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Location retrieval using qualitative place signatures of 
visible landmarks

Lijun Weia, Val�erie Gouet-Brunetb and Anthony G. Cohna,c,d 

aSchool of Computing, University of Leeds, United Kingdom; bLaSTIG, IGN-ENSG, Gustave Eiffel 
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ABSTRACT 
Location retrieval based on visual information is to retrieve the 
location of an agent (e.g. human, robot) or the area they see by 
comparing their observations with a certain representation of the 
environment. Existing methods generally treat the problem as a 
content-based image retrieval problem and have demonstrated 
promising results in terms of localization accuracy. However, these 
methods are challenging to scale up due to the volume of 
reference data involved; and the image descriptions might not be 
easily understandable/communicable for humans to describe sur
roundings. Considering that humans often use less precise but 
easily produced qualitative spatial language and high-level 
semantic landmarks when describing an environment, a coarse- 
to-fine qualitative location retrieval method is proposed in this 
work to quickly narrow down the initial location of an agent by 
exploiting the available information in large-scale open data. This 
approach describes and indexes a location/place using the per
ceived qualitative spatial relations between ordered pairs of co- 
visible landmarks from the perspective of viewers, termed as 
‘qualitative place signatures’ (QPS). The usability and effectiveness 
of the proposed method were evaluated using openly available 
datasets, together with simulated observations by considering dif
ferent types perception errors.
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1. Introduction

The definition of a location or a place varies depending on the context and scale of 
applications. For instance, it can be a geographical name like Place Dauphine, Paris 
either with a crisp or a rough boundary (Bittner and Stell 2000). Alternatively, it can 
be an area (Kuipers 2000), a 2D/3D linestring or a zero-dimensional 2D/3D point on a 
map, or a point with the agent’s pose attached in the field of Robotics (Irschara et al. 

2009, Sattler et al. 2012, Kendall et al. 2015). The goal of location retrieval is to identify 

CONTACT Lijun Wei villager5whu@gmail.com 
Supplemental data for this article can be accessed online at https://doi.org/10.5518/1506. 

� 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ 
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 
properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by 
the author(s) or with their consent.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 
https://doi.org/10.1080/13658816.2024.2348736

http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2024.2348736&domain=pdf&date_stamp=2024-05-10
https://doi.org/10.5518/1506
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com
https://doi.org/10.1080/13658816.2024.2348736


the corresponding location and/or pose of an agent in an environment based on cer
tain sensing modalities along with the existing knowledge of the environment. 
Satellite-based positioning systems such as GPS are the most widely used global posi
tioning approaches. In situations where accurate satellite positioning information is 
not available, sensing modalities such as visual information have been explored for 
localization (Korrapati et al. 2012, Zamir et al. 2016, Piasco et al. 2018, Pion et al. 2020) 
or place recognition (Lowry et al. 2016, Ali-Bey et al. 2023). Existing methods often use 
low-level visual features such as 2D hand crafted/learnt corners, edges to represent 
geo-tagged images Durrant-Whyte and Bailey 2006, Jegou et al. 2010, Korrapati et al. 
2012, Chen et al. 2017, Zhang et al. 2021, or 3D features from 3D point clouds thanks 
to the widespread use of LiDAR scanners (Uy and Lee 2018, Luo et al. 2024). Other sol
utions use more abstract semantic representations of the environment such as object 
categories (Lamon et al. 2001, 2003, Ardeshir et al. 2014, Li et al. 2014, Schlichting and 
Brenner 2014, Panphattarasap and Calway 2016, Zang et al. 2017, Hery et al. 2021). 
Compared to low-level features, semantic features are easier to communicate and may 
provide a more robust representation of the environment, particularly in the face of 
changing conditions such as occlusions and the change of seasons and viewpoints. 
While there are recent contributions focusing on addressing these challenging condi
tions (Piasco et al. 2021), they generally treat the localisation problem as a content- 
based image retrieval problem through learning distinctive image descriptors without 
considering the semantic meaning of the learnt descriptions.

In fact, humans often use a mental map of the environment to locate themselves and 
to navigate to a destination. We rely on high-level semantic objects and less precise but 
easily produced and understood spatial language to describe our surroundings and com
municate our locations (Tversky 1993, Chen et al. 2013). In these descriptions, those 
semantic objects with known or relatively better known locations are selected as the land
marks (Sadalla et al. 1980) or anchor points (Couclelis et al. 1987) to define the locations 
of adjacent points. The descriptions of the spatial relationships between observed land
marks, or between an observer and their surrounding landmarks can help us understand 
the overall structure of the environment, which is especially useful for navigating in more 
open and/or less structured environments.

