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An assurance calculation is a Bayesian alternative to a power calculation. One

may be performed to aid the planning of a clinical trial, specifically setting the

sample size or to support decisions about whether or not to perform a study.

Immuno-oncology is a rapidly evolving area in the development of anticancer

drugs. A common phenomenon that arises in trials of such drugs is one of

delayed treatment effects, that is, there is a delay in the separation of the sur-

vival curves. To calculate assurance for a trial in which a delayed treatment

effect is likely to be present, uncertainty about key parameters needs to be con-

sidered. If uncertainty is not considered, the number of patients recruited may

not be enough to ensure we have adequate statistical power to detect a clini-

cally relevant treatment effect and the risk of an unsuccessful trial is increased.

We present a new elicitation technique for when a delayed treatment effect is

likely and show how to compute assurance using these elicited prior distribu-

tions. We provide an example to illustrate how this can be used in practice and

develop open-source software to implement ourmethods. Ourmethodology has

the potential to improve the success rate and efficiency of Phase III trials in

immuno-oncology and for other treatments where a delayed treatment effect is

expected to occur.
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1 INTRODUCTION

Assurance calculations are growing in popularity as an aid for the design of clinical trials. An assurance calculation is
a Bayesian alternative to a power calculation: instead of assuming parameters (eg, related to treatment effects) take par-
ticular values, we elicit prior distributions for them, enabling us to derive a probability of a successful trial outcome,
accounting for uncertainty about treatment effects. The concept of an assurance calculation was first considered by
Spiegelhalter and Freedman,1 then developed byO’Hagan et al,2 who coined the term ‘assurance’. Note that the assurance
method has had other terms accredited to it, such as average power, expected power and predictive power.3

To calculate assurance, we sample from the elicited prior distributions for the unknown parameters and then sim-
ulate clinical trials using these sampled values. The prior predictive probability that the trial will be ‘successful’ is the
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2 SALSBURY et al.

proportion of simulated trials that meet our stated success criteria. These success criteria are not fixed by the assurance
method; instead, they are set independently by the sponsor and can be any criteria that the sponsor wishes to con-
sider (eg, that the observed treatment effect will be positive; or statistically significant; or exceed a clinically relevant
threshold). More recently, assurance has been used to calculate the probability of obtaining regulatory approval with
clinically relevant effects on key endpoints after Phase IIb.4,5 Note that the method for the trial data analysis is also spec-
ified independently of the assurance method; the same analysis method would be assumed as that used in the power
calculation.

Assurance provides amore realistic assessment of the probability a trialwill give rise to a successful outcome compared
to a conventional power calculation. The high failure rates of clinical trials are well-documented,6 and high expecta-
tions based on Phase II data may not always translate to pivotal trial success.7 Assurance calculations for Phase III trials
should capture the strength of the available evidence after mitigating the selection bias often inherent in early phase data
when a necessary condition for progress is positive Phase Ib or Phase II results. They should also account for any limita-
tions in the available data in light of planned shifts in the patient population, outcome or treatment strategies between
phases.

Accurate and reliable evaluations of risk can be used to optimize trial design and analysis plans. For example, assur-
ance can be used to support decisions regarding study sample size, and quantitatively measure how effective various
trial setups are at reducing risk, such as the timing and number of planned interim analyses.8,9 Furthermore, assurance
evaluations can also enable better informed decisions on whether or not to conduct a study. Of course sponsors, such
as pharmaceutical companies and public funding bodies, may choose to fund a Phase III clinical trial (or indeed a pro-
gram of Phase III clinical trials) regardless of whether it has a low assurance if the corresponding expected net present
value (eNPV) is sufficiently high, thus targeting resources towards research programs with the greatest expected impact
for patients.

Immuno-oncology (IO) is a rapidly evolving area in the development of anticancer drugs. In trials of IO thera-
pies, time-varying treatment effects that deviate from the proportional hazards (PH) assumption have been observed
on time-to-event endpoints such as progression-free survival (PFS) and overall survival (OS). See for example, Check-
Mate 017.10 In a systematic review of 63 confirmatory randomized controlled trials (RCTs) of anti-programmed cell death
protein-1 and anti-programmed death/ligand 1 therapies,11 15 instances were identified of suspected nonproportional
hazards due to reasons including crossing of the OS survival curves12,13 or a lag before the PFS survival curves separated.14

In what follows, we focus on the latter scenario and refer to this as a delayed treatment effect (DTE).
There are several challenges associated with the design and analysis of trials with nonproportional hazards. Firstly,

the primary estimand should be defined with a clinically interpretable measure used to summarize the benefit of the
test treatment versus control,15 and an unbiased estimator should be selected to target it. Secondly, the test of the null
hypothesis of no benefit of treatment versus control should be carefully selected acknowledging the impact of potential
deviations from PH on the attained power of commonly applied procedures, such as the log-rank test.16Where we suspect
(but are not certain) that there will be a delay in the treatment effect, and furthermore are uncertain about the length of
the delay if there is one, the target event number and corresponding sample size needs to be carefully chosen to provide
confidence the trial will be able to meet its objectives in light of these uncertainties.

