5

1.0

C
D

F

(c) Packet processing datapath

Figure 5: eBPF-IoT-MUD evaluation

Appliances Smart-Hubs
0

10
20

40

60

80

100

D
ro

pp
ed

 (%
)

11.06

83.99

10.56

85.8Packets
Bytes

(a) Average limit

Appliances Smart-Hubs
0.0

0.5

1.0

1.5

D
ro

pp
ed

 (%
)

0.2
0.01

1.18

0.03

Packets
Bytes

(b) Peak limit

Figure 6: Packet and byte drop rates under normal conditions

5 EVALUATION

We have extensively evaluated our system implementation by using

the setup in Figure 2. The IoT device and the osMUD manager each

run in a separate virtual machine, hosted on a MacBook Pro Intel

Core i5 with 8GB RAM. Both iptables and eBPF-MUD-IoT firewalls

are configured on VMMUD, which acts as a bridge between two

networks: neta and netb. The former contains an IoT device named

IoT-1, i.e. VM that emulates a resource-constrained device, while

the latter contains a server interacting with VMs of neta.

5.1 Rule management via eBPF

In this section, we present the results for micro-benchmarks we

run on eBPF-IoT-MUD in Table 2. While we expect that most of the

MUD files parsing and rule enforcement to happen when the router

is first initialised or rebooted, new IoT devices may become part of

the IoT network dynamically. Thus, we evaluate the time it takes to

insert and to delete rules in the eBPF maps, by inserting 255 rules,

and then deleting the 255 rules inserted. For these experiments, we

used a Lubuntu 20.04 virtual machine running in VirtualBox 6.1.14

on a laptop with an Intel quad-core i7 processor and 16GiB RAM.

Figure 5a presents the CDF for rules insertion time, with an

average of 4533.43 ns, while Figure 5b presents the CDF for rules

deletion time, with an average of 4576.58 ns. We also evaluated

the packet processing datapath with one rule inserted for a ssh

connection from outside the VM to the VM, and we sent different

Linux commands on the ssh connection. Figure 5c presents the CDF

for packet processing datapath times, with an average of 556.15 ns.

We measure the packet latency using the experimental setup

in Figure 2, which runs on a laptop with an Intel quad-core i7

processor and 16 GiB RAM. The experiment runs netperf [18]

with TCP_RR on the client and sending traffic to the server across

the router. On the router we inserted the MUD rules that allow

the traffic to flow from the client to the server. We run netperf

in three experiments: (i) the baseline (no firewall); (ii) iptables

firewall; (iii) eBPF-IoT-MUD firewall, and we compare the packet

latency and transaction rate. [18] runs five consecutive tests of 100

seconds for each experiment. The results are presented in Table 3.

There is no noticeable impact to packet latency and transaction

rate compared to the baseline (no firewall) when using a firewall

(iptables or eBPF-IoT-MUD), with the minimum packet latency

being 186 us for baseline, 187 us with iptables and 188 us with eBPF-

IoT-MUD. The transaction rate is 2714 transactions/s for baseline,

2892.51 transactions/s with iptables, and 2915.91 transactions/s

with eBPF-IoT-MUD. These measurements show that using either

firewalls does not add any additional overhead to packet processing.

5.2 Rate limiting impact on normal traffic

Based on the analysis we carried out in the previous section, we

defined two MUD files, i.e., using "peaks" and "averages" policies,

for each category considered, i.e. appliances and smart-hubs. We

validate these MUD files using the dataset provided in [37] to emu-

late IoT device network traffic in normal conditions. The dataset

includes traffic traces of 28 different IoT devices over a period of

6 months, of which only two weeks are openly available. We se-

lected two devices for each category analyzed, i.e. a Wi-Fi printer

169

Mitigating IoT Botnet DDoS Attacks through MUD and eBPF based Traffic Filtering ICDCN ’24, January 04ś07, 2024, Chennai, India

Table 2: eBPF-MUD-IoT performance (𝑛𝑠)

Test Min Med Avg 90th Max Std.dev.