In this study, we propose an upstream approach to quickly narrow down the search area 
of an agent’s initial location by exploiting the available information in large-scale open data, 
and describing and retrieving locations using qualitative place signatures (QPS). QPS are 
defined as the perceived qualitative spatial relationships between ordered pairs of co-visible 
landmarks from a location, including the ordered sequence of landmark types, their relative 
orientations, and the qualitative angles in between. Note that even though individual land
marks might not be identifiable, when multiple co-visible landmarks form a place signature 
they might be used to identify a location. Based on this definition, a space division method 
is proposed to automatically divide the navigable space into distinct locations, or ‘place cells’ 
such that each cell is attached with a unique place signature. A coarse-to-fine location 
retrieval method is then used to efficiently identify the possible location(s) of a viewer based 
on their observations using approximate hashing. It should be noted that our strategy does 
not intend to replace other localization approaches, but rather to be complementary to 
quickly narrow down the initial search area.
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1.1. Related work

A location can either be described using its spatial relations with respect to a land
mark(s) in a fixed reference frame, for example, the ‘the building is to the east of the 
central station’; or, using the perceived spatial relations between landmarks from the 
perspective of an agent, for example, ‘I can see a church next to a tower in front of 
me’. These two modes form the foundation of human spatial mental models (Tversky 
1993), and have both been studied for representing locations qualitatively in applica
tions such as navigation (Wang et al. 2005, Fogliaroni et al. 2009) and spatial informa
tion queries (Yao and Thill 2006). More specifically,

� For methods with a fixed reference frame, disjoint points (Clementini et al. 1997), 
polygons, regions (Bittner and Stell 2000) or the combination of these geometries 
(Du et al. 2015) have been used to divide space into non-overlapping areas, ena
bling spatial inference using relevant direction, distance or topological relations 
(Cohn et al. 2014, Freksa et al. 2018). For example, Wang et al. (2005) proposed to 
describe the qualitative position of target objects using their cardinal directions, 
such as fE, W, S, N, NE, NW, SE, SW, Og (Frank 1991, Egenhofer et al. 1999) in rela
tion to their corresponding landmarks determined by a Voronoi model.

� For methods without a fixed reference frame, Levitt and Lawton (1990) proposed 
to divide the environment into regions using the lines connecting pairs of point 
landmarks such that the same order of landmarks can be perceived by agents from 
any locations within each region. This method was improved on by Schlieder 
(1993) to differentiate between adjacent regions where a same order of landmarks 
is observed by augmenting the order of landmarks with their complementary direc
tions. Fogliaroni et al. (2009) proposed a similar approach although the decompos
ition of space was based on the extended convex landmarks instead of points. 
Places were also represented using qualitative distances to landmarks such as [very 
close, close, medium, far, very far] (Wagner et al. 2004) and nearness relations identi
fied through data mining (Duckham and Worboys 2001).

Both of these methods generally assume landmarks can be correctly, completely, 
and uniquely identified by agents, the locations, or the ids of landmarks are known, 
and the initial global positions of agents are usually given if used in navigation appli
cations. However, visual perceptions are prone to errors either due to the environmen
tal or internal factors, and the initial position of agents may be unknown. Moreover, 
although various theoretical models were proposed to identify qualitative locations, 
the scales of existing experiments are generally small with limited number of land
marks. The scalability as well as the time complexity of these models were rarely 
investigated. Little work has been done in this area from the perspective of informa
tion retrieval. In this work, as shown in Figure 1, we propose to not use the explicit 
location of landmarks (Wang et al. 2005), but their relative locations and semantic 
information as such information is generally easy to capture compared to other more 
accurate measurement.

Among the large range of existing location retrieval techniques, the concept proposed 
by Weng et al. (2020) is the closest to our approach. However, (1) instead of sampling 
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locations using 10x10m regular grids, we divide navigable space into distinct locations 
(i.e. place cells) following the definition of individual qualitative spatial relations, ensuring 
that consistent spatial relations can be observed by agents from anywhere inside each 
place cell; (2) instead of computing the direction of landmarks with respect to the True 
North which is not always feasible to judge, we consider the relative angles between the 
lines of sight of ordered landmark pairs; (3) we consider the possible occlusions of land
marks by other objects when creating place signatures; and (4) when comparing place 
signatures, instead of using distance measures under an exhaustive searching strategy, we 
propose a coarse-to-fine location retrieval method by using an approximate hashing tech
nique to improve the retrieval efficiency. A detailed discussion on time complexity will be 
given in Sections 4.1 and 5.3.

In the remainder of this paper, the proposed qualitative place signature is presented in 
Section 3 and the location retrieval method in Section 4; experimental results are given in 
Section 5, followed by discussion in Section 6 and conclusion in Section 7.

2. Landmarks

In this work, landmarks are defined as distinctive, static, stable and easily recognisable 
objects in an environment, such as road signs (Soheilian et al. 2013) and street lights 
in an urban environment, and mountain ridges in rural areas. Examples of urban land
marks are shown in Figure 2(a).

Figure 1. Demonstration of the proposed location retrieval method: given the perceived ordered 
sequences of visible road landmark (VRL) types and other qualitative spatial relations by users (or 
images), the location retrieval problem is to find the reference place cells with the most similar 
place signature to the observed one.