As IO trials are becoming more common, so are trials in which a DTE is observed. However, to the best of our knowl-
edge, there has been no published work on eliciting prior distributions and calculating assurance for when a DTE is likely
to be present in a clinical trial with time-to-event endpoints. In this article, we propose a method for how to elicit the
relevant parameters for this trial and how to perform an assurance calculation.

In Section 2, we briefly discuss the assurance method and how it is used in practice. In Section 3, we define DTEs,
present an elicitation method and signpost to the open-source software we have developed for use in this situation. In
Section 4, we illustrate how our method can be used to calculate assurance. In Section 5, we investigate the robustness of
our parameterisation and lastly we conclude with a brief summary in Section 6.

2 ASSURANCE

Suppose that an RCT is to be conducted to compare an experimental treatment with a control; we assume that this is
the current standard of care, but could also be a placebo. We want to test the null hypothesisH0 that the treatment effect
𝜃 = 0 versus the alternative hypothesis H1 that 𝜃 ≠ 0. For a power calculation, the sample size is chosen to solve
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SALSBURY et al. 3

P(Reject H0|𝜃 = 𝜃A) = 𝜋∗, (1)

for some desired probability 𝜋∗ (usually 80% or 90%) and treatment effect 𝜃A, typically chosen to represent a plausible and
clinically relevant effect.

The power of the test ofH0 at 𝜃A is the probability of rejectingH0 if 𝜃 is as large as 𝜃A. However, since the 𝜃 may differ
from 𝜃A, the attained power of the test may deviate from the target 𝜋⋆. Assurance is the unconditional probability that
the trial will end with the desired outcome:

P(‘Successful trial’) = ∫ P(‘Successful trial’|𝜃)f (𝜃)d𝜃, (2)

where f (𝜃) is the prior distribution for 𝜃. If a successful trial simply corresponds to rejectingH0, Equation (2) is the expected
power, interpreting 𝜃A in Equation (1) as the true value of the treatment effect, rather than some minimum clinically
relevant difference.

If the desired outcome is to reject H0 with data which favours the experimental treatment, then the event ‘successful
trial’ may be defined as ‘Reject H0 with 𝜃̂ > 0’. When calculating assurance, a key question is how to define the prior
distribution f (𝜃) for the unknown treatment effect. One approach would be to take f (𝜃) as the posterior distribution for 𝜃
resulting from using clinical data from an early Phase II trial to update a weakly informative prior distribution. However,
this approach may fail to incorporate other sources of relevant information, and may become challenging if there are
differences between the treatment effect studied in Phase II and the quantity of interest in the future trial. Alternatively,
the prior distribution(s) for the parameters of interest could be elicited froma group of experts, in light of the Phase IIb trial
data and any other information that is deemed relevant–data from drugs with a similar mechanism of action, knowledge
about the disease area, and so forth. For a detailed discussion about the method of eliciting parameters in these contexts,
see Dallow et al.8

The reason expert elicitation is useful in these circumstances is to bridge the gap between data from the completed
Phase IIb trial and the quantities of interest in the planned Phase III trial. For example, the future trial may consider
different endpoints, the patient populationmay change, or a different dose/dosing regimemay be proposed.17 Also, when
working in a rare disease setting, theremay be limited data available. In this context, expert elicitation is useful as it allows
the study team to combine heterogeneous sources of information (RCTs, case series, observational data) when a formal
mathematical synthesis of these data would be very complex.18

In the context of assurance methods, O’Hagan et al2 considered eliciting beliefs for clinical trials with Normally dis-
tributed and dichotomous endpoints. Gasparini et al19 also considered Normally distributed endpoints, and Alhussain
and Oakley20 considered eliciting uncertainty about the variance of Normally distributed endpoints. For time-to-event
outcomes, Spiegelhalter et al21 considered stipulating a Normal prior distribution for the log hazard ratio under a PH
assumption, as did Hiance et al.22 Ren andOakley23 considered expert elicitation for both parametric and non-parametric
models. Azzolina et al24 produced a comprehensive literature review of assurance methods that use expert elicitation
(both theoretical and applied).

3 METHODS

3.1 Delayed treatment effects

Figure 1 shows a Kaplan-Meier plot from a Phase III trial, CheckMate 017,10 in which a DTE was observed. The trial
enrolled patients with advanced squamous-cell non-small-cell lung cancer (NSCLC) and compared the current standard
of care, docetaxel, against an experimental treatment, nivolumab. The plot is based on the reconstructed individual patient
data25 derived from published Kaplan-Meier survival curves. We see that both the control and experimental treatment
curves follow the same trajectory for some time (approximately 3 months), after which they separate.

In a survival trial, suppose we have two groups: the control group and the experimental treatment group. We denote
the hazard function for the control group as hc(t) and the hazard function for the experimental treatment group as he(t).
In a typical survival trial,H1 assumes that the hazard function for the experimental treatment group is less than or equal
to the hazard function for the control group at all time points, that is H1: he(t) ≤ hc(t), ∀t. This suggests that patients in
the experimental treatment arm immediately benefit from the intervention compared to those in the control arm.
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4 SALSBURY et al.

F IGURE 1 Kaplan-Meier plot of a Phase III trial, Checkmate 017,10 in which DTEs are present. The control and experimental

treatment curves follow the same trajectory for approximately 3 months, after which they separate.

