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A B S T R A C T   

In the future, Automated Vehicles (AVs) may be able to use pedestrians’ head movement patterns 
to understand their crossing intentions. This ability of the AV to predict pedestrian crossing 
intention will improve road safety in mixed traffic situations and may also enhance traffic flow, 
allowing the vehicle to gradually reduce its speed in advance of a yield, eliminating the need for a 
complete and erratic halt. To date, most of the work conducted on studying pedestrian head 
movements has been based on observation studies. To further our understanding in this area, this 
study examined pedestrians’ head movements when interacting with AVs during a range of road 
crossing scenarios, developed in a VR environment. Thirty-eight participants took part in this 
CAVE-based pedestrian simulator study. Head movements were recorded using stereoscopic 
motion-tracking glasses, as pedestrians crossed the road in response to an AV which approached 
from the right (UK-based road). A zebra crossing was included in half of the trials to understand 
how it affected crossing behaviour. The effect of different approaching speeds of the AV, and the 
presence of an external Human-Machine Interface (eHMI), on head movements and crossing 
behaviour was also studied. Results showed that the absolute head-turning rate (change in pe-
destrians’ head-turning angle, per frame) increased significantly at around 1 s before a crossing 
initiation, reaching a peak at the crossing initiation, where pedestrians presented a “last-second 
check” before the crossing decision. Another increase in absolute head-turning rate to the right 
was seen at the end of the crossing (~1.5 s after crossing initiation), to check the proximity of the 
approaching vehicle. A higher rate of head-turning was also seen for AV-non-yielding scenarios. 
Finally, the least number of head turns was seen for the yielding conditions which included an 
eHMI, in the presence of the zebra crossing. These results show the value of infrastructural and 
vehicle-based cues in assisting pedestrians’ crossing decisions and provide an insight into how 
head-turning behaviour can be used by AVs to better predict pedestrians’ crossing intentions in 
urban settings.   

1. Introduction 

More than half of the road casualties worldwide involve Vulnerable Road Users (VRUs) (World Health Organization, 2019), among 
which pedestrians are one of the most vulnerable groups, accounting for 27 % of total road fatalities in the UK (Department for 
Transport, 2020). Automated Vehicles (AVs) are expected to protect VRUs from traffic accidents (Anderson et al., 2016), as they can 
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promptly respond to obstacles and critical situations, without some of the delayed judgements caused by humans. However, while the 
AV’s radars and sensors may be better than humans for such obstacle detection, they are not currently able to predict the crossing 
intention of pedestrians, especially in the absence of clear external cues, such as head and hand movements. At the same time, there is 
currently no standard or globally adopted form of externally presented form of communication by higher level AVs. For these AVs, the 
human inside the vehicle is no longer in charge of the driving task and may not even be seated in the traditional driver’s seat (SAE Level 
4, SAE, 2021). This creates new challenges for human factors experts, including how AVs should safely interact with, and communicate 
their intent to, vulnerable road users that share the same road space (Schieben et al., 2019). 

Externally presented Human-Machine Interfaces (eHMI) have been proposed as one solution for facilitating the mutual under-
standing and safe interaction between AVs and VRUs. It is argued that these new forms of communication might assist VRUs by 
replacing the explicit communication cues traditionally used by drivers. eHMIs can be sound-based or visual, with a wide range of 
locations and designs used for presenting visual information, either on the vehicle, or on the road, including lights, texts, and symbols 
(Bazilinskyy et al., 2019; Carsten & Martens, 2019; Dey et al., 2020). Research has shown that the adoption of an eHMI can increase 
pedestrians’ trust, acceptance, and perceived safety of AVs (Faas et al., 2020; Holländer et al., 2019). These interfaces also lead to a 
greater willingness to cross and faster crossing decisions from pedestrians (Lee et al., 2022; Löcken et al., 2019). However, research in 
this area is not conclusive, with some also suggesting that eHMIs merely provide supplementary information, because implicit cues, 
such as the vehicle’s yielding and stopping behaviour are more informative (Dey, Martens, et al., 2019; Lee et al., 2020). 

Additionally, some argue that eHMIs can cause visual and mental overload for pedestrians, as the meaning of these, mostly novel, 
messages may not be intuitive and needs to be correctly interpreted and learnt over time (Lee et al., 2022). In the context of pedestrian- 
AV interactions, workload pertains to the cognitive resources required by pedestrians to perform the crossing task (Young & Stanton, 
2004). Kaß et al. (2020) have proposed that incorporating eHMIs could improve communication and significantly reduce pedestrian 
mental workload. However, contrary evidence has been reported by Gruenefeld et al. (2019), suggesting a negative effect of eHMIs on 
mental workload. 

