
This is a repository copy of Efficient centralised and decentralised Gaussian process
approaches for online tracking within Stone Soup.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/212990/

Version: Accepted Version

Proceedings Paper:
Lyu, C., Liu, X., Wright, J. et al. (3 more authors) (2024) Efficient centralised and
decentralised Gaussian process approaches for online tracking within Stone Soup. In:
Proceedings of the 2024 27th International Conference on Information Fusion (FUSION).
2024 27th International Conference on Information Fusion (FUSION), 08-11 Jul 2024,
Venice, Italy. Institute of Electrical and Electronics Engineers (IEEE) ISBN 9798350371420

https://doi.org/10.23919/FUSION59988.2024.10706478

© 2024 The Authors. Except as otherwise noted, this author-accepted version of a paper
published in Proceedings of the 2024 27th International Conference on Information Fusion
(FUSION) is made available via the University of Sheffield Research Publications and
Copyright Policy under the terms of the Creative Commons Attribution 4.0 International
License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any
medium, provided the original work is properly cited. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Efficient Centralised and Decentralised Gaussian

Process Approaches for Online Tracking within

Stone Soup

Chenyi Lyu1, Xingchi Liu1,2, James Wright3, Jordi Barr3, Alasdair Hunter3 and Lyudmila Mihaylova1

1Department of Automatic Control & Systems Engineering, University of Sheffield, S1 3JD, UK
2Scientific Computing Department, Rutherford Appleton Laboratory, Science and Technology Facilities Council, UK

3Defence Science and Technology Laboratory, UK

Email: clyu5@sheffield.ac.uk, xingchi.liu@stfc.ac.uk, jwright2@dstl.gov.uk,

jmbarr@dstl.gov.uk, Ahunter@dstl.gov.uk, l.s.mihaylova@sheffield.ac.uk

Abstract—This paper explores the application of centralised
and distributed Gaussian process algorithms to real-time target
tracking and compares their performance. By embedding the
algorithms into the Stone Soup, the focus is on the innovative
implementation of Gaussian process methods with learning
hyperparameters and implementation with a factorised variance
of the Gaussian kernel. The performance of the methods with
different kernels was evaluated, not only with the Gaussian
kernel. Extensive experiments with various kernel configurations
demonstrate their importance in enhancing prediction accuracy
and efficiency, especially in real-time tracking. The case studies
with manoeuvring targets show significant advancements in
tracking capabilities, particularly in wireless sensor networks,
using optimised Gaussian process methods. This work advances
Stone Soup’s capabilities and lays the groundwork for future
investigations into adaptive Gaussian Process applications in
tracking and sensor data analysis.

Index Terms—Learning Gaussian process methods, Distributed
Gaussian process, sensor networks, covariance matrix, tracking,
Stone Soup, online tracking

I. INTRODUCTION

In this paper, we integrate Gaussian process (GP) and

distributed Gaussian process (DGP) methods within the Stone

Soup framework [1] to provide online target tracking in sensor

networks. This area is crucial for many applications, including

in transport systems, surveillance, environmental monitoring,

and military operations, where the objective is to accurately

estimate a target’s location, velocity, and other states from

noisy and incomplete sensor data. The GP methodology has

proven its advantages and effectiveness and relies on solid

theoretical foundations [2], [3].

Traditionally, Bayesian filters such as particle filters (PFs) [4]

have addressed the challenges posed by nonlinear and non-

Gaussian system models and measurement noises. However,

our approach leverages the flexibility and robustness of GPs and

DGPs, offering advantages over these traditional methods. The

adaptability of GPs and DGP makes them particularly effective

in handling high-dimensional and complex problem spaces

characteristic of target tracking scenarios [5] and especially

when implemented in a distributed manner.

The Stone Soup open-source framework represents a valuable

tool for developing and testing state estimation algorithms [6]–

[8]. It is designed to prioritise flexibility, enabling the effective

selection and testing of various algorithmic components in

real-world scenarios. This paper demonstrates how GPs and

DGPs can be effectively implemented within this platform.

The main contributions of this work are: 1) it presents

efficient centralised and distributed GP algorithms, imple-

mented within the Stone Soup framework [9]–[11], 2) the

Cholesky factorisation versions of these algorithms are also

presented and evaluated over target tracking case studies.