Insert 3740 4347.4 4533.4 5086.6 15037 1019.61

Delete 3426 3978 4576.6 4504.2 49581 4145.33

Datapath 140 249 556.2 1787.2 24915 1089.96

as appliance and an Amazon Echo as smart-hub. To make the traffic

traces conform to our environment (Figure 2), we used tcprewrite

tool from the tcpreplay suite [38].

Once we processed these traces, we first generated and enforced

MUD rules for iptables firewall on the VMMUD machine using the

osMUD manager. Secondly, we started the collection of iptables

statistics in terms of total packets and bytes sent/dropped origi-

nating from the IoT device. Finally, to replay the devices’ network

traffic, we used tcpreplay on IoT-1 VM as shown in Figure 2a. We

replayed three days of the TCP network traffic from each device se-

lected for each MUD file defined, aiming to understand whether the

policies generated allow the corresponding IoT device to function

normally.

Figure 6 illustrates the percentage of packets and bytes dropped

after applying these rate-limits. As shown in Figure 6a, the smart-

hubs MUD file using averages as rate-limits is hardly usable in

normal device conditions, as it blocks most of the outgoing traffic

(over 80%). Similarly, average rate-limits affect the appliances with

a dropping rate of around 11%, which might be a problem, espe-

cially during device updates. Conversely, as shown in Figure 6b

enforcing MUD rules using peaks as rate-limits does not affect the

overall IoT traffic. In such a scenario, the packet drop rate remains

below 1.5% and 0.05% in appliances and smart-hubs, respectively.

Hence, to limit traffic volume for both categories, we decided to

use MUD files defining peaks-based rate-limits. Furthermore, this

choice is motivated by the fact that devices adopting TCP in output

communications tend to reach the peak rapidly. On the one hand, it

might be related to user activities, which may cause new iterations

of the three-way handshake procedure. On the other hand, other

key attributes that make the TCP protocol reliable, e.g., packet re-

transmission and congestion control, might represent the trigger

of traffic peaks.

5.3 Rate limiting impact on abnormal traffic

To emulate abnormal IoT behaviors, we used the Network TON_IoT

dataset [31] providing network traces of several offensive systems

conducting multiple attack scenarios, such as DoS, Ransomware,

and injections attacks. We selected those referring to a DoS attack

and merged them into a single trace. Next, we used the tcprewrite

tool to rewrite the IP addresses in the trace to correspond to those

of our test setup (Figure 2). As described previously, to replay the

traces we used tcpreplay on IoT-1, thus becoming the originator of

the SYN FLOOD attack, a form of DoS attack based on multiple SYN

Request iterations. The traffic flow has been highlighted in Figure

2a. Once we processed the abnormal network traces, we enforced

the policies comprised in the MUD files previously selected. To

test the effectiveness of the rate-limits against this attack, service

Table 3: Packet Latency (𝜇𝑠) and Transactions per Second

Experiment Min Avg Max Std.dev. Txns/s

No firewall 186.4 368.21 247286 1223.44 2714.01

iptables 187 345.5 203594 606.81 2892.51

eBPF-IoT-MUD 188 342.72 258549 580.61 2915.91

ports do not appear in generated MUD files. Figure 7 shows the

results for the appliances group while those smart hubs related

are illustrated in Figure 8. The red line shows the network traffic

without rate-limiting, while the blue and green line represents the

traffic after our shaping (using the rate-limits from the MUD files

for the respective IoT device categories).

We run the experiment using the two firewall backends we imple-

mented, based on iptables and eBPF-IoT-MUD. For iptables, we use

an additional parameter, –limit-burst, that allows small traffic

bursts (in our case bursts of additional 5 packets). For eBPF-IoT-

MUD, when the rate-limit is reached, the firewall starts dropping

the incoming packets. This implementation difference explains why

the traffic line in the Figure 7 and Figure 8 is straight when using

eBPF-IoT-MUD, while when using iptables it is less smooth, but

still meets the rate-limit with bursting allowed.