One method used to investigate pedestrian attention and workload during crossings is an overview of their gaze behaviour (Dey, 
Walker, et al., 2019; Eisma et al., 2020; Guo et al., 2022; Hochman et al., 2020). For example, pupil size is shown to increase with 
increased workload, and fixation duration is known to correlate with the level of processing required, while the location of a fixation is 
a strong indicator of the location of visual attention. Research into pedestrians’ attention allocation shows that both the frequency and 
duration of fixations increase when the AV’s intention, and the meaning of its eHMIs, are ambiguous (Guo et al., 2022; Liu et al., 2020). 
Studies also suggest that gaze patterns and pedestrian behaviour adapt and change with increased exposure to AVs or eHMIs. For 
example, using a desk-based simulation study Hochman et al., (2020) showed that pedestrians’ gaze fixations and crossing response 
time (based on button presses) changed after repeated exposure to approaching AVs with different eHMIs, regardless of eHMI design. 

Although eye-tracking studies provide useful information about pedestrians’ information-seeking behaviour and are useful for 
guiding optimal eHMI placement (de Winter et al., 2021; Dey, Walker, et al., 2019), the value of this methodology may be limited if 
vehicles are positioned too far from pedestrians, leading to inaccurate calibrations, or challenges with missing data, due to changing 
light conditions. One solution may be a better understanding of how pedestrians’ head movements can be used to understand the 
decision-making process, and ultimately the attention and workload of a crossing pedestrian. Head orientation patterns are thought to 
be as equally informative as gaze behaviour to interpret pedestrians’ information-seeking and attention-allocation, since pedestrians’ 
gaze behaviour and realignment are constantly initiated with head orientation (Hollands et al., 2002; Melvill Jones et al., 1988). 

Previous studies have shown that, with repeated exposure, pedestrians gradually learn the meaning of messages portrayed by AV 
eHMIs, based on faster decision times for crossing and learnability scores, and decreased gaze fixations (Faas et al., 2020; Hochman 
et al., 2020; Lee et al., 2022). There is also a general increase in trust, feelings of safety, and acceptance with repeated exposure (Faas 
et al., 2020). Based on these results, it is reasonable to assume that, with repeated exposure, pedestrians’ head-turning behaviour may 
also change over time and correlate with a better understanding of AV behaviour and eHMI messages. 

Finally, while an understanding of the AV’s behaviour by pedestrians is important, it is also valuable for the AV to correctly 
interpret pedestrians’ intent and situation awareness. Non-verbal cues such as head movements are typically used by drivers as a key 
indicator of pedestrians’ intention to initiate a crossing (Hariyono et al., 2016; Kooij et al., 2014; Kwak et al., 2017), and their situation 
awareness (Hassan et al., 2005; Hollands et al., 2002; Rasouli et al., 2018). According to these real-world observation studies, pe-
destrians’ crossing intent can be predicted from: i) the direction of head movements, ii) the frequency of head turns, and iii) body gait. 
For example, studies have shown that at the start of a crossing initiation, pedestrians tend to turn their heads first in the direction of an 
approaching vehicle (Grasso et al., 1998; Imai et al., 2001; Patla et al., 1999), which indicates an awareness of its approach, reducing 
the likelihood of an unsafe crossing (Kooij et al., 2014). Observations from roundabouts and intersections have shown that, for a 
vehicle approaching from the right, pedestrians tend to turn their heads to the left before stepping off the curb and then to the right 
before crossing (Geruschat et al., 2003). In terms of head-turning frequency, these tend to increase around 4 s before a crossing, 
reaching a peak during the last second before the crossing begins (Hassan et al., 2005). Observations also show that the highest number 
of head turns occur at the start and middle of the crossroad, to confirm the vehicle’s proximity and ensure a safe crossing (Hamaoka 
et al., 2013). Finally, pedestrians are found to turn their heads first just before a crossing initiation, followed by movement of the rest of 
the body (Kalantarov et al., 2018). 

As indicated above, most of the research in this area has focused on investigating the interactions between pedestrians and 
manually driven vehicles, and findings are mainly based on observation studies. However, little is known about how pedestrians might 
interact with future AVs, especially those without a driver (Level 4; SAE, 2021). In addition, a large proportion of studies investigating 
pedestrian interaction with AVs have used a single-lane road environment, with little known about more complex settings, such as a 4- 
way crossroad. In terms of the effect of traffic infrastructure on crossing behaviour, previous studies have shown that pedestrians are 
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more willing to cross, make quicker crossing decisions, and feel safer at zebra crossings (Clamann et al., 2017; Havard & Willis, 2012; 
Velasco et al., 2019). Regarding interactions with AVs, both a VR study by Velasco et al, (2019), and a naturalistic study by Clamann 
et al. (2017), have found that pedestrians had a higher willingness to cross, and spent less time on crossing decisions, at zebra crossings. 