3) Sensor network deployment: we can consider a variety

of parameters, for example, the number of sensors and

minimum distance. This implementation involves designing

critical components compatible with Stone Soup, tailored

for GP and DGP functionalities. We introduce specialised

components like GP and GPKernel, GP-based predictors and

updates. These additions to Stone Soup facilitate applying

diverse kernel functions and initial hyperparameters, allowing

for extensive experimentation and performance comparison

across tracking trajectories. Our development paves the way for

GP and DGP models to be adaptively used in various dynamic

and measurement models. The versatility of Stone Soup’s

design also enables future enhancements in joint tracking and

parameter estimation, leveraging the strengths of GP and DGP

approaches.

The paper is organised as follows: Section II provides

a mathematical background on GP and DGP. Section III

describes the GP-based target tracking approaches and their

detailed implementations within Stone Soup in Section IV. The

simulation setup and results are presented in Section V. Finally;

Section VI discusses future extensions and applications of our

work within the Stone Soup framework.

II. THEORETICAL BACKGROUND KNOWLEDGE

A. Overview of Gaussian Process

This section briefly overviews the GP regression method and

the associated computational process for inference and learning.

In statistics, GP regression originally used in geostatistics is

called Kriging and is a method of interpolation based on the GP

governed by prior covariances [2]. Under suitable assumptions

on the priors, GP regression provides the best linear unbiased

prediction of the observations. From the algorithm perspective,

a GP can also be assumed as a stochastic process used to map

a nonlinear function from an input space to an output space.

The problem of learning with GP is solved by learning the

hyperparameters of the kernel function.

Assume that the training dataset D comprised of n input

vectors X = {x1, . . . ,xn}
⊤

and the observation vector y =
(y (x1) , . . . , y (xn))

⊤
are given:

f ∼ GP(f̄(x), k (x,x∗)), (1)

y = f(x) + ε, ε ∼ N
(

0, σ2
)

, (2)

where f̄(x) = E[f(x)],X → R is the mean function and

k : X × X → R is the kernel function. The training and the

test input data are denoted by x and x∗, respectively. The mean

function is often assumed to be 0. The kernel function controls

the smoothness of GP specified as K = k (x,x′). In (2), the

term ε represents an additive independent identically distributed

Gaussian measurement noise and E[·] is the mathematical

expectation operation. The variance σ2 ̸= 0 [2].

Then we define a GP representation to f∗, which follows the

Bayesian approach to predict the output Y∗ for the new input

X∗ = {x1, . . . ,xN}⊤ with the joint distribution y, which can

be written as
[

y
f∗

]

∼ N

(

0,

[

Knn + σ2I KnN

KNn KNN

])

. (3)

The prior mean is set up to be equal to zero. Define the

covariance between the training input X and test input x∗ as

Kx,x∗
= k(X,x∗), the predictive distribution of the target

state at time t is given by a Gaussian distribution with the

mean and covariance obtained from the GP representation

N
(

µ(x∗), σ
2(x∗)

)

as

µ(x∗) = f̄(x∗) +KT
x,x∗

Σ−1(y − f̄(x∗)), (4)

σ2(x∗) = Kx∗,x∗
−KT

x,x∗

Σ−1Kx,x∗
, (5)

where Σ = Knn + σ2I with I being the identity matrix and

Knn being the covariance matrix of the input training data.

B. Distributed Gaussian Process

The computational complexity and storage cost are major

challenges for large-scale learning problems. Based on equa-

tions (4) and (5), the computational bottleneck to GP algorithms

is to learn the hyperparameters and unknown functions. The

computations require O(n3) time with a standard GP imple-

mentation, where n represents the number of training instances.

Besides, the standard GP also requires O(n2+nd) of memory,

where d is the dimensionality of the data. Both facts limit the

scalability of the standard GP regression. Moreover, according

to (4) and (5), the standard GP can only make predictions

based on all the available data, a centralised scheme requiring

data to be shared among sensors.

In this section, inspired by the idea of divide-and-conquer,

DGP methods are introduced to reduce not only the compu-

tational cost but also the memory cost of the standard GP by

first training local GPs based on subsets of the whole training

data set and then aggregating the knowledge of local GPs to

achieve more accurate high-level predictions [12] [13]. The

overall computational complexity and the memory cost can

be reduced to O(nlocal
2n) and O(Mnlocal

2 +nd) (nlocal ≪ n),

respectively, where M represents the number of local GPs, and

nlocal represents the size of data used for training a local GP.