In a trial in which a DTE is thought likely to occur, we make a different assumption. We assume that the hazard
function for the experimental treatment group is the same as that of the control group until a certain time T, which
represents the delay in the experimental treatment taking effect. After time T, we assume that the experimental treatment
group starts experiencing some benefit relative to the control group:

he(t) =

{
hc(t), t ≤ T

h∗e (t), t > T
, (3)

where h∗e (t) ≤ hc(t) describes the benefit of the experimental treatment relative to control.26

In survival trials, the PH assumption is often made. It is used in Cox regression and the log-rank test, which is a
standard statistical test in survival trials, is most powerful under this assumption. However, when DTEs are present,
this assumption is violated because the hazard ratio becomes time-dependent. This poses challenges for the design and
analysis of trials with DTEs.

Various researchers have proposedmethodologies to address trialswith aDTE.26–36However,most of these discussions
focus on regaining statistical power lost due to the delay by using alternative analysis methods, such as weighted log-rank
tests or the difference in restricted mean survival times (RMST).37 These methods aim to account for the time-dependent
hazard ratio without assuming PH or the specific shape of the underlying survival curves.

3.2 Assurance for delayed treatment effects

We propose an elicitation technique and parameterisation to calculate assurance in these circumstances. By doing so,
we are able to capture experts’ uncertainty about the relevant parameters and provide a more realistic judgement of the
probability of success of the proposed trial.

We suppose that the survival times in the control group follow a Weibull distribution with hazard function

hc(t) = 𝛾c𝜆
𝛾c
c t

𝛾c−1 (4)

and corresponding survival function

Sc(t) = exp{−(𝜆ct)
𝛾c}. (5)
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SALSBURY et al. 5

We assume survival times in the experimental treatment group, after a delay of length T, also follow a Weibull
distribution with different parameters to the control. This induces the hazard function

h∗e (t) = 𝛾e𝜆
𝛾e
e t

𝛾e−1 (6)

and corresponding survival function

S∗e (t) = exp{−(𝜆cT)
𝛾c − 𝜆

𝛾e
e (t

𝛾e − T𝛾e )}. (7)

Prior to time T, we assume the experimental treatment group has the same survival function as the control (Equation 5).
Thus, the survival function for the experimental treatment group is

Se(t) =

{
exp{−(𝜆ct)𝛾c}, t ≤ T

exp{−(𝜆cT)𝛾c − 𝜆
𝛾e
e (t

𝛾e − T𝛾e )}, t > T
. (8)

The hazard ratio of the two groups (derived from Equations 4 and 6) is

HR(t) =

⎧
⎪⎨⎪⎩

1, t ≤ T
𝛾e𝜆

𝛾e
e t

𝛾e−1

𝛾c𝜆
𝛾c
c t

𝛾c−1
, t > T

. (9)

3.3 Constructing the prior distributions

FromEquations (5) and (8), we see that there are five unknowns: T, 𝜆c, 𝛾c, 𝜆e and 𝛾e. To calculate assurance, prior distribu-
tions are required for these parameters. In the following sections we propose amethod for eliciting these priors, including
the questions to ask.

3.3.1 Prior(s) for 𝜆c and 𝛾c

We first elicit judgements on the two parameters for the survival times in the control group; 𝜆c, also known as the scale
parameter, and 𝛾c, the shape parameter. We assume that there exists some historical data on the control so that we can
derive

𝜋(𝜆c, 𝛾c|xhist),

where xhist is the historical data for the control group intervention. Schmidli et al38 consider using a
meta-analytic-predictive (MAP) prior for control group parameters. Bertsche et al39 extend this method to specifically
consider time-to-event data. Alternatively, to include expert elicitation at this stage, see Ren and Oakley,23 who consider
eliciting beliefs when survival times are assumed to follow a Weibull distribution.

3.3.2 Prior for T

We propose a hierarchical procedure for eliciting judgements about T, 𝜆e and 𝛾e, as shown in Figure 2. The existence of
a DTE presupposes that the treatment has any effect in the first place, but the experts may not be certain of this. Hence
we first need to elicit a probability that the treatment has any effect, and then elicit judgements about T conditional on
the assumption that the treatment has some effect. To avoid ambiguity, we define “a treatment effect” as any separation
between the survival curves for the control and treatment groups: they are not equal. Hence the first question we ask is

“What is your probability that the population survival curves separate at some point in time?”
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6 SALSBURY et al.

F IGURE 2 The proposed elicitation scheme as described in Sections 3.3.2 and 3.3.3.

We define S to be the proposition that the population survival curves separate, and PS to be elicited probabil-
ity that this proposition is true. Note that the proposition S refers to the unobserved true population distributions of
survival, and not sampled Kaplan-Meier curves that would be observed in a trial. We now elicit judgements about
T, conditional on S. Given S, we allow for the possibility of no delay in the treatment effect; we propose a prior of
the form

T =

{
0, with probability PDTE

Ddelay, with probability 1 − PDTE
, (10)

with Ddelay ∼ Gamma(a, b). Any non-negative distribution could be used for Ddelay but we expect the Gamma distribu-
tion to be sufficiently flexible. We therefore need questions that an expert would be willing to answer and from which
we can identify values for PDTE, a and b. We elicit judgements about the probability PDTE by asking the following
question:

“If we suppose that the population survival curves separate at some time, what is your probability that there is a

delay before they separate?”