Based on the current state of the art, the main aim of the present study was to close the research gap in this area, by investigating the 
head-turning behaviour of a group of pedestrians, who crossed the road in front of AVs, which approached a four-way crossing from the 
right. To understand how crossing behaviour and head turns were affected by different infrastructures, a zebra crossing was included in 
half of the trials. We also investigated the effect of different yielding patterns from the AV, the presence of an eHMI, and repeated 
exposures to the AV, on head-turning behaviours. In addition to furthering our understanding of how these different conditions affect 
pedestrians’ head-turning behaviour, we hoped that the use of a head-tracking device in a more controlled virtual environment would 
allow us to provide more knowledge to developers and designers wishing to enhance their intent-recognition algorithms for future AVs. 

2. Method 

2.1. Participants 

Thirty-eight participants (20 female, 18 male) were recruited for the study (Age range 22–58 years, M = 33.82, SD = 10.30), using 
the University of Leeds database, and reimbursed £30 for their participation. All participants were required to be residing in the UK for 
at least one year and provided written consent to take part in the study. Participants reported normal or corrected-to-normal vision and 
were free from any head or upper/lower ailments that could impair their walking ability. The study was approved by the University of 
Leeds Ethics Committee (Ref: LTTRAN-107) and complied with all guidelines set out in the declaration of Helsinki. 

This study used the head-tracking data collected as part of a virtual reality experiment developed for the EC project interACT (Grant 
Agreement No. 723395) to investigate the impact of road infrastructure and eHMIs on pedestrian crossing decisions at a residential 
crossing (see Madigan et al., 2023). 

2.2. Apparatus and the virtual environment 

The experiment was conducted in a CAVE-based pedestrian simulator: the Highly Immersive Kinematic Experimental Research 
(HIKER) lab, at the University of Leeds (Fig. 1). The lab provides a 9 m long × 4 m wide walking space, and the virtual scene is 

Fig. 1. Interaction between the pedestrian at the zebra crossing and the AV approaching from the right, with the eHMI on, in the HIKER lab. The 
yellow cross indicates the pedestrian’s starting position. 
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reproduced by eight 4 K projectors behind glass panel walls and adjusted constantly in line with the pedestrian’s head position (using 
trackers on a pair of glasses), to ensure the projection fits the pedestrian’s visual perspective. As shown in Fig. 1, the scenario was 
created using the Unity game engine. It consisted of a residential 4-way crossing with a single lane (3.6 m wide) in each direction. 

2.3. Study Design 

A fully within-participant experimental design was implemented for this study, with participants experiencing 52 trials involving 
four variables. The independent variables were: (i) the presence/absence of a zebra crossing, (ii) the vehicle’s approaching direction 
(oncoming/right), (iii) vehicle yielding behaviour (yielding/non-yielding/no encounter), and (iv) the presence/absence of an eHMI, 
when it was yielding. The 52 trials were divided into two counterbalanced blocks. To minimise participant confusion, the zebra/no 
zebra crossing trials were blocked. Each block included 26 trials, with AVs approaching from the oncoming direction (13 trials) or the 
right (13 trials). Also, within each block, pedestrians came across six yielding, six non-yielding and one no-encounter AV from each 
direction. The “no encounter” AV trial was used as a ghost trial, such that the AV did not pass the pedestrian’s path (depicted by the 
black arrows in Fig. 2). If the AV approached from the right, the “no encounter” AV would turn to the left. If the AV approached from 
the oncoming road, the “no encounter” AV would continue to drive straight through the intersection. Finally, half of the yielding AVs 
displayed an eHMI indicating its intent. There was no sound associated with the approaching AV and order of trials in each block was 
randomised. 

The vehicle’s trajectory, speed profile and timings for each driving behaviour are shown in Fig. 2. For each right-approaching trial, 
the AV drove from point A (27.4 m from the pedestrian) at a speed of 25 mph, and decelerated to stop after 3 s at the junction (point B, 
9.4 m from the pedestrian). If it was a non-yielding AV, it would accelerate instantly (to point D) at a rate of 0.89 m/s2. For yielding 
trials, the AV took 4 s to edge forward between point B and C, and stopped before the zebra crossing (point C, 3.42 m from the 
pedestrian) for 3 s, before accelerating away. The “edging” behaviour was used to mimic real-world yielding behaviour at junctions 
(Dietrich et al., 2018), providing an implicit form of communication by the AV. 

In half of yielding trials, an eHMI was displayed in addition to the “edging” behaviour to indicate the intent. The eHMI, which was 
designed as part of the interACT project, was a Slow Pulsing Light Band (SPLB) – a cyan-coloured light placed on the front side of the 
vehicle’s windscreen (see Fig. 1), which when turned on, pulsed at a rate of 0.4 Hz, to indicate the vehicle’s intent ‘I am giving way’ 
(Lee et al., 2019). However, the meaning of the eHMI was not mentioned to pedestrians, as one aim of the study was to establish if 
pedestrians learnt its meaning over time and if the presence of this eHMI sped up their crossing decisions. 