4 L. WEI ET AL.



Though the appearance of certain landmarks may change in a regular or an irregu
lar way, for example, most trees change colour and forms from spring to winter, their 
locations are mostly static and they can be easily identified by humans using descrip
tions with a strong semantic meaning that is informative and robust to visual changes. 
The location information of these landmarks is often readily available, either being 
automatically reconstructed from optic sensor data captured by mobile mapping sys
tems, manually annotated by human surveyors, or sourced from various open data 
services, such as the Ordnance Survey Roadside Asset Data Services and Find Open Data 
in the United Kingdom, the OpenDataParis dataset in France, and crowd-sourced maps 
like OpenStreetMap (Rousell et al. 2015). In terms of volume, maps of landmarks are 
also representing the environment in a much more compact and refined way com
pared to other kinds of more commonly used data sources, such as images or LiDAR. 
Thanks to the fact that these open-sourced initiatives are now widespread and 
describing spatial regions on a large scale, it would be interesting to exploit their 
usage in applications like large-scale location retrieval.

In this work, each landmark Si has an attached set of attributes, written as:

Si ¼ ðid, type, type id; centreðx, yÞ, contour2d, visible zoneÞ (1) 

where id is the unique index of a landmark in a database that is usually unknown to 
agents; type is the category of a landmark (e.g. tree); type_id is a character encoding 
such category (e.g. ‘J’ for tree); centre(x,y) captures the 2D coordinates of a landmark’s 
centroid in a geographic system, contour2d captures its 2D extent, and visible_zone 
captures the area from where this landmark can be perceived. The default visibility 
zone is a circle with a varied radius for individual landmarks (Figure 2(b)), affected by 
factors such as the location and intrinsic direction of a landmark (if there is any), its 
size, height and visual salience (i.e. the perceptual quality which makes some items 
stand out from their neighbors), occlusion caused by other objects, observers’ eyesight 
and height, and the weather and lighting conditions (e.g. day/night).

More detailed visual (e.g. color, shape, text, material), semantic (e.g. the type of a 
tree) or spatial attributes of landmarks can also be added into the above list to further 

Figure 2. Examples of urban landmarks and their visibility zones, which are not always full circles 
since some landmarks may have an inner front. For example, traffic lights usually have a designed 
inner front that are expected to be seen by road users, while a tree may not have a front or back. 
Pictures are from Google images by searching ‘Paris’.
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improve the discriminating ability of a landmark if such information cannot be inferred 
from the general ‘type’. For a landmark T with an intrinsic front/back, the circular visi
bility area can be separated into front and back half-circles and treated as belonging 
to two different landmarks. The orientation of such landmarks can either be collected 
by on-site survey, reconstructed from sensing data, or inferred from the landmark 
type, direction of nearby road networks, or existing standards on infrastructure instal
lation. For example, traffic signs normally face oncoming traffic except that those indi
cating on-street parking controls are parallel to the edge of the carriageway, and 
some flag-type direction signs are pointing approximately in the direction to be taken. 
Methods for how to determine which landmarks are visible from a particular viewpoint 
will be given in Section 3.5 and detailed in the supplementary material.

3. Place signatures based on the qualitative spatial relations between 
visible landmarks

In this section, qualitative place signatures (QPS) are introduced to describe the spatial 
configuration of visible road landmarks from viewers’ perspective, including their order 
of appearance, the relative orientations, and the qualitative angles between the lines 
of sight of ordered pairs of landmarks. Based on this definition, a study space can be 
divided into distinct reference place cells such that the same QPS can be observed by 
agents from anywhere within each cell. Then, given a viewer’s new observation, their 
location can be retrieved by finding the place cell(s) with the best matched reference 
signatures.

In this section, the three types of qualitative spatial relations are respectively intro
duced in Section 3.1 to 3.4, followed by practical steps for creating and maintaining a 
reference database and discussions on the impact of landmarks uncertainty in 
Section 3.5.

3.1. The viewing order of visible landmarks on a panorama

As landmarks seen from a particular viewpoint appear as if they are overlaying on the 
surface of a sphere centered on the viewer’s eyes (Figure 3) or on the image plane of 
a panoramic camera (Galton 1994), the first component of our proposed place signa
ture is the ordered sequence of the types of visible landmarks seen from a location.

If we represent a viewer as ri ¼ ðPi, �iÞ, where Pi is the 2D position of the viewer’s 
centre (of eyes) in a coordinate system, and �i is an unit vector representing the view
er’s viewing direction, as shown in Figure 3, the viewer’s field of view (FOV) can be 
defined as the fan-shaped area centred at Pi and oriented to �i; A and B are the pro
jections of two landmarks on a selected horizontal line (i.e., any line above the ground 
from the viewer’s perspective) on the viewer’s image plane. The projected interval of 
each landmark is defined by the extreme points of its projections, written as I ¼
ðx1, x2Þ, where x1 and x2 are real numbers and x1 � x2: When multiple landmarks are 
present, a viewer will be able to use the ordering relations of the projected intervals 
of these landmarks to describe their environment.