Finally, we elicit judgements about the distribution of Ddelay by stating

“Suppose that the population survival curves separate with a delay. We want you to consider your uncertainty

about the delay.”

We then use a standard method for eliciting a univariate distribution for Ddelay. Methods for eliciting univariate
distributions can be found in O’Hagan et al40 and implemented using the Sheffield Elicitation Framework (SHELF).41

SHELF is a package of protocols, templates and guidance documents for conducting expert elicitation. There are var-
ious methods that SHELF uses to elicit distributions that involve asking an expert to provide quantile judgements
(eg, a median; tertiles) or probability judgements (the probability of the uncertain quantity lying in some interval).
In either case, the expert is, in effect, specifying points on their cumulative distribution function. Parametric dis-
tributions are fitted to these judgements using a least squares procedure: the parameters are chosen to ensure the
points on the fitted cumulative distribution function are as close as possible to the elicited. Feedback (additional quan-
tiles or probabilities from the fitted distribution) is then provided to the expert to check the adequacy of the elicited
distribution.
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SALSBURY et al. 7

3.3.3 Prior(s) for 𝜆e and 𝛾e

The final two parameters which we need to elicit distributions for are the two treatment parameters, 𝜆e and 𝛾e. We would
not expect an expert to make judgements about these parameters directly. We instead follow usual practice of elicit-
ing judgments about observable quantities,42 from which a prior for 𝜆e and 𝛾e can be inferred. Some possible choices of
observable quantities are

• median survival time on the experimental treatment;

• survival probability at time t; and

• greatest distance between survival curves and how big is this difference.

In practice, we have found experts have a preference to make judgements about hazard ratios, for example,

• hazard ratio at time t; and

• maximum hazard ratio and when this occurs.

To elicit 𝜆e and 𝛾e, we require the expert to provide their beliefs for at least two of the above questions, which is likely
to be a difficult task for the expert. We can simplify the elicitation task by making the assumption that 𝛾e = 𝛾c. We then
have a piecewise-constant hazard ratio

HR(t) =

⎧
⎪⎨⎪⎩

1, t ≤ T(
𝜆e

𝜆c

)𝛾c
, t > T

. (11)

We can rearrange Equation (11) for the case when t > T to obtain

𝜆e = 𝜆cHR
1

𝛾c . (12)

Hence, conditional on 𝜆c and 𝛾c we can elicit a distribution for the hazard ratio for t > T, from which a distribution for
𝜆e can be derived. We make a standard modelling assumption that the treatment effect as described by the hazard ratio
is independent of the control group response as determined by the parameters 𝜆c and 𝛾c. We investigate the implications
of assumption 𝛾e = 𝛾c in Section 5.

We denote the post-delay hazard ratio by HR∗ (where it is assumed that S is true). We propose a prior

HR∗|S ∼ Gamma(c, d). (13)

Again, any non-negative distribution could be used for HR∗. As with T, we need questions that an expert would be
willing to answer and from which we can identify values for c and d. We elicit judgements about the distribution HR∗

by stating

“Suppose that the population survival curves separate. We now want you to consider your uncertainty about the

hazard ratio once the experimental treatment begins to take effect.”

We would then use a standard method for eliciting a univariate distribution for HR∗, as described in Section 3.3.2.
Conditional on S and any data xhist related to control group survival, we assume a joint distribution of the form

𝜋(T,HR∗, 𝜆c, 𝛾c|S, xhist) = 𝜋(𝜆c, 𝛾c|S, xhist)𝜋(T|S)𝜋(HR∗|S), (14)

with PS completing the prior specification. For algorithmic convenience, if S is not true, we set T = 0 and HR∗ = HR = 1.
We do not expect S to be informative for the control group survivor function, sowe assume 𝜋(𝜆c, 𝛾c|S, xhist) = 𝜋(𝜆c, 𝛾c|xhist).
We have assumed an expert’s judgements about HR∗|S are conditionally independent of T given S. If the expert wanted

 1
0
9
7
0
2
5
8
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/sim

.1
0
1
3
6
 b

y
 T

est, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [1

7
/0

6
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



8 SALSBURY et al.

to incorporate dependence between these parameters, a more complicated elicitation method could be used, such as the
SHELF extension method,41 illustrated in Holzhauer et al.17

The elicitation technique discussed above assumes a single expert, but it is likely that in practice multiple experts
will be consulted. Eliciting a distribution frommultiple experts typically involves either eliciting a distribution from each
expert separately and then aggregating the results, or alternatively getting the experts to agree on a single distribution. The
SHELF method involves a combination of the two: experts first make judgements independently, which are then shared
with the group. Following a facilitated discussion, the experts are then asked to agree on a single distribution reflecting
the perspective of a “Rational Impartial Observer”. Other methods for eliciting distributions from multiple experts are
available.43,44

3.4 Computing assurance under the DTEmodel

We use these elicited distributions to calculate assurance for various sample sizes using Algorithm 1. This algorithm
incorporates free parameters that can be adjusted to reflect operational constraints in a clinical trial: the control and
treatment group sample sizes nc and ne, and the total number of required events E. We let E be a free parameter in the
algorithm as it is common to run event driven survival trials. This is because, for a time-to-event endpoint, statistical
information for the log-hazard ratio is a function of E and therefore attained power will be determined by the number
of events observed at the analysis time. Changing these free parameters will have consequences for assurance, so it is
important to consider different combinations of trial designs in order to find the one which best suits the needs of the
sponsor. For example, for a fixed nc and ne, if we increase E (the number of events) we may increase assurance at the cost
of needing to run the trial for longer.