2.4. Procedure 

Before attendance, and due to the Covid-19 pandemic, pedestrians were sent a copy of an online consent form, an information sheet 
describing the study, and a questionnaire collecting their demographic information. If selected for the study, participants were invited 
to the lab, and provided with brief instructions about the study by the experimenter. After wearing the head-tracking glasses, they 
started with a practice block of eight crossings, to become familiar with the overall set-up. 

All participants were aware that the approaching vehicles were driven automatically in the virtual environment. For both the 
practice and experimental trials, pedestrians stood at the edge of the crossroad, on a yellow cross (see X marked in Fig. 1) and were 
asked to cross when they felt safe. A short beep was used to notify the start of each trial, after which participants were free to look 
around and could cross either before or after the AV. After crossing the road, participants had to walk back to the yellow cross to start 
the next trial. Participants were offered a short break after the first block of trials. The experiment took approximately 30 min to 
complete. 

Fig. 2. A birds’ eye view of the crossroad (left) and the speed profiles used for the yielding and non-yielding AVs (right). Note that the eHMI 
onset occurred at the same time as the “edging” behaviour started. The compass in the left figure indicates that the head-turning angle was 180◦

when pedestrians were facing the front and 270◦ when turning to the right. 
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3. Data analysis ¡ measuring head-turning behaviour 

Participants wore a pair of stereoscopic motion-tracking glasses (see Fig. 3) to track their head movements, which were captured by 
10 VICON Vero v2.2 (2.2MP) cameras at 100 Hz. The head’s yaw (turning γ degrees around the Z-axis, left/right head-turning 
behaviour), pitch (rotating β degrees around the Y-axis, looking up/down) and roll (turning α degrees around the X-axis, tilting 
left/right) movement around the torso were collected in quaternion format and converted into Euler angle for analysis. This study 
focused on horizontal head movements (yaw), reflecting how pedestrians turned their heads from left to right (and back) to collect 
information from the environment and the approaching vehicle (Lyu et al., in Review). 

The infinite impulse response (IIR) filter was employed to smooth the discrete data and filter any noise from the tracked head- 
turning angle, using the MATLAB Signal Processing Toolbox 8.6. A low pass filter with a cut-off frequency of 3 Hz was designed to 
filter the higher frequency signals, based on a study showing that the head-turning rotation is normally lower than 2.6 Hz during 
locomotion (Grossman et al., 1988). 

This paper only reports the head-turning behaviour for trials which included an AV approaching from the right, since pedestrians 
did not need to move their head to see the AVs which approached the junction from the oncoming direction (point E in Fig. 2) to gather 
information for the crossing task. Data were excluded if (1) AVs had no interaction with pedestrians (76 no encounter trials), (2) 
pedestrians crossed after the AV had passed (431 trials), and (3) missing due to technical issues (1 trial). A total of 480 (357 yielding 
trials and 123 non-yielding trials) were included in the final analysis. Table 1 provides a detailed list of the trials in each condition, also 
showing the average crossing initiation time (CIT) and crossing duration time (CDT). 

3.1. The absolute head-turning rate 

Research from cognitive psychology suggests that we use both head movements and eye-gaze to automatically and swiftly guide 
attention to specific areas, for gathering information about our surroundings (Kleinke, 1986; Frischen & Tipper, 2006). Real-world 
observation studies have also shown that, in complex and hazardous environments such as road crossings, humans turn their heads 
to widen their scanning field, compensating for the limited range of eye movements (±55◦) (Avineri et al., 2012). Therefore, the speed 
at which head-turning shifts occur potentially reflects the intensity of active scanning, and information seeking during a crossing. This 
metric has been used in a CAVE-based simulation study (Lyu et al., in Review), and also an eye-tracking study which investigated 
pedestrians’ crossing behaviour in a parking garage (de Winter et al., 2021). Results from de Winter et al. (2021) showed a higher rate 
of head-turns to the left and right, looking at other cars and humans during a crossing. Results from Lyu et al. (in Review) found 
pedestrians presented a higher rate of head-turning around crossing initiations in response to a human driven braking vehicle 
compared to a soft-braking AV. 

Therefore, the absolute head-turning rate was calculated in this study, to investigate how actively pedestrians were turning their 
heads to the left and right during the crossing, to understand how the different conditions affected their attention seeking behaviour. 
Head-turning rate was measured as the absolute change in head-turning angle between the current and subsequent frame and divided 
by the sampling frequency (0.01 s). The change in head-turning angle per frame (0.01 s) fluctuated around 0 degrees, where the 
positive and negative angle change represented the right and left turn from the previous frame to the adjacent frame, respectively. This 
measure used the absolute value, to avoid the positive and negative values cancelling each other out. 