5.4 Rate limiting discussion

Although the results demonstrate the effectiveness of enforcing

peak-based rules selected in our analysis, the scenario we presented

assumes that the administrator - i.e., the user setting the MUD rules

- may not have a comprehensive knowledge of the traffic flow gen-

erated in each communication that a device may engage in. In a

more general case, where manufacturers define the MUD files, it

becomes possible to enable a more precise approach to set rate

limiting fields. For instance, a manufacturer can specify peak-based

limits for every device they produce and for each outgoing commu-

nication (destination) from the device. This would help decrease

the impact on device normal traffic and prevent DoS attacks from

devices whose category aggregate rate limit is higher than their

peak rate. We note that some DoS attacks might use traffic shaping,

making them undetectable through rate limits, in which case other

botnet detection approaches are needed.

One of our key contributions in this research is the inclusion

of a rate limit field for a MUD rule. The value of these rate limits

can be determined either by the users or the device manufacturers,

although this is a separate research problem that falls outside the

scope of our paper. Our focus, instead, is on demonstrating the

effectiveness of enforcing these rate limits at the device level as

a means of managing network interactions and bandwidth usage

for IoT devices. By doing so, our proposed solution allows both

knowledgeable users and manufacturers to mitigate DoS attacks

that may target the services required by the device to operate nor-

mally, while minimizing the impact on the device’s regular traffic. It

is important to note that while our approach can be integrated with

other solutions and techniques, it is not intended to be a compre-

hensive solution on its own, but rather a vital piece in the broader

fight against DDoS attacks.

170

ICDCN ’24, January 04ś07, 2024, Chennai, India Feraudo and Popescu, et al.

0 20 40 60 80 100 120
Windows

0

1

2

3

4

5

6

7

B
yt

es

×105

TCP nofw
TCP iptables
TCP ebpf

(a) Appliances rate-limit bytes per minute

0 20 40 60 80 100 120
Windows

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pa

ck
et

s

×104

TCP nofw
TCP iptables
TCP ebpf

(b) Appliances rate-limit packets per minute

Figure 7: Appliances

0 20 40 60 80 100 120
Windows

0

1

2

3

4

5

6

7

B
yt

es

×105

TCP nofw
TCP iptables
TCP ebpf

(a) Smart hubs rate-limit bytes per minute

0 20 40 60 80 100 120
Windows

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pa

ck
et

s

×104

TCP nofw
TCP iptables
TCP ebpf

(b) Smart hubs rate-limit packets per minute

Figure 8: Smart hubs

6 COMPARATIVE STUDY OF EXISTING
SOLUTIONS

To provide a better understanding of the contributions made in our

work, we summarized in Table 4 the key characteristics of exist-

ing solutions that use MUD rules or whitelists to enhance security

in IoT networks. Specifically, it emphasizes the following aspects:

the network setting, the inclusion of rate-limiting support, adher-

ence to the MUD standard, provision of an anomaly detector, and

underlying technology used for rule enforcement. [16] presents

a design that leverages programmable switches to enforce MUD

rules in enterprise industrial networks, focusing on scalability. The

implementation uses the P4 programming language for scaling the

number of MUD rules that can be enforced in a network, but it does

include a MUD manager in the current design. Furthermore, the

architecture does not enforce rate limits to protect against DDoS

Botnet attacks. Our inplementation does not require programmable

switches, and it can run on legacy routers or Raspberry Pi, being

ready to deploy in any network. [14] uses an ML-based anomaly

detection that leverages OpenFlow to enforce MUD rules. An SDN

controller collects traffic statistics for each rule, and the statistics

sever as input to an online anomaly detector. The tool can detect

several volumetric attacks from malicious IoT devices. [34] also en-

forces MUD rules in OpenFlow switches, however the focus of their

work is determining how many rules can be installed at a switch,

and how a proactive or reactive approach reacts to IoT network

traffic. [13] leverages an online information aggregator (VirusTotal)

to determine whether a destination (IP address) should be added

to a whitelist or the communication should not be allowed. Their

solution does not use the MUD standard and runs on OpenWRT

router, and does not enforce rate limiting. IoTrim [28] finds the set

of destinations contacted by an IoT device, and determines which

of these destinations are needed to maintain device functionality.