The recruitment schedule and analysis technique in Algorithm 1 (and Algorithm 2 in Section 5.2) are left unspec-
ified, as these choices are not part of the assurance methodology; they can be selected separately. In the example
of Section 4, we use a Fleming-Harrington weighted log-rank test for the analysis (as there is high prior belief
that the separation of the survival curves will be subject to a delay). By default, we assume uniform recruitment
for 12 months.

To implement our methods we have developed an R Shiny app which is available both as an offline R package
and hosted online. Instructions are provided in the Appendix. The Shiny app allows users to choose from two recruit-
ment schedules: piecewise constant and power method (taken directly from the nphRCT45 R package). Different testing
approaches have been proposed for use in the non-proportional hazards setting (eg, max-combo test,11 weighted log-rank
tests,46 difference in RMST,37 and more47). Our app offers two of these statistical tests: a standard log-rank test and a
Fleming-Harrington weighted log-rank test taken from the nph32 R package). Finally, the elicitation process may inform
refinements to the analysis plan.

4 EXAMPLE

In this section, we illustrate the proposed method with a hypothetical example where we design a two-arm Phase
III superiority trial to test whether a new drug is beneficial versus the current standard of care, docetaxel, in
patients with advanced non–small-cell lung cancer (NSCLC). As the drug is in the IO area, we expect a DTE.
The primary efficacy endpoint is OS, we assume uniform recruitment for 12 months, 1:1 allocation, and that
the data will be analysed with a Fleming-Harrington weighted log-rank test with 𝜌 = 0 and 𝛾 = 1, as we have
a high probability that the treatment will be subject to a delay and we want to place more weight on late dif-
ferences in the survival curves. We assume that the trial final analysis will take place when 80% of patients
have died.

4.1 Prior distribution(s) for the control parameters

There exists historical data on docetaxel, so we are able to use this to generate a prior distribution for control group param-
eters. In Bertsche et al39 they found three trials in which docetaxel was used as the control in a clinical trial; ZODIAC,48

REVEL49 and INTEREST.50We also use the results from these three trials, but we use the published Kaplan-Meier curves
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SALSBURY et al. 9

Algorithm 1. Calculating assurance when a DTE is likely to be present in a clinical trial

Inputs: sample sizes nc and ne, the elicited priors 𝜋(𝜆c, 𝛾c|xhist), 𝜋(T|S), 𝜋(HR∗|S), the probability of the survival curves
separating PS, the number of events E (we require E ≤ nc + ne) and the number of iterations N.
For i = 1,… ,N:
1. sample 𝜆c,i and 𝛾c,i from 𝜋(𝜆c, 𝛾c);
2. set 𝛾e,i = 𝛾c,i;
3. sample survival times for the control group x1,i,… , xnc,i using 𝜆c,i, 𝛾c,i (can use rweibull());
4. sample u from runif(0, 1)

5. if u < PS:
• sample Ti and HR

∗
i from 𝜋(T)𝜋(HR∗|S);

else:
• set Ti = 0 and HR∗

i = 1;
6. transform HR∗ to 𝜆e,i using Equation 12;
7. sample survival times for the experimental treatment group y1,i,… , yne,i using Ti, 𝜆e,i and 𝛾e,i (can use inversion

sampling via Equation 8);
8. sample recruitment times R1,i,… ,Rnc+ne,i from the pre-specified recruitment schedule;
9. add the survival times from each group to the recruitment times to obtain a pseudo event time P1,i,… ,Pnc+ne,i;
10. order the pseudo event times and define ET to be the time at which E events have been observed;
11. remove any observation in which the recruitment time Rj,i > ET ;
12. censor any observation for which the pseudo event time Pj,i > ET ;
13. for any censored observation, redefine the survival time to be ET − Rj,i;
14. perform the method of analysis on the data x1,i,… , xnc,i and y1,i,… , yne,i;
15. define Ui = 1 if the data give rise to a ‘successful’ outcome (0 otherwise).
The assurance is then estimated as

P̂(R) =
1
N

N∑
i=1

Ui.

to reconstruct the individual patient data.25 The three Kaplan-Meier curves can be seen in Figure 3. Since survival in all
three trials appears similar, we choose to pool the data from all three trials and use this to update non-informative pri-
ors for 𝜆c and 𝛾c, using Markov chain Monte Carlo (MCMC) to sample from the posterior distributions. The generated
MCMC samples are then used as a prior distribution for the future trial of interest.

4.2 Eliciting the prior distribution for the length of delay

We now need to elicit the expert’s probability that the population survival curves separate at some point in time. Suppose
the expert specifies this as 90%, that is PS = 0.9. The expert is then asked for their uncertainty about the length of delay,
given that the survival curves do separate. Suppose the expert’s probability that the effect of the experimental treatment
will be subject to a delay is 70%, that is, PDTE = 0.7. The expert is then for about their beliefs about T, conditional on there
being a delay. The expert provides a median of 4 months and two quartiles (25% and 75%) of 3 and 5 months, respectively.
A Gamma(a, b) distribution is fitted to these judgements, so that Ddelay = Gamma(7.29, 1.76). Combining these beliefs
using Equation (10), we have the following mixture prior distribution

T =

{
0, with probability 0.3

Gamma(7.29, 1.76), with probability 0.7
.