In the subsequent statistical analyses, an average value of the absolute head-turning rate was tallied every 0.2 s, calculating the 
average absolute head-turning rate of the previous and next ten frames, to reduce the overall volume of data. This metric provided a 
sensitive and accurate approach to identify any minor head-turning behaviour and how pedestrians turned their heads over time. The 

Fig. 3. A schematic of a pedestrian wearing the stereoscopic motion-tracking glasses, showing the three dimensions of the head movement in 
the HIKER. 
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Generalised Estimating Equation (GEE) was used to analyse changes in the absolute head-turning rate, over time. This method is 
suitable for analysing non-normally distributed, repeated measurements (Liang & Zeger, 1986). The impact of vehicle yielding 
behaviour, zebra crossing presence, time, and their interactive effects on the absolute head-turning rate was analysed (N = 480). The 
model examined the absolute head-turning rate by employing a Gamma distribution coupled with a log link function. Crossing 
behaviour was analysed for the period starting 10 s before and 3 s after the crossing initiation, to enable the inclusion of sufficient data. 
This period was used because as 99.4 % of pedestrians had initiated the crossing at 10 s and 95 % of pedestrians were still crossing 3 s 
after the initiation. 

A second GEE model was established to investigate the impact of eHMI, and its interactive effects with time, on the absolute head- 
turning rate in the yielding trials (N = 123). The level of statistical significance was set to be lower than 5 %. 

3.2. Head-turning frequency 

Head-turning frequency was used to understand head-turning behaviour in the crossing task, by tallying the number of major head 
turns before the crossing initiation time (CIT, which is the time from the start of the trial, until the pedestrian started crossing) and 
during the crossing (from the moment the crossing started to the end of the crossing), respectively. In a test track study by Hamaoka et 
al (2013),more frequent head movements by pedestrians during crossings were associated with a higher need to establish the prox-
imity of approaching vehicles. Therefore, we assumed in this study that a higher head-turning frequency implies a greater demand for 
information acquisition about the approaching vehicle. 

An example plot of a pedestrian’s head-turning angle in one trial is shown in Fig. 4, where two major head turns were detected in 
blue lines before the CIT, and two during the crossing. To calculate head-turning frequency before the CIT, firstly, a baseline was 
selected as the head-turning angle, which was where the pedestrian’s head was mostly oriented, before the CIT. A detection area was 

Table 1 
Overview of the dataset, for each condition which involved an AV approaching from the right.  

Vehicle 
behaviour 

Zebra 
crossing 

eHMI No. of trials (per 
ped) 

Total trials (missing 
data) 

Trials ped cross 
after AV 

Trials ped cross 
before AV 

Mean 
CIT 
(s) 

Mean 
CDT 
(s) 

Yielding Present Present 3 114 14 100 6.11 4.64 
Absent 3 113(1) 16 97 6.17 4.44 

Absent Present 3 114 29 85 8.28 4.69 
Absent 3 114 39 75 9.35 4.59  

Total  12 456 98 357   
Non-yielding Present  6 228 135 93 5.35 4.63 

Absent  6 228 198 30 6.97 4.73  
Total  12 456 333 123   

No encounter   2 76 / / / / 
Total   26 988 431 480    

Fig. 4. Example plot of pedestrian’s head-turning angle (Pedestrian #1, Block #NoZebra, Trial #26, right-approaching AV yielding without eHMI) 
plotted in a continuous red line from the start of the trial to the end of the crossing, where the crossing initiation time is the zero point on the x-axis. 
The highlighted green and pink areas represent the detection area (Baseline ± SD) before CIT, and during the crossing, respectively. For this trial, 
two major head turns were detected before the crossing initiation, and two during the crossing (blue dashed lines). 
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chosen (baseline ± standard deviation − the shaded green area in Fig. 4) before the CIT. One head turn was counted if the head-turning 
angle was beyond the detection area before the CIT. 

Similarly, head-turning frequency during the crossing was collected by selecting the baseline of the head-turning angle during the 
crossing and defining a detection area (baseline ± standard deviation − the shaded pink area in Fig. 4). A head turn during the crossing 
was counted if the head-turning angle was beyond the pink detection area. 