6 L. WEI ET AL.
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The viewing order of two landmarks A, B: assuming a viewer is facing towards 
the landmarks and looking from left-to-right and turning clockwise (or alternatively 
right-to-left in the anti-clockwise direction), the viewing order of these two landmarks 
can be decided using their extreme points IAðxA

1 , xA
2 Þ and IBðxB

1, xB
2Þ by following the 

rules below:

1. If xA
1 < xB

1, then A! B; otherwise, B! A : if the leftmost extremes of the two 
intervals are different, the one with a smaller starting point is considered appear
ing first.

2. If ððxA
1 ¼ xB

1ÞÙðjx
A
2 − xA

1 j > jx
B
2 − xB

1 jÞÞ, then A! B; otherwise, B! A : if the left
most extremes of the two landmarks are the same, the one with a longer/wider 
interval is considered appearing first.

3. If ðxA
1 ¼ xB

1ÞÙðjx
A
2 − xA

1 j ¼ jx
B
2 − xB

1 jÞÙðdðAÞ < dðBÞÞ, then A! B; otherwise, B! A :: 
if the leftmost extremes of the two landmarks are the same, and the two intervals 
are of the same length, the landmark closer to the viewer is considered as appear
ing first (followed by the landmark behind if it is visible).

For point-like landmarks such as those infrastructure assets attached to the ground 
with a single pole, e.g. traffic lights, street lamps, trees, the locations of their poles on 
the horizontal line scanning across these assets can be used to decide the order of 
landmarks.

3.1.1. The relative positions of two landmarks on the panorama
In addition to the ordering, as spatial occlusion can occur when a landmark appears 
before another with respect to a viewpoint, the Interval Occlusion Calculus (IOC) 
(Ligozat et al. 2015) is adapted in this work to further describe the relative positions of 
the projected intervals of ordered pairs of landmarks.

In terms of their ordering on a 0-360o panoramic coordinate system, when a best 
viewing direction(s) can be found such that all landmarks are located in a viewer’s 
field of view, the left-extreme of the left-most landmark is set to zero in the 360 
degree reference system; otherwise, the starting direction of the viewer is set as the 
zero-direction. In this work, landmarks with smaller left extremes are always 

Figure 3. The projections of two landmarks A and B on the image plane of viewers from a view
point r. The dashed lines represent the lines of sight (Ligozat et al. (2015)).
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considered first; their relative positions on the panorama are represented using a 
reduced set of the 11 IOC relations as shown in Table 1, including five of the original 
IOC relations (Ligozat and Santos 2015) and six of the inverse IOC relations. These rela
tions resemble Allen’s Interval Algebra (Allen 1983, Du et al. 2016, Gatsoulis et al. 2016) 
except that the intervals are the projections on a panorama and the occlusion infor
mation is considered to encode the relative closeness of landmarks to viewers. In 
more detail:

� when there is no occlusion between two landmarks from a viewpoint, the first 
seen landmark could precede (A p B) or meet the following one (A m B).

� when there is partial occlusion between them, the first seen landmark could over
lap and be in front of (A o1 B) or behind the other one (A o− B).

� when the starting points of the two intervals are the same and the interval of one 
landmark (e.g. A) is longer than the other (e.g. B), A could be started by and in 
front of B (A si1

� B), or behind B (A si− B).
� when the two starting points are different, the landmark with a longer interval (e.g. 

A), could contain and be in front of B (A di1
� B), or behind B (A di− B); or be fin

ished by and in front of B (A f i1
� B) or behind B (A f i− B).

� when the two intervals coincide, one landmark could coincide with and be in front 
of another, e.g. B c1

� A: Note since the front landmark is always considered first, 
the relation ‘A coincides with B and B is in front of A’ is not used in this work.

Table 1. The 13 Allen’s Interval Calculus relations between an interval A and B (Allen 1983) are 
shown in the top row of each cell, and the corresponding adapted Interval Occlusion Calculus 
relations (Ligozat et al. 2015) are shown in the second row.

The symbol þ, – encode the relative closeness of A and B to the viewer, i.e. þ for in front of and – for behind.

8 L. WEI ET AL.



� When two landmarks are equal to each other or the front one completely occludes 
the one behind, only one of them will be observed/considered in this work. 
Therefore, the equivalent relation eq is not used.