These destinations are usually related to the manufacturer, sup-

port or third-party analytics. If a destination is not needed for the

device to operate normally, this destination will be blocked. The

purpose of the work is to limit the information exposure of the

IoT user because of privacy concerns. In our work, we present an

integrated system that enforces MUD rules in order to avoid IoT

devices contacting destinations that are not in the MUD file.

171

Mitigating IoT Botnet DDoS Attacks through MUD and eBPF based Traffic Filtering ICDCN ’24, January 04ś07, 2024, Chennai, India

Table 4: Existing solutions

Work Network setting Rate-limiting Support Standard Compliant Anomaly Detector Rule Enforcement Tech

Our Smart homes Yes (MUD standard ext.) Yes No eBPF/iptables

[16] Enterprise industrial No Yes (no MUD manager) No P4

[14] Smart homes No Yes (no MUD manager) Yes (ML-based) OpenFlow

[34] Enterprise industrial No Yes (no MUD manager) No OpenFlow

[13] Smart homes No No Yes (Virus Total) OpenWRT

[28] Smart homes No No No (whitelist) iptables

Furthermore, based on the extendedMUDfile with rate limits, we

thwart volumetric attacks such as DDoS attacks towards legitimate

cloud destinations. Conversely, other works [7, 13, 14, 34] focus on

traffic filtering based on source/destination address of the packets,

and do not consider bandwidth or data rate.

The idea of including bandwidth (packet rate and byte rate as

a part of the MUD) has been discussed in a IETF RFC draft [25].

Andalibi et al. [2] discussed the advantage of peak request rate as a

part of MUDwhen deploying MUD in fog computing environments,

but did not provide an implementation. Similarly [8, 17] have pre-

sented the challenges associated with the implementation of traffic

rate control at the router and firewall levels in MUD-compliant

networks. Currently, to the best of our knowledge, there is no MUD

implementation that evaluates rate-limitation enforced by MUD

in MUD-compliant networks while leveraging eBPF and XDP for

traffic filtering. Our work shows and evaluates the advantages of

including rate-limiting policies in MUD files, proving their feasibil-

ity with quantitative performance results on Linux-based routers

using osMUD.

7 RELATED WORK

Different organisations have developed prototypes of MUD man-

ager (controller) implementations (middleware) in the last few years

to allow seamless enforcement of the filtering rules specified in

MUD files [12, 33]. Recent research surveys [3, 9, 17] discuss their

limitations, challenges, and directions for future research [25]. One

of the recognized challenges is the manufacturer’s resistance to

support MUD files and to make devices MUD-compliant in real

deployment environments, in particular in absence of recognized

IoT device usage patterns. One way to solve this problem is to create

a behavioral fingerprint of the devices in the real environments

and then use those fingerprints to design MUD files [29]. There

have been significant efforts for creating behaviour fingerprints of

IoT devices using their network traffic [21, 40]: the fingerprints are

used to detect abnormal behaviours and take proper actions, either

by limiting the incoming/outgoing traffic or by switching off the

suspected anomalous devices. Our system can work in conjunction

with IoT device identification systems that use machine learning

models for device identification [21]. As a first step, a manufacturer

can provide a MUD file with rate limits already defined for an IoT

device, or that has been built using a tool such as [6, 15]. These rate

limits can be further customized based on observed usage patterns

using MLmodels for device identification. Furthermore, since smart

homes can have different network connections and bandwidths, the

network infrastructure conditions can further help to customize

the MUD file. In this direction, our system exploits the eBPF tech-

nology, which has applications in networking, tracing and profiling,

security, and monitoring. XDP ensures efficient packet processing

on the RX datapath, facilitating the construction of DDoS defences.