The fitted quartiles of a Gamma(7.29, 1.76) distribution are 3.03, 3.95 and 5.05. These would be presented to the expert
for feedback.
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10 SALSBURY et al.

Algorithm 2. Calculating flexible assurance for when a DTE is likely to be present

Inputs: sample sizes nc and ne, the elicited priors 𝜋(𝜆c, 𝛾c|xhist), 𝜋(T|S), 𝜋(HR∗|S), the probability of the survival curves
separating PS, the number of events E (we require E ≤ nc + ne), the maximum trial length Lmax, the number of initial
samplesM and the number of iterations N.

1. Initialise an empty matrix A ∈ RM×t, where t is the length of a vector time = seq(0, Lmax, by = 0.01);
2. for j = 1,… ,M:

i sample 𝜆c,j, 𝛾c,j from 𝜋(𝜆c, 𝛾c);
ii set 𝛾e,j = 𝛾c,j;
iii sample u from runif(0, 1);
iv if u < PS:

• sample Tj, HR
∗
j from 𝜋(T,HR∗|S);

else:
• set Tj = 0, HR∗

j = 1;
v transform HR∗

j to 𝜆e,j using Equation 12;
vi use Tj, 𝜆e,j, 𝛾e,j, and the control parameters 𝜆c, 𝛾c to calculate the survival probability at each value of the time

vector, using Equation 8;
vii fill the j’th row of the matrix A with these survival probabilities.

3. For i = 1,… ,N:
i sample 𝜆c,i, 𝛾c,i from 𝜋(𝜆c, 𝛾c);
ii define F to be the time at which the survival probability in the control group equals 0.01 (using 𝜆c,i, 𝛾c,i and
Equation 5);

iii sample a survival probability, s1,i, from the column in matrix A which corresponds to 0.25F;
iv sample a survival probability, s2,i from the column in matrix A which corresponds to 0.6F (we require s2,i < s1,i);
v sample Ti from 𝜋(T);
vi simultaneously solve these equations to find the best fitting values of 𝜆e,i and 𝛾e,i (can use nleqslv());
vii sample survival times for the control group x1,i,… , xnc,i using the sampled 𝜆c,i, 𝛾c,i (can use rweibull());
viii sample survival times for the experimental treatment group y1,i,… , yne,i using the sampled Ti, and 𝜆e,i, 𝛾e,i (can use

inversion sampling);
ix sample recruitment times R1,i,… ,Rnc+ne,i from from the pre-specified recruitment schedule;
x add the survival times from each group to the recruitment times to obtain a pseudo event time P1,i,… ,Pnc+ne,i;
xi order the pseudo event times and define ET to be the time at which E events have been observed;
xii remove any observation in which the recruitment time Rj,i > ET ;
xiii censor any observation for which the pseudo event time Pj,i > ET ;
xiv for any censored observation, redefine the survival time to be ET − Rj,i;
xv perform the method of analysis on the data x1,i,… , xnc,i and y1,i,… , yne,i;
xvi define Ui = 1 if the data give rise to a ‘successful’ outcome (0 otherwise).

The assurance is then estimated as

P̂(R) =
1
N

N∑
i=1

Ui.

4.3 Eliciting the prior distribution for the post-delay hazard ratio

The second quantity of interest is HR∗|S. Suppose the expert provides a median of 0.6 and two quartiles (25% and 75%)
of 0.55 and 0.7, respectively. Again, we fit a Gamma(c, d) to these judgements, so DHR = Gamma(29.6, 47.8). As per
Equation (13), we have the following prior distribution

HR∗|S ∼ Gamma(29.6, 47.8).
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SALSBURY et al. 11

F IGURE 3 Reconstructed Kaplan-Meier curves for the docetaxel arm in three different trials: ZODIAC,48 REVEL49 and INTEREST.50

We see that the three curves are similar and we assume exchangeability of the trials in our example.

F IGURE 4 Power/assurance curves for the example given in Section 4. We see that the sample size required for 80% power/assurance

is greatly different under the different scenarios and highlights the importance of including uncertainty in the design stage of a clinical trial.

The fitted quartiles of Gamma(29.6, 47.8) distribution are 0.54, 0.61 and 0.69, and again, this would be presented to the
expert for feedback.

4.4 Calculating assurance

We use these elicited prior distributions to calculate assurance for this example using Algorithm 1. In Figure 4, an
assurance curve is plotted to inform sample sizes required for this clinical trial. Also seen in Figure 4 are three other
power/assurance curves. The two power curves correspond to including no uncertainty in the parameters, with the con-
trol parameters, 𝜆c and 𝛾c, being the MLE from the three pooled data sets, as discussed in Section 4.1. The values for T
and HR∗ are the median values given by the experts. For one of the power curves, we have assumed that T is 0, and there-
fore does not account for the fact that the treatment effect may be subject to a delay. Also shown is an assurance curve,
corresponding to a more flexible approach to calculating assurance, this approach is presented in Section 5.2. The distri-
butions/values for the first three curves are found in Table 1. We kept the recruitment scheduling, analysis method, and
so forth, as described at the start of Section 4, constant across all four scenarios.
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12 SALSBURY et al.