The computational complexity and storage cost can be further

reduced through parallel/distributed computing [14].

The first type of DGP method is the product of experts (PoEs)

[15] approach. The idea is to multiply the local predictive

probability distributions for overall predictions. Given the data

D(i) collected by sensor i, the PoE predicts a function value

f(x∗) at a corresponding test input x∗ according to

p(f(x∗) | x∗, D) =
∏M

i=1
pi(f(x∗) | x∗, D

(i)), (6)

where M is the number of GP experts and represents the

number of active sensors with measurements. Since the product

of these Gaussian predictions is proportional to a Gaussian

distribution, the aggregated predictive mean and variance can

be calculated in closed form as

µPoE
∗ = (σPoE

∗)2
M
∑

i=1

σ−2
i (x∗)µi(x∗), (7)

(σPoE
∗)−2 =

M
∑

i=1

σ−2
i (x∗), (8)

where µi(x∗) and σ2
i (x∗) represent the predictive mean and

variance of GP expert i, respectively, which can be calculated

based on (4) and (5)

The PoE model provides a straightforward way to aggregate

local predictions and sidesteps the weight assignment issue

in other DGP models, such as the mixture of experts model

[16]. However, this model becomes overconfident when making

predictions, especially in regions without any training data.

The generalised product of experts (GPoEs) model [17]

improves PoE by adding weights representing different experts’

contributions. For instance, the weight can be calculated as

the difference in the differential entropy between the prior

distribution p(f(x∗)) and the posterior predictive distribution

p(f(x∗) | x∗, D), which can be written as

βi = 0.5
(

log σ2
∗∗ − log σ2

i (x∗)
)

, (9)

where σ2
∗∗ represents the variance of the prior distribution

p(f(x∗)) and σ2
i (x∗) denotes the predictive variance of GP

expert i, which can be calculated based on (5).

Given the data D(i) collected by sensor i, the GPoE predicts

a function value f(x∗) at a test input x∗. The predictive

distribution and the closed forms of the aggregated predictive

mean and variance can be written as

p(f(x∗) | x∗, D) =
∏M

i=1
pβi

i (f(x∗) | x∗, D
(i)), (10)

Fig. 1. Overview of the target tracking process using GP and DGP, highlighting the training and prediction phases. Green boxes represent sensor inputs. Light
blue and dark blue boxes denote GP training components. Dashed lines delineate the flow of data through the system.

µGPoE
∗ = (σGPoE

∗)2
∑M

i=1
βiσ

−2
i (x∗)µi(x∗), (11)

(σGPoE
∗)−2 =

∑M

i=1
βiσ

−2
i (x∗). (12)

All the models discussed in this section can be applied

to infer the target states in a distributed way in the target

tracking problem. The closed form of posterior predictions can

be obtained, and the predictions are fully tractable.

C. Learning of Hyperparameters

Maximum likelihood estimation (MLE) for parameter-fitting

given observations from a GP in space is a computationally

demanding task that restricts the use of such methods to

moderately sized data sets. The hyperparameters θ of the kernel

function Kθ are learned directly by maximising the negative

log marginal likelihood:

− log p(y | X,θ) ∝ y⊤(Kθ + σ2I)−1y + log
∣

∣Kθ + σ2I
∣

∣

(13)

For the DGP, assuming the local GPs are independent of

each other, the log marginal likelihood can be factorised as

log p(y|X, θ)

≈
∑M

i=1
log pi(y

(i)|X(i), θ),

=
∑M

i=1

(

−
1

2
y(i)⊺Σ(i)−1

y(i) −
1

2
log|Σ(i)| −

nlocal

2
log 2π

)

,

(14)

where X(i), y(i), and Σ(i) represent the training input, training

output, and the covariance matrix of local GP i, respectively.

D. A Gaussian Process with Cholesky Factorisation

Efficient GP regression implementations employ the

Cholesky factorisation to compute the inverse of the covariance

matrix during prediction efficiently, which only costs O
(

1
6n

3
)

for the GP. This method decomposes the positive-definite

covariance matrix Knn into the product of a lower triangular

matrix L and its transpose, such that Knn = LLT . The

Cholesky factorisation facilitates stable and efficient solutions

to systems of linear equations, which is essential in GP for

calculating the posterior mean and variance.