The non-parametric Wilcoxon-signed-rank test was used to compare the head-turning frequency before and during the crossings, 
for the two yielding behaviours (N = 123 for non-yielding behaviour and N = 357 for yielding behaviour, see Table 1). A Generalised 
Linear Mixed Model (GLMM) was applied to estimate the effects of the zebra crossing, eHMI, and the number of encounters on pe-
destrians’ head-turning frequency, in yielding trials (N = 357), before the crossing initiation. As discussed in the Introduction, pe-
destrians will need to learn to interpret the meaning of eHMIs through repeated exposures. Therefore, an interactive effect of the eHMI 
and the number of encounters (1st / 2nd / 3rd) was also included in the model. The GLMM is recommended for repeated measures 
analysis of data that is not normally distributed (Stroup, 2012). The analysis applied a Poisson distribution to assess the head-turning 
frequency using a log link function. The level of statistical significance was set to be lower than 5 %. 

4. Results 

4.1. The absolute head-turning rate 

As shown in Table 2, there was a main effect of time on the absolute head-turning rate (Wald χ2 (38) = 1.248E + 14, p < .001). As 
shown in Fig. 5 (A-C), pedestrians showed a significant increase in absolute head-turning rate around 1 s before the crossing initiation, 
which reached a peak at 1.5 s after they started crossing. This peak in the head-turning rate between − 10 s and − 6 s was caused by the 
rapid right-turning behaviour at the start of each trial. 

The vehicle’s yielding behaviour had a significant impact on pedestrians’ absolute head-turning rate (Wald χ2 (1) = 10.550, p <
.001). Pedestrians showed a significantly higher average absolute head-turning rate for the non-yielding conditions (M = 0.436, SE =
0.032), compared to the yielding conditions (M = 0.247, SE = 0.017). A significant interaction was also seen between yielding 
behaviour and time (Wald χ2 (32) = 2724.289, p < .001). Post-hoc analysis, with Least Significant Difference (LSD) corrections, 
indicated that the absolute head-turning rate was significantly later for the non-yielding conditions, highest around ~ 3.4 s before the 
crossing initiation until ~ 0.4 s after the crossing initiation (see Fig. 5A). 

Results also showed a significant influence of the zebra crossing on the average absolute head-turning rate (Wald χ2 (1) = 10.550, p 
< .001), with a lower absolute head-turning rate in the presence of the zebra crossing (M = 0.275, SE = 0.016), compared to the no 
zebra crossing trials (M = 0.324, SE = 0.023). The GEE analysis showed a significant interaction between the presence of zebra 
crossings and time (Wald χ2 (38) = 4.361E + 12, p < .001). Post-hoc analysis (LSD) showed that pedestrians exhibited a significantly 
higher absolute head-turning rate from − 10 s to − 8 s, at 3.6 s and 2.4 s before crossing, and at 1.4 s after the CIT, for the trials without a 
zebra crossing (see Fig. 5B). 

Results from the second GEE analysis investigating the impact of eHMI on the absolute head-turning rate in yielding trials showed 
that the presence of eHMIs had a significant impact on the absolute head-turning rate (Wald χ2 (1) = 4.609, p < .05). Pedestrians’ 
head-turning rate was significantly higher for AVs approaching without an eHMI (M = 0.318, SE = 0.025) than those with an eHMI (M 
= 0.277, SE = 0.023). There was also a significant interaction between eHMI and time (Wald χ2 (37) = 7.228E + 14, p < .001). Post- 
hoc analysis (with LSD corrections) showed that pedestrians showed a significantly higher head-turning rate around 2.2 s before CIT 
when the eHMI was present, compared to the no-eHMI conditions (see Fig. 5C). 

4.2. Head-turning frequency 

Results from the Wilcoxon signed-rank test showed that pedestrians presented significantly more head turns during the crossings, 
than before crossing initiations, for both yielding (z = -2.001, p < 0.05, N = 357, r = 0.11) and non-yielding conditions (z = -6.284, p 
< .001, N = 123, r = 0.57), as seen in Fig. 6. In addition, there were significantly more head turns for the yielding trials than the non- 
yielding trials before a crossing initiation was made (z = -5.199, p < .001, N = 123, r = 0.47), while the difference in head turns during 
the crossing was not significant for the yielding and non-yielding trials (z = -1.620, p > 0.05 N = 123, r = 0.15). 

Results from the GLMM model (see Table 3) showed a significant impact of zebra crossing on pedestrians’ head-turning frequency 

Table 2 
Results of the GEE model analysing the impact of a zebra crossing, vehicle yielding behaviour, and time on the absolute head- 
turning rate for trials where pedestrians crossed before the AV had passed.   

Wald Chi-Square df Sig. 