Studies such as [36] discuss the performance of packet filtering with

eBPF. In [30] the authors present a hybrid system which uses XDP

for traffic sampling and aggregation, and offloads DDoS mitigation

rules to smartNICs. [1] uses eBPF and XDP for implementing traffic

monitoring applications. [5] presents how XDP is integrated in the

DDoS mitigation pipelines at Cloudflare to perform traffic analysis,

aggregation, reaction and implement mitigation rules. Our work,

eBPF-IoT-MUD, is the first to use eBPF in a smart home context,

and implements a firewall using eBPF and XDP. Our custom system

is integrated with the osMUD manager that provides it with the

MUD rules to be enforced in order to prevent IoT devices from

performing DDoS attacks on Internet destinations.

8 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we present the design of an extension to the MUD

standard that rate-limits the outgoing traffic of IoT devices. This ap-

proach helps to ensure that IoT devices do not exceed their allocated

bandwidth limits and do not negatively impact the performance of

other devices on the network. We demonstrate a procedure to iden-

tify these rate-limits for consumer IoT devices. Next, we present the

implementation and evaluation of an end-to-end system to enforce

MUD rules on the home router through two new firewall backends,

based on Linux standard iptables, and a custom system that uses

eBPF (i.e., eBPF-IoT-MUD). Finally, we present novel experimental

results evaluating the performance of our MUD extension and sys-

tem prototype. We achieved this by using the osMUD manager and

implementing custom MUD rules in iptables and eBPF-IoT-MUD,

enforced at routers. In the future, we aim to recreate the emulated

scenario on actual Linux-based systems like Raspberry Pi. This will

serve as a versatile test-bed for executing various types of IoT-based

attacks and evaluating our solution’s performance against existing

ones. Additionally, we intend to investigate methods that accurately

identify rate limit values, by leveraging the eBPF technology.

ACKNOWLEDGMENTS

This work was supported in part by RCUK grants EP/T022493/1,

EP/R03351X/1, EP/X040518/1 and EP/Y019229/1.

172

ICDCN ’24, January 04ś07, 2024, Chennai, India Feraudo and Popescu, et al.

REFERENCES
[1] Marcelo Abranches, Oliver Michel, Eric Keller, and Stefan Schmid. 2021. Efficient

Network Monitoring Applications in the Kernel with eBPF and XDP. In 2021 IEEE
Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN). 28ś34. https://doi.org/10.1109/NFV-SDN53031.2021.9665095

[2] Vafa Andalibi, DongInn Kim, and L. Jean Camp. 2019. Throwing MUD into the
FOG: Defending IoT and Fog by expanding MUD to Fog network. In 2nd USENIX
Workshop onHot Topics in Edge Computing (HotEdge 19). USENIXAssociation, Ren-
ton, WA. https://www.usenix.org/conference/hotedge19/presentation/andalibi

[3] Vafa Andalibi, Eliot Lear, DongInn Kim, and L. Jean Camp. 2021. On the Analysis
of MUD-Files’ Interactions, Conflicts, and Configuration Requirements Before
Deployment. arXiv:2107.06372 [cs.CR]

[4] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Menscher,
Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Understanding the
Mirai Botnet. In 26th USENIX Security Symposium (USENIX Security 17). USENIX
Association, Vancouver, BC, 1093ś1110. https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis

[5] Gilberto Bertin. 2017. XDP in practice:integrating XDP into our DDoS mitigation
pipeline. https://legacy.netdevconf.info/2.1/papers/Gilberto_Bertin_XDP_in_
practice.pdf.