Note that the subscript � in Afsiþ� , diþ� , fiþ� , cþ� gB means that for the landmark 
behind, i.e. B, it is only visible if tall enough as its bottom half is occluded by the land
marks in front; otherwise, it will be completely occluded and only the front landmark 
A will be observed. This constraint can be expressed with the projection hA, hB of the 
two landmarks on the vertical axis using Allen’s interval calculus (by adding a sub
script a for each relation) as (:½ðhA sia hBÞÚðhA dia hBÞÚðhA fia hBÞÚðhA eqa hBÞ�:)

Using the above definition of viewing order and the 11 modified IOC relations, 
there could be 18 types of relations between two co-visible landmarks depending on 
the viewpoint and location of viewers. As shown in Figure 4, 10 of the 18 relations 
starting from A are marked in blue, including (Afsiþ� , diþ� , fiþ� , oþ, m, p, o−, fi−, di−, si−gB), 
and the other eight relations starting from B are marked in black, including 
(Bfo−, m, p, fiþ� , diþ� , siþ� , cþ� , oþgA). Note that ApB, AmB, BpA, and BmA are each appear
ing twice in different place cells.

An exemplar location o1 (with viewing direction marked in pink) is given to illus
trate how the relation hA p Bi can be observed in the bottom place cell. If a viewer 
can provide their observed relation between the two landmarks, we can then roughly 
identify their located areas. Note that when the viewer is between the two landmarks, 
the landmarks can only be seen when the viewer turns around. Therefore, the viewed 
relation can either be hA p Bi or hB p Ai depending on the viewer’s initial direction.

Moreover, it can be seen from Figure 4 that certain areas are spatially adjoining to 
each other while others are not. The corresponding IOC relations of adjoining areas 
are therefore conceptual neighbors as they can be directly transformed into one 
another without encountering any other types of relations (Freksa 1992) when a 
viewer starts moving. The neighborhood constraints between the IOC relations used in 
this work are shown in Figure 5. For example, the relation ‘precedes’ (p) and ‘meets’ 
(m) are neighbors because viewers can directly go from an area where ‘A precedes B’ is 

Figure 4. The space can be divided into individual areas where different IOC relations are observed 
between the projected intervals of landmark A and B (modified from (Ligozat et al. 2015)). For 
example, relation A p B would be observed in the area where the exemplar pose r1 is situated. 
As all such relations are given based on the left-to-right order from a viewer’s perspective; the rela
tions shown in green in the brackets are for illustration purpose only.
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observed to an area where ‘A meets B’ is observed. However, if a viewer wants to go 
from the area ‘A precedes B’ to another one where ‘A overlaps B’ is observed, they will 
have to go through the area/line where ‘A meets B’ is observed. Areas with neighbor
ing relations are in fact spatially connected as shown in Figure 4. By establishing the 
constraints on neighboring relations, we could possibly further reduce the viewer’s 
locations or trajectory as they start moving and continuously report the observed rela
tions between co-visible landmarks.

3.1.2. Abstraction of landmarks using points
As shapes can be described using points at various levels of abstraction (Freksa 1992), 
the above relations (shown in Figure 4) can be reduced based on point abstractions: 
(1) if one of the two landmarks is abstracted to a point, the 18 relations are reduced 
to eight, as shown in Figure 6(a); (2) if both landmarks are abstracted to points, the 
number of possible relations are further reduced to four as shown in Figure 6(b). 
When a viewer is on different sides of the line connecting the two points AB and fac
ing towards the landmarks, we would expect them to observe the two landmarks in 
different orders, which is consistent with the observation made in Schlieder (1993) 
and Levitt and Lawton (1990). Note that with a reduced set of relations, we would 
only identify the viewer’s location much more roughly compared to using the pro
jected intervals as in Figure 4.

3.1.3. Viewing order of more than two landmarks on a panorama with IOC 
relations
When more than two landmarks (n> 2) are present, the study space could be divided 
using nðn − 1Þ=2 lines connecting every two co-visible landmarks, or the extremities of 
landmarks when their extent is considered, such that landmarks are observed in differ
ent orders in each divided area.

For the simplistic situation when all landmarks are abstracted as points, as shown 
in Figure 7, the space could be divided into two parts using the convex hull of these 
landmarks in clockwise (or anti-clockwise) order. When viewers are outside or on the 
edge of the convex hull, they will be able to find an optimal viewing direction such 

Figure 5. The neighborhood diagram between the used IOC relations (blue circles).

10 L. WEI ET AL.



that all landmarks are located in their FOV. A unique viewing order of landmarks could 
then be identified for each of these areas. When viewers are inside the convex hull, 
they could start from any landmark so the observed order of these landmarks might 
be rotated, which means the observed sequences of landmarks are cyclically equal to 
each other, such as ABC, and BCA. In this work one such rotation sequence is created 
as a way to reference each area. Similarly, when the size of landmarks is considered, 
their relative IOC relations are identified by finding the left and right extremities of 

Figure 6. The possible relations between two landmarks using different levels of abstraction with 
points.

Figure 7. The possible relations of three co-visible landmarks. Note: in the area enclosed by the 
three landmarks, the observed order of landmarks depends on the initial viewing direction of view
ers; while in other areas, we assume viewers have adjusted their orientations so that all landmarks 
are in their FOV.
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each landmark from a viewpoint, and comparing the directions of corresponding tan
gent pairs (al

i, a
r
i ) in clockwise order.