(Intercept)  450.363 1  .000 
Time  1.248E + 14 38  .000 
Zebra  10.550 1  .001 
Yielding behaviour  8.042 1  .005 
Zebra * Time  4.361E + 12 38  .000 
Yielding behaviour * Time  2724.289 32  .000  
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before crossing initiations in front of a yielding AV (F (1,352) = 9.463, p < 0.01), with pedestrians presenting significantly fewer head 
turns in the presence of a zebra crossing (M = 1.601, SE = 0.099, vs M = 1.861, SE = 0.119). The eHMI presence also influenced 
pedestrians’ head-turning frequency, before crossing initiations (F (1,352) = 6.493, p < 0.05), with a lower head-turning frequency in 
the eHMI trials (M = 1.601, SE = 0.098) than without an eHMI (M = 1.861, SE = 0.121). 

Finally, in terms of learning the pattern of behaviour of the AV, a significant negative relationship was found between the number 
of exposures and pedestrians’ head-turning behaviour (F (1,352) = 4.110, p < 0.05), where pedestrians’ head-turning frequency 
decreased with increased exposures to AVs (see Fig. 7). The interaction between the number of encounters and eHMI was not sig-
nificant (F (1,352) = 3.157, p > 0.05). 

5. Discussion 

This study utilised a CAVE-based pedestrian simulation environment to examine pedestrians’ head movements, when interacting 
with AVs at a virtual road crossing scenario. The effects of a vehicle’s yielding behaviour, zebra crossing, and eHMIs on head-turning 
behaviour were investigated to understand how each condition affected pedestrians’ attention allocation and information acquisition 
during the crossings. Pedestrians’ ability to learn the behaviour of the AV was also examined, by comparing head-turning patterns with 

Fig. 5. Pedestrians’ absolute head-turning rate with 95% CI in the shaded area across: (A) yielding behaviour, (B) zebra crossing presence/absence, 
and (C) eHMI presence/absence (yielding trials only). The dashed line at zero indicates crossing initiation times. 
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Fig. 6. Pedestrians’ head-turning frequency across the yielding behaviour and crossing status. The error bar indicates standard error.  

Table 3 
Results of GLMM estimations for pedestrians’ head-turning frequency before crossing initiations towards a yielding AV.  

Predictors Coefficient SE t-statistics p-value Exp (Coefficient) 95 % CI Lower 95 % CI Upper 

Intercept  .411  .1032  3.982  .000  1.508  1.231  1.847 
Zebra Crossing [Absence]  .150  .0489  3.076  .002  1.162  1.056  1.279 
eHMI [Absence]  .363  .1424  2.548  .011  1.437  1.086  1.902 
Exposure  − .008  .0391  − .197  .043  .992  .919  1.072 
Exposure * [eHMI Absence]  − .107  .0600  − 1.777  .076  .899  .799  1.011 

Probability distribution: Poisson Link Function: Log. 

Fig. 7. Pedestrians’ head-turning frequency in response to repeated encounters. The shaded area represents the standard error.  
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repeated exposures to the approaching AVs. 

5.1. Pedestrians’ head-turning behaviour and crossing intent. 

Results identified an increase in the absolute head-turning rate from approximately 1 s prior to crossing initiations, which reached a 
peak value at 1.5 s after the crossing (see Fig. 5A-C). This behaviour pattern has been termed the “last-second check” in previous real- 
world observation studies (Hassan et al., 2005; Tom & Granié, 2011), where pedestrians presented a more active head-turning 
behaviour in the last 4 s before commencing a crossing, with the number of head turns being highest during the last second. A 
“last-second check” was also found in a CAVE-based pedestrians simulation study, where there was a significant increase in head- 
turning rate in the last 2 s before a crossing initiation (Lyu et al., in Review). The reason these head turns were not observed as 
early as 4 s or 2 s before the CIT in this study may be due to the experimental design used, with a relatively short time between the start 
of the approaching vehicle and pedestrians’ crossing initiation. While the time at which this increase in head-turning rate before a 
crossing is seen is scenario dependent, our results demonstrate that such a surge in head-turning rate could be a good indicator of 
pedestrians’ intention to cross, which, if identifiable by an AV’s sensor, could be a good cue for speed reduction by the approaching AV, 
before it comes to a complete stop in front of a pedestrian. 

We also saw a surge in absolute head-turning rate 1.5 s after the crossing initiation. Both head-turning frequency and head-turning 
rate were higher during the crossing than before crossing initiations. This finding is in line with results from a test-track study by 
Hamaoka et al. (2013) which showed that the head-turning frequency was the highest at the start and middle of the crossing, a 
behaviour which is used to confirm the proximity of an approaching vehicle. This finding shows the natural tendency of pedestrians to 
be safe when crossing in front of a vehicle, continuing to observe their surroundings, even in an artificial and safe virtual reality 
environment. 