[6] Anat Bremler-Barr, Bar Meyuhas, and Ran Shister. 2022. One MUD to Rule Them
All: IoT Location Impact. In NOMS 2022-2022 IEEE/IFIP Network Operations and
Management Symposium. 1ś5. https://doi.org/10.1109/NOMS54207.2022.9789828

[7] Gabriel Brown. 2019. Regulation of IoT Device Communications Using MUD
Files and IPTables. https://gitlab.com/columbia.irt/riot/tree/master/Fall2019/
CombineRouter

[8] Angelo Feraudo, Poonam Yadav, Richard Mortier, Paolo Bellavista, and Jon
Crowcroft. 2020. SoK: Beyond IoT MUD Deployments - Challenges and Fu-
ture Directions. CoRR abs/2004.08003 (2020). arXiv:2004.08003 https://arxiv.org/
abs/2004.08003

[9] Angelo Feraudo, Poonam Yadav, Vadim Safronov, Diana Andreea Popescu,
Richard Mortier, Shiqiang Wang, Paolo Bellavista, and Jon Crowcroft. 2020.
CoLearn: Enabling Federated Learning in MUD-Compliant IoT Edge Networks. In
Proceedings of the Third ACM International Workshop on Edge Systems, Analytics
and Networking (Heraklion, Greece) (EdgeSys ’20). Association for Computing
Machinery, New York, NY, USA, 25ś30. https://doi.org/10.1145/3378679.3394528

[10] Matt Fleming. 2020. A thorough introduction to eBPF. https://lwn.net/Articles/
740157/.

[11] Matt Fleming. 2021. A thorough introduction to eBPF. https://lwn.net/Articles/
740157/.

[12] OSMUD Group. 2018. Open Source Manufacturer Usage Specification. https:
//osmud.org.

[13] Javid Habibi, Daniele Midi, Anand Mudgerikar, and Elisa Bertino. 2017. Heimdall:
Mitigating the Internet of Insecure Things. IEEE Internet of Things Journal 4, 4
(2017), 968ś978. https://doi.org/10.1109/JIOT.2017.2704093

[14] Ayyoob Hamza, Hassan Habibi Gharakheili, Theophilus A. Benson, and Vijay
Sivaraman. 2019. Detecting Volumetric Attacks on LoT Devices via SDN-Based
Monitoring of MUD Activity. In Proceedings of the 2019 ACM Symposium on SDN
Research (San Jose, CA, USA) (SOSR ’19). Association for Computing Machinery,
New York, NY, USA, 36ś48. https://doi.org/10.1145/3314148.3314352

[15] Ayyoob Hamza, Dinesha Ranathunga, Hassan Habibi Gharakheili, Matthew
Roughan, and Vijay Sivaraman. 2018. Clear as MUD: Generating, Validating
and Applying IoT Behavioral Profiles. In Proceedings of the 2018 Workshop on
IoT Security and Privacy (Budapest, Hungary) (IoT S&P ’18). Association
for Computing Machinery, New York, NY, USA, 8ś14. https://doi.org/10.1145/
3229565.3229566

[16] S A Harish, Suvrima Datta, Hemanth Kothapalli, Praveen Tammana, Achmad
Basuki, Kotaro Kataoka, Selvakumar Manickam, U. Venkanna, and Yung-Wey
Chong. 2023. Scaling IoT MUD Enforcement using Programmable Data Planes.
In NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium.
1ś9. https://doi.org/10.1109/NOMS56928.2023.10154376

[17] José L. Hernández-Ramos, Sara N. Matheu, Angelo Feraudo, Gianmarco Baldini,
Jorge Bernal Bernabe, Poonam Yadav, Antonio Skarmeta, and Paolo Bellavista.
2021. Defining the Behavior of IoT Devices Through the MUD Standard: Review,
Challenges, and Research Directions. IEEE Access 9 (2021), 126265ś126285. https:
//doi.org/10.1109/ACCESS.2021.3111477