TABLE 1 Distribution/values for the parameters, for the first three scenarios seen in Figure 4.

Calculation 𝝀c 𝜸c T HR∗ PS PDTE

Assurance MCMC sample MCMC sample Ga(7.29, 1.76) Ga(29.6, 47.8) 0.9 0.7

Power 0.074 1.21 4 0.6 1 1

Power assuming no delay 0.074 1.21 0 0.6 1 0

In Figure 4, we see that both of the power calculations are much more optimistic than the other two scenarios; we
require far fewer patients for the same power, at all sample sizes. This highlights the importance of incorporating uncer-
tainty into the trial parameters. However, we must reiterate, the assurance method is not simply used for setting sample
sizes for the proposed trial. We anticipate the assurance method being used as one step in a thorough process to decide
whether or not to go ahead with the trial, and if we do run the trial, define the characteristics of the proposed trial;
length, number of patients, number of events, and so forth. For example, if we required a quicker trial, we may choose to
decrease the number of events we need to observe before stopping the trial, E, but this will surely come at a cost of reduc-
ing the assurance/power seen. Therefore, it is important that a number of different trial designs are considered, and then
assurance curves can be plotted to help inform the ultimate decision(s).

5 SIMPLIFIED PRIOR DISTRIBUTION: DISCUSSION

To elicit the parameters in this scenario, we select a method that would be both effective and straightforward for the
experts. As a result, we simplified the original parameterisation by fixing 𝛾e = 𝛾c. By doing so, we were able to focus on
hazard ratios as the basis for our questioning, thus ensuring that the elicitation process was both easy and intuitive for
the experts.

However, it’s important to investigate the robustness of this simplification. The results of our investigation are pre-
sented in the following section. Finally, we provide an alternative method for calculating assurance. This alternative is
designed to accommodate situations in which the aforementioned simplification may not be preferred.

5.1 Robustness of the parameterisation

The investigation aimed to assess the impact of the simplification we introduced, 𝛾e = 𝛾c, into the model by comparing
two parameterisation methods: Method A and Method B. Method A incorporated the simplification, while Method B
allowed 𝛾e to vary. Historical data from three clinical trials (Checkmate 017,10 Checkmate 141,51 and Checkmate 017 and
Checkmate 057 combined,52 the Kaplan-Meier plots for these trials are seen in Figure 5) with observed DTE were used

F IGURE 5 Kaplan-Meier plots for the data sets introduced in Section 5. For (A) the data set is from trial Checkmate 017,10 for (B) the

data set is from trial Checkmate 14151 and for (C) the data set is from trials Checkmate 017 and Checkmate 057 combined.52
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SALSBURY et al. 13

TABLE 2 How each of the five parameters are estimated in both of the methods introduced in Section 5, Method A is the

simplification we made in the elicitation process (MLE =maximum likelihood estimation).

Method T 𝜸c 𝝀c 𝜸e 𝝀e

A Visually survreg(dist = “weibull”) 𝛾c MLE

B MLE MLE

F IGURE 6 The same Kaplan-Meier plots as in Figure 5, with estimates for both Method A and B (as introduced in Section 5) overlaid.

For each data set, T has been visually estimated. The control parameters, 𝜆c and 𝛾c, have been estimated from the data (the overlaid blue

line). In Method A, the simplification has been made (𝛾e = 𝛾c) and then 𝜆e has been estimated using a least squares procedure. In Method B,

both the treatment parameters (𝜆e, 𝛾e) have been simultaneously estimated.

to estimate the five unknown parameters (from Equations 5 and 8) using both methods. For clarity, Table 2 shows how
the two methods estimate the five unknown parameters.

The estimated parametric survival curves generated by both methods are presented in Figure 6. Observing all three
examples, we can see that the parametric treatment survival curve produced by Method B exhibits a marginally superior
fit compared to the treatment curves derived fromMethodA. This is what wewould intuitively expect, asMethod B incor-
porates two free parameters, 𝛾e and 𝛾c, whileMethod A only employs a single free parameter, 𝛾c. However, despiteMethod
B giving a better fit to the data, Method A still approximates the data well. These findings suggest that the simplification
introduced by Method A would likely have minimal practical impact on real decision-making processes.

Power calculations were performed to quantify the impact of the difference in the fitted experimental treatment sur-
vival curves. The results, depicted in Figure 7, showed almost indistinguishable power curves for both methods across all
three datasets. This suggests that, in these examples, the assumption 𝛾e = 𝛾c did not lead to different practical outcomes.

5.2 A more flexible approach to evaluating assurance

We have demonstrated that for the three historical trials considered, the simplification does not appear to have any
practical implications. However, by making this simplification, the possible experimental treatment survival curves are
constrained to align with the shape of the control survival curve. In Figure 8A, it can be observed that the experimen-
tal treatment survival curves seem to be ‘parallel’ to the control curve due to this simplification and the fixed shape
parameters, 𝛾e = 𝛾c, being the same for both curves.