5.2. Factors influencing pedestrians’ head-turning behaviour 

Our results showed that the behaviour and dynamics of the vehicle, as well as the zebra crossing played a significant role in 
influencing pedestrians’ head-turning behaviour, during interactions with AVs. Previous studies have shown that pedestrians increase 
their head-turning behaviour to compensate for their oculomotor limitation, when scanning the environment during high-risk tasks 
such as road crossings (Avineri et al., 2012). In our study, such behaviours were predominantly seen during the non-yielding trials 
(Fig. 5A), where heightened risk and time constraints resulted in more frequent and rapid head movements. Conversely, in the yielding 
trials, where AV intentions were clearer, thanks to both kinematic and eHMI messages, there was a notable decrease in the rate of head- 
turnings before crossings. 

We also found a significantly higher frequency of head turns and a greater head-turning rate before crossing initiations, for trials 
without a zebra crossing. This is likely due to the increased risk associated with these situations (Avineri et al., 2012). The fewer head 
turns observed in the zebra crossing trials might be associated with greater confidence, and less uncertainty, about the decision to 
cross, as pedestrians are aware of their right of way for this type of setting. These findings align with other research emphasizing the 
role of road infrastructure, such as zebra crossings, in shaping pedestrian behaviour (Clamann, Aubert, & Cummings, 2017; Havard & 
Willis, 2012; Sakamoto et al., 2019; Velasco, Farah, van Arem, & Hagenzieker, 2019), and further illustrate how head turns can serve 
as an indicator of confidence in decision-making during crossing events. 

5.3. The impact of an eHMI and learning effects on head-turning behaviour 

Since higher head movements imply a greater demand for information acquisition (Hamaoka et al., 2013), the reduced frequency of 
head movements in the presence of eHMI suggests that pedestrians used the message to establish the AV’s intention, reducing the need 
for information gathering. This reduction in visual search during the eHMI trials, denoting a better understanding of the AV’s intent, is 
also noted by Liu et al. (2020). However, Kaleefathullah et al. (2020) found that over a series of trials, pedestrians began to over-trust 
the eHMI, which lead to unsafe crossings and collisions in a CAVE-based study, if the eHMI’s message was misleading − i.e. the AV did 
not yield when the eHMI (incorrectly) indicated it would. This suggests that pedestrians may over-trust such messages, leading to 
unsafe crossings. 

This study identified a learning effect, evident by the decreased frequency of head movements over repeated trials, regardless of the 
presence of eHMIs (as illustrated in Fig. 7). Previous research has indicated that pedestrians gradually comprehend the messages 
displayed by AV eHMIs (Faas et al., 2020; Hochman et al., 2020; Lee et al., 2022). Sometimes trusting these more than the implicit 
message provided (Kaleefathullah et al., 2020). In this study, we observed learning of the AV’s implicit driving behaviours when 
intentions were ambiguous through edging forward. This observation highlights the necessity to ensure that messages from AV eHMI 
are not in contrast to the AV’s driving behaviour, to reduce ambiguity in the AV’s intentions, as suggested by Hochman et al. (2022). 

6. Limitations and future work 

This study investigated head-turning behaviour in response to one vehicle approaching from the right. It is acknowledged that 
head-turning patterns might differ in more elaborate scenarios, as noted by Hamaoka et al., (2013). Therefore, more complex and 
dynamic scenarios should be designed in the future to explore more realistic head-turning behaviour during crossings. For example, 
including more vehicles, approaching from different directions, with varying time gaps may help us understand interactions relevant 
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to real-world traffic scenes (Meir & Oron-Gilad, 2020). This will also help us understand how/if user response to automated vehicles 
may be different to that of human-driven vehicles. Additionally, considering the study’s UK location, future research should account 
for variations in traffic directionality, present in other countries. 

A further limitation lies in the diversity of the participants, specifically concerning those with different walking abilities, such 
children and older adults. This understanding is crucial if head-turning metrics are to be used for intention recognition by AVs. For 
example, results from Tapiro et al. (2016) showed that older adults tend to engage in fewer head turns towards the extremities of the 
road, focusing more centrally on their crossing path. This suggests that head movement assessment techniques for intent recognition 
should be tested on a wider range of users in the lab, including children, younger adults and those with mobility impairments. 

7. Conclusions 

This VR-based study provides novel insights into pedestrian head movements in response to AVs approaching a junction with and 
without a zebra crossing, and how these are affected by implicit behaviour and eHMIs. Although it remains to be seen if these results 
are relevant to a more complex traffic environment and a wider range of users, this study confirms the similarity of head-turning 
behaviours between real-world and virtual environments before and during a crossing for a simple scenario. The value of CAVE- 
based pedestrian simulators for testing these behaviours in a safe and repeatable VR-set up is highlighting, allowing studies on 
human response to fully driverless AVs, not yet available in the real world. The study demonstrates that, as an alternative but com-
plementary measure to eye movements, head motion can serve as a reliable indicator of crossing intentions, and a measure of pe-
destrians’ information-seeking and risk-taking behaviour. 
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