[18] Hewlett-Packard. 2022. Netperf. https://hewlettpackard.github.io/netperf/.
[19] Toke Hùiland-Jùrgensen, Jesper Dangaard Brouer, Daniel Borkmann, John

Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The EXpress
Data Path: Fast Programmable Packet Processing in the Operating System Ker-
nel. In Proceedings of the 14th International Conference on Emerging Networking
EXperiments and Technologies (Heraklion, Greece) (CoNEXT ’18). Association
for Computing Machinery, New York, NY, USA, 54ś66. https://doi.org/10.1145/
3281411.3281443

[20] Mahesh Jethanandani, Sonal Agarwal, Lisa Huang, and Dana Blair. 2019. YANG
Data Model for Network Access Control Lists (ACLs). RFC 8519. https://doi.org/
10.17487/RFC8519

[21] Roman Kolcun, Diana Andreea Popescu, Vadim Safronov, Poonam Yadav,
Anna Maria Mandalari, Richard Mortier, and Hamed Haddadi. 2021. Revisit-
ing IoT Device Identification. TMA’21 abs/2107.07818 (2021). arXiv:2107.07818
https://arxiv.org/abs/2107.07818

[22] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Jeffrey Voas.
2017. DDoS in the IoT: Mirai and other botnets. Computer 50, 7 (2017), 80ś84.

[23] Prabhakar Krishnan, Kurunandan Jain, Rajkumar Buyya, Pandi Vijayakumar,
Anand Nayyar, Muhammad Bilal, and Houbing Song. 2022. MUD-Based Behav-
ioral Profiling Security Framework for Software-Defined IoT Networks. IEEE
Internet of Things Journal 9, 9 (2022), 6611ś6622. https://doi.org/10.1109/JIOT.
2021.3113577

[24] Eliot Lear, Ralph Droms, and Dan Romascanu. 2019. Manufacturer Usage De-
scription Specification. RFC 8520. https://doi.org/10.17487/RFC8520

[25] Lear, E and Henry, J. 2020. Bandwidth Profiling Extensions for MUD. https:
//tools.ietf.org/html/draft-lear-opsawg-mud-bw-profile-01

[26] Ladislav Lhotka. 2016. JSON Encoding of Data Modeled with YANG. RFC 7951.
https://doi.org/10.17487/RFC7951

[27] Franco Loi, Arunan Sivanathan, Hassan Habibi Gharakheili, Adam Radford,
and Vijay Sivaraman. 2017. Systematically Evaluating Security and Privacy for
Consumer IoT Devices. In Proceedings of the 2017 Workshop on Internet of Things
Security and Privacy (Dallas, Texas, USA) (IoTS&P ’17). Association for Computing
Machinery, New York, NY, USA, 1ś6. https://doi.org/10.1145/3139937.3139938

[28] Anna Maria Mandalari, Daniel J Dubois, Roman Kolcun, Muhammad Talha
Paracha, Hamed Haddadi, and David Choffnes. 2021. Blocking Without Breaking:
Identification and Mitigation of Non-Essential IoT Traffic. Proceedings on Privacy
Enhancing Technologies 4 (2021), 369ś388.

[29] Guðni Matthíasson, Alberto Giaretta, and Nicola Dragoni. 2020. IoT Device
Profiling: From MUD Files to S×C Contracts. In Open Identity Summit 2020, Heiko
Roßnagel, Christian H. Schunck, Sebastian Mödersheim, and Detlef Hühnlein
(Eds.). Gesellschaft für Informatik e.V., Bonn, 143ś154. https://doi.org/10.18420/
ois2020_12

[30] Sebastiano Miano, Roberto Doriguzzi-Corin, Fulvio Risso, Domenico Siracusa,
and Raffaele Sommese. 2019. Introducing SmartNICs in Server-Based Data Plane
Processing: The DDoS Mitigation Use Case. IEEE Access 7 (2019), 107161ś107170.
https://doi.org/10.1109/ACCESS.2019.2933491