With the Cholesky factorisation, the predictive mean µ(x∗)
and predictive variance σ2(x∗) at a new test point x∗ are given

by

µ(x∗) = f̄(x∗) +KT
x,x∗

L−TL−1y, (15)

σ2(x∗) = k(x,x∗)−KT
x,x∗

L−TL−1Kx,x∗
. (16)

The lower triangular matrix L is used to solve for L−1y
and L−1k∗ through forward and backward substitution, which

avoids direct matrix inversion and thus enhances numerical

stability and computational efficiency, especially in the context

of large datasets.

III. GP-BASED TARGET TRACKING

A. Temporal and Spatial-Temporal GP

Recognising the temporal correlation in the target’s motion in

a target-tracking scenario is essential. This correlation suggests

that recent movements are more closely related than distant

ones, leading to adopting time as a primary variable for

training GPs and making predictions. For this purpose, time is

represented as t, and x represents the target state.

Given the temporal correlation in target motion, the target

state is modelled as:

f(t) ∼ GP (f̄(t), k(t, t′)), (17)

where t and t′ represent the times for training and testing. The

observed value y is given by:

y = f(t) + ϵ, ϵ ∼ N (0, σ2), (18)

Extending to a spatial-temporal context, the model incorporates

the previous state:

f(xt−1, t) ∼ GP (f̄(xt−1, t), k(xt−1, t;x
′
t−1, t

′)), (19)

with observations:

y = f(xt−1, t) + ϵ, ϵ ∼ N (0, σ2). (20)

where xt−1 is the states of the target at t − 1, the spatial-

temporal GP enables incorporating the target’s prior state into

predictions, thus leveraging spatial and temporal information

to enhance tracking accuracy.

B. Gaussian Process for Tracking

The schematic representation of the target tracking method-

ology using GP and DGP is depicted in Figure 1. The sensor

network, composed of a multitude of sensors (e.g., Sensor No.

01, Sensor No. 02, Sensor No. 03, etc.), functions collabora-

tively to gather data about the state of the target, denoted by

(xt, yt), as well as accumulating historical observations. This

collective endeavour encompasses the integration of real-time

measurements obtained at discrete time instances, constituting

the foundational data for the GP models.

1) Training Phase: In the training phase, data procured

from each sensor is individually processed via a designated

GP. The GP model incorporates a carefully selected kernel

function, articulating the covariance structure intrinsic to the

dataset, alongside an optimisation process through MLE aimed

at calibrating the model’s hyperparameters to the observed

data. It’s also mentioned that in the tracking problem, single-

dimensional output GP is still used, so the x and y coordinates

are calculated separately. Following this, an aggregation mech-

anism amalgamates the distinct GPs to formulate a unified

DGP model, synthesizing the discrete sensor data streams into

a consolidated statistical model.

2) Prediction Phase: Upon transitioning to the prediction

phase, the GP and DGP model leverages new test data, captured

at time t, to refine the posterior distribution regarding the

target’s state. It computes the GP Posterior to encapsulate

predictions based on individual sensor data and the DGP

Posterior for an integrated estimation. The latter embodies

a holistic approach, harnessing the collective intelligence of

the entire sensor network, thus furnishing a more precise and

resilient target-tracking mechanism.

C. Kernel Function Selection

The kernel function in GP models encapsulates prior assump-

tions about the behaviour of target motion [18]. In tracking

applications, the choice of the kernel is crucial and must be

aligned with the characteristics of the function representing

the trajectory. [19] Below, we summarise the kernel choices

with their respective mathematical representations:

Smoothness: For smooth trajectories, the Squared Exponen-

tial (SE) kernel is a standard choice due to its assumption of

smoothness:

kSE(x,x∗) = exp

(

−
∥x− x∗∥

2

2l2

)

, (21)

where l is the length-scale parameter. the length-scale l
controls how rapidly the correlation between the function values

decreases with distance. A smaller l leads to a more complex

model capable of capturing rapid changes, whereas a larger l
results in a smoother model.

Periodicity: To model periodic movements, the Periodic

kernel can be used:

kPeriodic(x,x∗) = exp

(

−
2 sin2(π|x− x∗|/p)

l2

)

, (22)

where p represents the period and l the length-scale.

Linearity: Linear kernels assume a linear relationship

between inputs and are defined as:

kLinear(x,x∗) = σ2
b + σ2

v(x− c)(x∗ − c), (23)

with σ2
b as the bias term, σ2

v the variance, and c the offset.