Whether to consider the size of landmarks will depend on the data available and 
the specific application. For example, when the extent of landmarks is comparable to 
their distance apart, as shown in Figure 8(a), and the specific purpose of an applica
tion is to navigate robots for visual inspection of street infrastructure in urban environ
ments (Peel et al. 2018), considering the extent of landmarks and the occlusion 
information can differentiate locations at a much finer level, especially for those areas 
close to the lines connecting the centroids of landmarks. On the contrary, if the extent 
of landmarks is relatively small compared to their distance apart such as shown in 
Figure 8(b), and the purpose of an application is to roughly identify the initial location 
of a viewer, using the point representation and dividing the space with lines connect
ing each point pairs would be enough, as areas near those lines would be small 
anyway.

Another question is whether to encode the full set of relations between every 
ordered pair of landmarks or only the relations between consecutively observed land
marks. For example, for the four scenarios shown in Figure 9, if we record the ordering 
of landmarks in each scenario based on their left extremities, we would observe hABCi
in all scenarios. A viewer will not be able to differentiate their locations based on this 
ambiguous description. However, if we store the sequential IOC relations of these 
landmarks based on their size and relative distance to the viewer, the observed place 
signatures would be hAoþBo−Ci for the first two scenarios, hAoþB p Ci for the third 
scenario, and hA p B p Ci for the last scenario. These signatures are obviously more 
discriminative than the previous descriptions.

But still, the descriptions of the first two scenarios are the same while actually they 
are different: the relation between A and C are respectively hA p Ci and hAo−Ci in the 

Figure 8. Space division using landmarks with different distances apart. Note that the distances 
between landmarks in the two figures are the same but their sizes are reduced in the second 
figure.
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two scenarios. We can also see from the composition table (see supplementary mater
ial) that based on the relations between A-B and B-C there are four possible relations 
between A-C: fp, m, oþ, o−g. Therefore, to achieve a better discriminative ability, ideally, 
it would be useful to encode the relative relations between all ordered pairs of land
marks. When landmarks are all points, only relation p and cþ are needed, and unique 
relations can be inferred from any combination of the two. Therefore, storing the rela
tions between adjacent landmarks would be enough as no ambiguity will be caused 
by these relations.

In the following sections, two other components of the proposed QPS signature are 
introduced to further increase the ‘resolution’ of location description.

3.2. Adding relative orientations between ordered pairs of landmarks

The second component of the proposed place signature is the sequence of the rela
tive orientations between ordered pairs of landmarks. The concept of relative orienta
tions was originally proposed by Freksa (1992) to describe the location of a point with 
respect to two other points using the left/right and front/back dichotomies of 15 dis
joint combinations of orientation relations.

For example, as shown in Figure 10 (left), objects in area 1 are on the left-front (LF) 
of point A with respect to vector BA

�!
and on the right-back (RB) of point B w.r.t. vec

tor AB
�!

; objects in area 2 are on the left-neutral (LN) of A and right-back of B; objects 
in area 3 are on the left-back (LB) of A and right-back of B; objects in area 4 are on the 
left-back of A and right-neutral (RN) of B; objects in area 5 are on the left-back of A 
and right-front (RF) of B; objects in area 6 are on the straight-back (SB) of A and 
straight-front (SF) of B; objects in area 7 are on location B and to the straight-back (SB) 
of A; objects in area 8 are on the straight-back of both A and B. Relations for the areas 
on the other side of the line AB (area 15, 14, 13, 12, 11, 10, 9) are similar to those in 
the area [1-7] except that A and B are switched.

Using the same division of space with the two perpendicular lines of line AB, one 
passing through A and the second through B, different groups of relative orientations 
can be observed by viewers o with respect to ðA, oA

�!
) and ðB, oB

�!
Þ when they are 

located in different areas. For example, as shown in Figure 10 (right), imagine a viewer 
is in area 1 and facing towards the two landmarks, they will observe B on the right- 

Figure 9. Examples of different observed landmark configurations.
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front of A by imagining a vector oA
�!

and its perpendicular line passing A; similarly, 
they will observe A on the left-back (LB) of B by imagining a vector oB

�!
and its per

pendicular line passing B. Additionally, as landmarks are counted from left to right in 
this work and the nearer one is always considered first when multiple landmarks coin
cide, only eight of the original 15 orientation relations are needed in this work. More 
specifically, the observed relations of B with respect to oA

�!
, and A with respect to oB

�!

from the eight indexed area in Figure 10 (right) are respectively: 1 (RF, LB), 2 (RN, LB), 
3 (RB, LB), 4 (RB, LN), 5 (RB, LF), 6 (SF, SB), 7 (SB), and 8 (SB, SB). Four of them are on 
lines (2, 4, 6, 8), one on points (7), and the remaining three (1, 3, 5) are for regions.