[31] Nour Moustafa. 2021. A new distributed architecture for evaluating AI-based
security systems at the edge: Network TON_IoT datasets. Sustainable Cities and
Society 72 (2021), 102994. https://doi.org/10.1016/j.scs.2021.102994

[32] Mukrimah Nawir, Amiza Amir, Naimah Yaakob, and Ong Bi Lynn. 2016. Internet
of Things (IoT): Taxonomy of security attacks. In 2016 3rd International Conference
on Electronic Design (ICED). 321ś326. https://doi.org/10.1109/ICED.2016.7804660

[33] NIST. 2019. Securing Small-Business and Home Internet of Things Devices: NIST
SP 1800-15.

[34] Mudumbai Ranganathan, Douglas Montgomery, and Omar El Mimouni. 2019.
Soft MUD: Implementing Manufacturer Usage Descriptions on OpenFlow SDN
Switches. ThinkMind, Valencia, ES. https://tsapps.nist.gov/publication/get_pdf.
cfm?pub_id=927289

[35] Jingjing Ren, Daniel J. Dubois, David Choffnes, Anna Maria Mandalari, Roman
Kolcun, and Hamed Haddadi. 2019. Information Exposure From Consumer IoT
Devices: A Multidimensional, Network-Informed Measurement Approach. In
Proceedings of the Internet Measurement Conference (Amsterdam, Netherlands)
(IMC ’19). Association for Computing Machinery, New York, NY, USA, 267ś279.
https://doi.org/10.1145/3355369.3355577

[36] Dominik Scholz, Daniel Raumer, Paul Emmerich, Alexander Kurtz, Krzysztof
Lesiak, and Georg Carle. 2018. Performance Implications of Packet Filtering
with Linux eBPF. In 2018 30th International Teletraffic Congress (ITC 30), Vol. 01.
209ś217. https://doi.org/10.1109/ITC30.2018.00039

[37] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam Radford,
Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman. 2019. Classifying
IoT Devices in Smart Environments Using Network Traffic Characteristics. IEEE
Transactions on Mobile Computing 18, 8 (2019), 1745ś1759. https://doi.org/10.
1109/TMC.2018.2866249

[38] Turner, Aaron and Klassen, Fred. 2021. Tcpreplay. https://tcpreplay.appneta.
com/wiki/tcpreplay.html

[39] Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Pacífico, Elerson R. S.
Santos, Eduardo P. M. Câmara Júnior, and Luiz F. M. Vieira. 2020. Fast Packet
Processing with EBPF and XDP: Concepts, Code, Challenges, and Applications.
ACM Comput. Surv. 53, 1, Article 16 (Feb. 2020), 36 pages. https://doi.org/10.
1145/3371038

[40] Poonam Yadav, Angelo Feraudo, Budi Arief, Siamak F. Shahandashti, and Vassil-
ios G. Vassilakis. 2020. Position Paper: A Systematic Framework for Categorising
IoT Device Fingerprinting Mechanisms. In Proceedings of the 2nd International
Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet
of Things (Virtual Event, Japan) (AIChallengeIoT ’20). Association for Computing
Machinery, New York, NY, USA, 62ś68. https://doi.org/10.1145/3417313.3429384

173

	Abstract
	1 Introduction
	2 Extending MUD
	2.1 The MUD data model
	2.2 A rate-limiting extension
	2.3 Learning thresholds

	3 Liberating MUD
	4 Adapting MUD
	4.1 eBPF, XDP, and tc
	4.2 eBPF program structure
	4.3 eBPF-IoT-MUD adapter
	4.4 iptables firewall adapter

	5 Evaluation
	5.1 Rule management via eBPF
	5.2 Rate limiting impact on normal traffic
	5.3 Rate limiting impact on abnormal traffic
	5.4 Rate limiting discussion

	6 Comparative Study of Existing Solutions
	7 Related Work
	8 Conclusion and Future Directions
	Acknowledgments
	References