D. Sliding Window-based Tracking

A sliding window-based tracking method is proposed to

manage the voluminous data from local sensors, which might

include irrelevant or misleading information. [1] This strategy

prioritises recent data, deemed more pertinent for current

predictions, by filtering out older, less relevant information.

Employing a sliding window to refine the dataset minimises

computational demands and enhances the precision of state

predictions. This approach streamlines the process by excluding

sensors that fail to provide current data from estimating the

present state.

IV. IMPLEMENTATION OF GAUSSIAN PROCESS

ALGORITHMS IN STONE SOUP

Incorporating GP algorithms into the Stone Soup frame-

work [1] substantially augments sensor networks’ data fusion

and tracking capabilities. This section delves into the GP cen-

tralised and distributed implementation, offering a distinctive

comparative analysis using the same datasets. Based on the

Stone Soup [1], we can adapt a GP to track entities efficiently

across various domains, such as space, air, land, and maritime.

We have implemented centralised and distributed GP algorithms

and validated their performance over Stone Soup case studies.

This approach allows us to demonstrate the GP’s versatility and

effectiveness in a controlled setting without implying that the

simulations or benchmarks are inherently tied to the Stone Soup

framework. Stone Soup’s state transition models, or state-space

models, facilitate the representation of various entity dynamics,

which can be customised according to the application domain.

By utilising GP and DGP to estimate and predict target states,

we harness Stone Soup’s focus on versatility and accessibility.

This empowers researchers to easily adopt sophisticated track-

ing methodologies, even as they work with data simulated

through PF techniques, thereby ensuring a comprehensive

evaluation of GP’s efficacy in practical applications.

A. Measurement Model

The Stone Soup framework employs several generic, low-

fidelity measurement models applicable across various tracking

and data fusion algorithms. These models do not rely on GP for

their derivation but are designed to be compatible with a broad

spectrum of state estimation methodologies. They allow us to

generate experimental data and simulate sensor data reception.

B. GP Types

The GP code includes the GaussianProcess class, which

features two types of GPs: GP and DGP. They extend the GP

framework to suit various sensor network environments, pro-

viding versatile tools for state estimation. The GaussianProcess

class is instrumental in realizing a comprehensive GP tracking

framework. It enables the following critical functionalities:

• Kernel Function Selection: The class allows for choosing

kernel functions, such as the SE, Matérn, and Rational

Quadratic, each capturing different aspects of the data’s

covariance structure.

• Hyperparameter Optimisation: The class includes

methods for fitting hyperparameters to enhance model

performance. These methods employ gradient descent

optimisation techniques to maximise the likelihood of the

observed data under the GP model.

• Posterior Probability Calculation: For continuous learn-

ing and prediction updating, the class computes posterior

probabilities. It uses Bayesian inference to update the

model with new data, maintaining an evolving understand-

ing of the state space.

• Aggregation: Aggregation in the context of DGP is

a critical step in which individual GP predictions are

combined, derived from different sensors’ data. This

process involves integrating the separate GP models,

each representing a subset of the sensor network, into a

unified model. The aggregation is crucial for synthesising

a comprehensive understanding of the state space from

diverse and distributed sensor data.

C. GP Tracking

The GP tracking class employs the Gaussianprocess class,

combining offline training with online prediction. This dual

capability is crucial for adapting to both historical and real-time

data. The system includes a sliding window feature, enhancing

its capability to handle dynamic data flows:

xt+1|t = f(xt|t−1) + ε (24)

where f represents the state transition function and wt the

process noise, which is usually Gaussian. The following

representation encapsulates the functionality of GP tracking:

p(xt+1|Dt) =

∫

p(xt+1|xt,θ)p(xt|Dt)dxt (25)

where Dt denotes the data available up to time t, θ represents

the hyperparameters of the kernel function, and xt and xt+1

are the states at times t and t+ 1, respectively. This integral

reflects the core of the GP approach, updating the state estimate

after observing new data.

D. Sensor Network Customisation

The SensorNetwork class in Stone Soup allows users to

design and tailor sensor networks to their specific requirements,

optimising the application of GP across different operational

scenarios. This level of customisation is key to leveraging the

full potential of GP for complex data fusion tasks and state

estimation accuracy.

E. Implementation of the Gaussian Process

Based on the above descriptions, Algorithm 1 summarises

the implementation of GP tracking in Stone Soup.