3.2.1. Usage in practice
Although it seems a bit tedious to define the exact relations observed in each area, in 
practice, after deciding the viewing order of two co-visible landmarks, i.e. r(A,B) or r(B, 
A), a viewer will only need to select one index between 1 and 8 to describe their situ
ated area. Or, to make the task even simpler, viewers will only need to describe 
whether they are situated on the left, between, or on the right of the two ordered par
allel perpendicular lines by selecting from f1, 3, 5g. We will then be able to roughly 
differentiate their situated area.

When there are n co-visible landmarks (n � 2), the space previously divided using 
nðn − 1Þ=2 lines connecting every two co-visible landmarks (Figure 7) can be further 
divided using their perpendicular lines, totalling in 3nðn − 1Þ=2 dividing lines. In the 
case that the extent of landmarks are considered, the right extremity of the first seen 
landmark and the left extremity of the following landmark can be used to identify 
their relative orientations. The number of final areas will depend on the configuration 
of co-visible landmarks. For example, for the simple case shown in Figure 11 with 
three landmarks and line AC and being perpendicular to BC, the area marked in green 
where landmarks ABC are sequentially observed can be further divided into seven 

Figure 10. The left figure illustrates how the position of an object can be described by its relative 
relations to two points, A and B, when it is located within different areas, modified from (Freksa 
1992); The right figure shows the subdivision of space from where different relative orientation 
relations can be observed between points A and B when a viewer is situated in different areas. 
(Note that the two figures may appear similar at first glance due to their shared use of dichoto
mies. However, it is important to note that they are fundamentally distinct: relations shown in the 
left figure describe the location of objects from a map-viewing perspective, while relations 
observed in the right figure are from an egocentric perspective.).
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areas (three regions and four on lines) each annotated with different combinations of 
relative orientation indices.

One advantage of using relative orientation relations is that they are able to distin
guish between different qualitative distances. For example, as shown in Figure 12(a), a 
viewer on the left-hand side of the perpendicular line crossing the middle point of 
line segment will always be closer to the first seen landmark while a viewer on the 
other side will be closer to the following landmark. Another example is shown in 
Figure 12(b). Assuming a landmark of type A and one of type B are co-visible in three 
different locations o, the relative location between A and the viewer are the same in 
these scenarios, while the location of B2, B3 and B4 are different, then it would be pos
sible for us to differentiate between these locations as the indices of relative orienta
tions between A − B2, A − B3 and A − B4 are respectively 3 (RB-LB), 2 (RN-LB), and 1 
(RF-LB); we can also infer that B2 is the closest one to the viewer among the three. 
However, these relations do not resolve the orientation information more finely 
(Freksa 1992). For example, assume there is another location from where A − B1 could 
be seen. The same configuration of relative orientations could be observed between 
A − B1 and A − B2, though the angles h1 and h2 between the lines of sight of the two 
landmarks are different. Therefore, in the next section, the angles between the lines of 

Figure 11. The refined space subdivision based on the ordering and relative orientation informa
tion of three co-visible point-like landmarks. Note that lines AC, BC are perpendicular in this simple 
scenario.
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sight of ordered landmarks are introduced as the third component of the proposed 
place signature.

3.3. Adding qualitative angles between the lines of sight of ordered landmark 
pairs

As previously suggested by Levitt and Lawton (1990), the set of locations from where 
a constant angle oo � hAB � 180o can be observed between the lines of sight of two 
landmarks is constrained to circular arcs in 2D space, which can be plotted as contour 
lines as shown in Figure 13 with the corresponding angles marked in black. For visual
ization purposes, the contour lines are plotted for every 5o when angles are less than 
65o, and every 10o when angles are above. It can be seen from this figure that:

� when hAB ¼ 0o or 180o, the viewer must be co-linear with line AB. In this situation, 
the angular information hAB and the relative orientation r proposed in the Section 
3.2 can be used to infer each other uniquely, i.e., rðA, BÞ ¼ 6Þ $ hAB ¼ 0o, 
rðA, BÞ ¼ 8() hAB ¼ 180o;

� when hAB ¼ 90o, the corresponding contour line of hAB is the half-circle centered at 
the middle point of segment AB.

� when 90o < hAB � 180o, the corresponding contour lines are always between this 
half-circle and line AB, and between the two perpendicular lines of line AB passing 
through point A and B;

If viewers approach line AB by moving along one of its perpendicular lines that 
pass between A and B, then hAB will get continuously closer to 180o; but if they are 
outside the two perpendicular lines passing through A and B, then the observed angle 
can go larger, and then smaller, as one approaches the lines AB. If a viewer moves 
away from line AB, as the corresponding contour lines becomes quite large and the 
gap between two nearby arcs becomes wider, it suggests a higher ambiguity of view
ers’ possible location(s) between the two arcs.