It is important to acknowledge that in certain trial designs, practitioners may feel uneasy about using this method,
particularly if they believe that the experimental treatment survival curve would not align in a parallel manner to the con-
trol curve. In response to this concern, we have developed an alternative assurance calculation, referred to as Algorithm 2.
Algorithm 2 aims to generate experimental treatment curves that would be obtained if we had notmade the simplification
and allowed the curves to be sampled from aWeibull(𝜆e, 𝛾e) distribution after the delay occurred. The process is depicted
in Figure 9.
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14 SALSBURY et al.

F IGURE 7 Power curves for the two methods considered in Section 5, for all three of the trials. We see that, in all three cases, the

power curves are very similar to each other, thus indicating that the simplification does not seem make any practical difference in these

examples. Method A is the simplification we made in the elicitation process.

F IGURE 8 (A) Ten sampled experimental treatment survival curves, generated by Algorithm 1, (B) pointwise confidence intervals (0.1

and 0.9) for 500 of these sampled experimental treatment curves, (C) 10 sampled experimental treatment survival curves, generated by

Algorithm 2, (D) pointwise confidence intervals (0.1 and 0.9) for 500 of these sampled experimental treatment curves.
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F IGURE 9 Showing the process of how an experimental treatment survival line is drawn for the flexible assurance. (A) A delay time is

drawn from the prior distribution for T, (B) s1 is sampled from all the survival probabilities at 0.25F through the trial, (C) s2 is sampled from

all the survival probabilities at 0.6F through the trial, (D) a piecewise Weibull distribution is fit to these sampled points.

To implement Algorithm 2, we utilize the elicitedmixture prior distributions for T andHR∗|S. First, we sample a large
number of experimental treatment curves, denoted asM. Next, we sample a value forT from the elicited prior distribution,
as shown in Figure 9A.We define F as the time at which the control curve reaches a survival probability of 0.01. Then, we
independently sample two survival probabilities, s1 and s2, at 0.25F and 0.6F through the trial, respectively, as depicted
in Figure 9B,C. The only condition imposed is that s1 > s2. Using T, s1 and s2, we apply a least squares procedure to fit a
Weibull distribution to these points, as illustrated in Figure 9D.

The sampled experimental treatment curves obtained fromAlgorithm 2 can be used to calculate assurance in the same
manner as Algorithm 1. Figure 8C displays 10 sampled experimental treatment curves using this more flexible method.
Additionally, Figure 8D shows the pointwise confidence intervals of the experimental treatment curves. Comparing these
figures to Figure 8A,B, we observe that the pointwise confidence intervals are very similar, indicating that the sampled
experimental treatment curves fall within the same boundaries. However, the alternative method allows for sampling a
more diverse range of curves, providing increased flexibility.

We have implemented Algorithm 2 in the example presented in Section 4, and the results are seen in Figure 1. The
flexible assurance curve closely resembles the assurance curve obtained using Algorithm 1. This demonstrates that the
more flexible assurance method may not significantly impact decision-making, but it may make practitioners more com-
fortable if they believe that the imposed constraint is not representative of the potential experimental treatment curves
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observed in practice. It is worth noting that the selection of time points (0.25F and 0.6F) for sampling survival probabili-
ties in Algorithm 2 is somewhat arbitrary. These values were chosen to produce realistic experimental treatment survival
curves. However, if more restrictive or flexible curves are desired, these two points could be adjusted accordingly (eg,
closer together or further apart).

6 SUMMARY

In conclusion, assurance calculations have emerged as a valuable tool in the design and analysis of clinical trials. By incor-
porating Bayesian principles and considering prior distributions for unknown parameters, assurance calculations provide
a more realistic assessment of a trial’s probability of success compared to traditional power calculations. This approach
acknowledges the inherent uncertainties in clinical research and allows for the simulation of trial outcomes based on
sampled prior distributions. Assurance calculations offer several advantages for trial design and decision-making. They
assist in optimizing sample size, assessing risks, and evaluating the effectiveness of different trial setups, including the
timing and number of planned interim analyses. Furthermore, assurance evaluations enable better-informed go/no-go
decisions regarding study conduct, directing resources towards research programs with the highest expected impact for
patients.

In the rapidly evolving field of immuno-oncology, assurance calculations have the potential to address challenges
associated with time-varying or delayed treatment effects on time-to-event endpoints. We have extended the assurance
method to include survival trials in which a delayed treatment effect is likely to occur. Overall, assurance calculations
provide a robust framework for quantifying the probability of success in clinical trials while considering uncertainty. By
incorporating Bayesian methods and accommodating complexities in trial design, assurance calculations contribute to
more informed decision-making, improved trial design, and ultimately, more effective and impactful clinical research.
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APPENDIX

An R53 package, DTEAssurance, for implementing the methods described in this paper is available on GitHub,
at https://github.com/jamesalsbury/DTEAssurance. The website also includes an illustration of using the package to
replicate the examples in this paper. This package is installed with the commands

install.packages(“devtools”)

devtools::install_github(“jamesalsbury/DTEAssurance”).

An app for implementing these methods, produced with shiny,54 can be used online at https://jamesalsbury
.shinyapps.io/DTEAssurance/. A version of the app for offline use is included in the DTEAssurance package.
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