Algorithm 1 Gaussian Process Tracking Algorithm

1: Initialisation:

• Define the initial GP model with the chosen kernel

function.

• Initialise sliding window with the initial data set.

2: for t = 1 to T do

3: Model Training

• Input: Historical data from t0 to t− 1.

• Process: Train GP or DGP.

• Output: Trained GP or DGP model.

4: Prediction

• Input: Trained GP model, current time t.
• Process: Predict state at time t using the GP model.

• Output: Predicted state at t.

5: Update Sliding Window

6: end for

V. PERFORMANCE VALIDATION AND EVALUATION

In this section, we evaluate the tracking performance of

GP and DGP-based trackers using the Stone Soup framework.

We use the standard SE kernel for our analyses and evalu-

ate the trackers’ performance in three cases of simulations.

The first case follows a nearly constant velocity model.

The second case is based on a cubic polynomial trajectory,

The third one follows a unmanned aerial vehicle (UAV)

trajectory. The code for the simulations can be accessed at

https://github.com/Lyuchenyi/Gaussian-process-tracking.

A. Nearly-Constant Velocity Case

For the nearly constant velocity model, we utilise Stone

Soup to generate the ground truth and the target measurements.

The data generation process is formulated as follows:

xk = Fkxk−1 +wk, wk ∼ N (0,Qk), (26)

where

Fk =

(

1 ∆t
0 1

)

, Qk = q

(

∆t3

3
∆t2

2
∆t2

2 ∆t

)

. (27)

In this experiment, the ground truth path begins at (0,0). It

progresses to the northeast, with each step representing one

unit of distance in both the x and y dimensions, with Gaussian

noise introduced to simulate realistic sensor data. The noise

parameter q is set to 0.05 as the magnitude of the noise per

∆t-sized timestep. The simulation of the measurement model

is a Gaussian measurement model executed in a 2D setting by

combining two 1D constant velocity models with qx = qy =
0.05 using the ‘CombinedLinearGaussianTransitionModel‘.

Fig. 2. GP tracking for nearly-constant velocity

Fig. 3. DGP tracking for nearly-constant velocity

Figure 2 and 3 present the GP and DGP tracking estimates

for a nearly constant velocity model. The blue dot represents the

Gaussian noise measurement trajectory, while the red indicates

the GP tracking estimate. The close alignment of the GP

estimates with the true trajectory demonstrates the precision

and effectiveness of the GP and DGP model in tracking the

path, even with the presence of measurement noise and other

operational uncertainties.

B. Cubic Trajectory Case Study

First, we plot the ground truth of one target moving on the

Cartesian 2D plane. The target moves in a cubic function. The

measurements are made of the ground truth. The Gaussian

Fig. 4. GP tracking for cubic trajectory

Fig. 5. DGP tracking for cubic trajectory

measurements model has an error matrix of variance 5 in both

dimensions. [1]

Figures 4 and 5 present the cubic trajectory model’s GP

and DGP tracking estimates. The dashed blue dot represents

the noisy measurement trajectory, while the dotted red dot

indicates the GP tracking estimate. The close alignment of the

GP estimates with the true trajectory demonstrates the precision

and effectiveness of the GP model in tracking the path.

C. UAV Tracking Case Study

Our experiment employed GP and DGP for trajectory

estimation tasks, utilising a dataset provided in the UAV

demonstration from Stone-Soup documentation [20].

Figure 6 illustrates the measurements and ground truth

data, with measurements indicated by blue crosses and the

true trajectory by a black line with diamond markers. It also

visualises the GP tracking estimates juxtaposed with the true

trajectory. The estimates are represented with red dots, and the

true trajectory is again shown with a black line with diamond

markers.

Figure 7 presents the sensor positions and their ranges

alongside the DGP estimated trajectory. The sensors are marked

with yellow dots, and blue-shaded regions depict their sensing

Fig. 6. UAV measurements and ground truth

ranges. The DGP estimates are plotted with red dots, while a

black line with diamond markers indicates the true trajectory.

Fig. 7. Sensor positions and DGP estimates

Figure 8 presents the X-axis trajectory estimation by com-

paring the true and estimated trajectories from GP and DGP. A

dashed blue line indicates the GP estimation, while the DGP

estimates are marked with orange dots. A solid black line with

diamond markers represents the true trajectory.

Figure 9 shows the Y-axis trajectory estimation, where the GP

and DGP estimations are superimposed on the true trajectory.

Similar to the Y-axis estimation, the GP estimation follows a

dashed blue line, the DGP estimates are shown with orange

dots, and the true trajectory is displayed with a solid black

line.

D. Numerical Result

The results demonstrate the efficacy of GP and DGP

in accurately estimating target trajectories, with the DGP

algorithm providing a refined estimation by incorporating

sensor network information. These figures underscore the

GP model’s potential to provide reliable estimates for UAV

tracking in real-time applications. Our analysis indicates that

despite the measurement noise, the DGP algorithm exhibits

high accuracy and robustness in processing sensor data for

tracking. The results are acquired from 100 independent Monte

Fig. 8. Comparative analysis of UAV trajectory estimations in X-axis

Fig. 9. Comparative analysis of UAV trajectory estimations in Y-axis

Carlo simulations, and the average values are presented. The

trajectory is fixed, and the measurement noise variance is set

to 5.

TABLE I
RMSE RESULTS OF GP AND DGP METHODS ACROSS DIFFERENT

SCENARIOS

Scenario Method
GP (m) DGP (m)

Nearly Constant Velocity
X 2.10 4.43
Y 2.08 6.56

Cubic trajectory
X 1.98 4.03
Y 2.86 7.84

UAV
X 45.93 38.22
Y 20.76 75.42

In scenarios with lower complexity, such as those involving

nearly constant velocity and cubic trajectories, the GP method

outperforms its counterpart, demonstrating superior accuracy

with lower RMSE values. Conversely, in the more intricate

UAV scenario, both GP and DGP methods register elevated

RMSE figures, albeit with distinct patterns of error distribution:

the DGP method incurs higher errors along the Y-axis. At the

same time, it fares better on the X-axis when compared to GP.

Overall, the GP method showcases greater robustness, standing

out as the more reliable approach in general terms.

Notwithstanding the broader trend, the DGP method’s use

of independent hyperparameters adjusted by multiple sensors

does show promise under certain conditions, particularly noted

in the UAV scenario’s X-axis. This indicates that a method’s

efficacy depends on the application’s specificities, including the

scenario’s complexity and the targeted dimension for prediction

accuracy. Such nuanced performance underscores the necessity

of method selection tailored to the precise demands of each

unique tracking situation.

VI. CONCLUSIONS

This paper successfully integrates GP approaches into the

Stone Soup framework, a significant advancement in sensor

network-based tracking systems. By utilising and adapting

existing components within Stone Soup, the paper demonstrates

the effective incorporation of GP models, highlighting their

ability to enhance data processing and analysis in complex en-

vironments. This integration proves Stone Soup’s versatility in

accommodating advanced algorithms and sets a benchmark for

future implementations of similar technologies. The potential

for further development and application of these approaches

in Stone Soup is a promising avenue for continued research

and innovation.

ACKNOWLEDGMENTS

This research is sponsored by the US Army Research

Laboratory and the UK MOD University Defence Research

Collaboration (UDRC) in Signal Processing under the SIGNeTS

project. It is accomplished under Cooperative Agreement

Number W911NF-20-2-0225. The views and conclusions

contained in this document are those of the authors. They

should not be interpreted as representing the official policies,

expressed or implied, of the Army Research Laboratory, the

MOD, the U.S. Government or the U.K. Government. The

U.S. and U.K. governments are authorised to reproduce and

distribute reprints for Government purposes, notwithstanding

any copyright notation herein. This work was funded partly

by the EPSRC EP/T013265/1 project NSFEPSRC: “ShiRAS:

Towards Safe and Reliable Autonomy in Sensor Driven

Systems’ and the National Science Foundation under Grant

USA NSF ECCS 1903466. For open access, the authors have

applied a Creative Commons Attribution (CC BY) licence to

any Author Accepted Manuscript version arising.

REFERENCES

[1] S. Hiscocks, O. Harrald, J. Barr, N. Perree, L. Vladimirov, M. Harris,
gawebb dstl, T. Glover, R. Green, O. Rosoman, etfrogers dstl, idorrington
dstl, J. Wright, spike, E. Hunter, B. Fraser, H. Pritchett, jjosborne dstl,
P. Carniglia, and C. Sherman, “dstl/stone-soup: v1.2,” 2024.

[2] C. E. Rasmussen, “Gaussian processes in machine learning,” in Advanced

Lectures on Machine Learning. Lecture Notes in Computer Science,
vol. 3176, pp. 63–71, Springer, 2003.

[3] J. Q. Shi and T. Choi, Gaussian Process Regression Analysis for

Functional Data. New York: Chapman and Hall CRC Press, 2011.
[4] J. Carpenter, P. Clifford, and P. Fearnhead, “Improved particle filter for

nonlinear problems,” IEE Proceedings-Radar, Sonar and Navigation,
vol. 146, no. 1, pp. 2–7, 1999.

[5] B. Oakes, D. Richards, J. Barr, and J. Ralph, “Double deep q networks
for sensor management in space situational awareness,” in 2022 25th

International Conference on Information Fusion (FUSION), pp. 1–6,
2022.

[6] S. Hiscocks, J. Barr, N. Perree, J. Wright, H. Pritchett, O. Rosoman,
M. Harris, R. Gorman, S. Pike, P. Carniglia, L. Vladimirov, and
B. Oakes, “Stone soup: No longer just an appetiser,” in Proceedings of

the 26th International Conference on Information Fusion, FUSION 2023,

Charleston, SC, USA, June 27-30, 2023, pp. 1–8, IEEE, 2023.
[7] J. Hiles, S. M. O’Rourke, R. Niu, and E. Blasch, “Implementation of

ensemble kalman filters in stone-soup,” in Proceedings of the 24th IEEE

International Conference on Information Fusion, FUSION 2021, Sun

City, South Africa, November 1-4, 2021, pp. 1–8, IEEE, 2021.
[8] X. Liu, C. Lyu, J. George, T. Pham, and L. Mihaylova, “A learning

distributed gaussian process approach for target tracking over sensor
networks,” in Proceedings of the 25th International Conference on

Information Fusion, FUSION 2022, Linköping, Sweden, July 4-7, 2022,
pp. 1–8, IEEE, 2022.

[9] C. Lyu, X. Liu, and L. Mihaylova, “Efficient factorisation-based
gaussian process approaches for online tracking,” in Proceedings of

the 25th International Conference on Information Fusion, FUSION 2022,

Linköping, Sweden, July 4-7, 2022, pp. 1–8, IEEE, 2022.
[10] X. Liu, L. Mihaylova, J. George, and T. Pham, “Gaussian process upper

confidence bounds in distributed point target tracking over wireless sensor
networks,” IEEE J. Sel. Top. Signal Process., vol. 17, no. 1, pp. 295–310,
2023.

[11] J. S. Wright, J. R. Hopgood, M. E. Davies, I. K. Proudler, and M. Sun,
“Implementation of adaptive kernel kalman filter in stone soup,” in
Proceedings of the 2023 Sensor Signal Processing for Defence Conference

(SSPD), pp. 1–5, 2023.
[12] H. Liu, Y. Ong, X. Shen, and J. Cai, “When Gaussian process meets big

data: A review of scalable GPs,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 31, no. 11, pp. 4405–4423, 2020.
[13] M. Deisenroth and J. W. Ng, “Distributed gaussian processes,” in

International Conference on Machine Learning, pp. 1481–1490, PMLR,
2015.

[14] R. B. Gramacy, “laGP: large-scale spatial modeling via local approximate
Gaussian processes in R,” Journal of Statistical Software, vol. 72, pp. 1–
46, 2016.

[15] G. E. Hinton, “Training Products of Experts by Minimizing Contrastive
Divergence,” Neural Computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[16] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture of
experts,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 23, no. 8, pp. 1177–1193, 2012.

[17] Y. Cao and D. J. Fleet, “Generalized product of experts for automatic
and principled fusion of Gaussian process predictions,” arXiv preprint

arXiv:1410.7827, 2014.
[18] A. Wilson and R. Adams, “Gaussian process kernels for pattern discovery

and extrapolation,” in Proc. of the International Conference on Machine

Learning, pp. 1067–1075, PMLR, 2013.
[19] M. Debruyne, M. Hubert, and J. A. Suykens, “Model selection in kernel

based regression using the influence function,” Journal of machine

learning research.-Cambridge, Mass., vol. 9, pp. 2377–2400, 2008.
[20] “UAV Tracking Demonstation.” https://stonesoup.readthedocs.io/en/v0.

1b5/auto demos/UAV tutorial.html.