Figure 12. (a) The space is divided by the perpendicular line crossing the middle point of line seg
ment AB. A viewer on the left-hand side of the middle line will be closer to the first seen landmark 
while a viewer on the other side will be closer to the following landmark; (b) The relative orienta
tions can distinguish between four locations from where A − B1, A − B2, A − B3 and A − B4 are 
respectively observed.
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Since humans are often not good at judging the exact value of an angle and it is 
not always feasible to use a separate measuring tool, qualitative angles between the 
lines of sight of landmarks are used in this work by judging approximately whether an 
angle is acute (i.e., 0o < h < 90o), obtuse (i.e., 90o < h < 180o) (Latecki et al. 1993), or 
right (i.e. h ¼ 90o). With this strategy, the region between the two perpendicular lines 
in Figure 13 (i.e. relative orientation rðA, BÞ ¼ 3) is further divided as:

1. if the observed angle is obtuse (noted as 1), then the viewer must be in area 3a;
2. if the observed angle is acute (noted as 0) and their relative orientation is 

rðA, BÞ ¼ 3, then the viewer must be in area 3b;
3. if the observed angle is exactly 90 degrees, then the viewer must be on the half- 

circle AB centered at the middle point of segment AB.

By combining the above three types of spatial relations described in Section 3.1 
to 3.3, 4nðn − 1Þ=2 lines are used to divide the space if all ordered pairs are consid
ered. This number is reduced to 4ðn − 1Þ if only adjacent pairs are considered. Each 
such divided area is called a place cell and has an associated place signature, con
sisting of three ordered sequences of qualitative relations between co-visible land
marks. For example, for the place cell (area outlined in blue) shown in Figure 13, 

Figure 13. The locations from where constant angles hAB can be observed between two landmarks 
are plotted as red contour lines with the corresponding angles marked. Note that when the angle 
is closer to 180o, the contour lines get much denser so they are drawn for every 5o (when 
h � 55o) and 10o (when h � 65o) for illustration purpose. Note: the area outlined in blue is an 
exemplar place cell before further division.
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the left bottom area has a signature S ¼ (AB, p, 1, acute), where (AB, p) means that 
A precedes B, r(A,B)¼1 means that B is on the right-front of A and A is on the left 
back of B, and ‘acute’ means that the observed relative angle between A and B is 
less than 90o:

3.4. Hedging place signatures in cyclic order

In certain locations, there exist a best viewing direction(s) such that all landmarks are 
located in the FOV, thus a unique place signature can be observed. In other locations, 
viewers may find landmarks are distributing around them and can start from any dir
ection before turning clockwise, so the observed sequences of landmark types and 
relations could be rotated. For example, the sequences seen from the enclosed middle 
area in Figure 14(a) could be hABCi, hBCAi, or hCABi, the same as from the adjacent 
regions. The starting element of these rotated sequences will only depend on the 
viewing direction not the exact location in the enclosed region. If we assume a viewer 
inside the enclosed area is facing B, then hBCAi will be observed, the same as the one 
from the adjacent top area marked in green.

To distinguish between the adjacent areas with same sequences of landmarks, 
Schlieder (1993) proposed to augment each landmark sequence with the complemen
tary directions of all landmarks. In more detail, as illustrated in the Supplementary 
material, given a list of co-visible landmarks P1 � � � Pn from a location o, the panorama 
is defined based on the 2n directed lines of oPi

�!
and Pio

�!
, and encoded as a sequence 

of upper-case letters (for the original landmarks) and lower-case letters (for the com
plementary directions of the original landmarks) in clockwise circular order. But this 
method can only distinguish between adjacent areas when a similar heading direction 
is assumed as a viewer moves across regions, which is reasonable for landmarks- 
guided robot navigation. But in our work, there is no constraint on viewers’ starting 
directions and no movement between regions is strictly required, so the above 
method is not applicable.

Instead, by considering the relative orientations of landmarks using perpendicular 
lines, the ambiguous non-enclosing area is first refined (Figure 14(b)) though the 
enclosed area is still indistinguishable (highlighted in green); then,by considering the 
qualitative angles between landmarks using half-circles, part of the enclosed area are 
separated (Figure 14(c)) except for those directly adjacent to the boundary (high
lighted in bright green and dark blue). A simple solution suggested is to flag each 
region based on the distribution of the visible landmarks with respect to the viewer, 
which is considered as the last component of place signatures. For example, a region 
is flagged as enclosed¼ 0 if visible landmarks are all located on one side of the viewer 
(i.e. the clockwise angle between the first and last landmarks is less than 180o); and 
flagged as enclosed¼ 1 if visible landmarks are distributed around the viewer (i.e. the 
clockwise angle between the first and last landmarks is greater than 180o). It can be 
seen in Figure 14(d) that all ambiguous adjacent areas are separated with the sug
gested solution.
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3.5. Practical steps for creating and managing a reference database of place 
signatures

The section explains the steps for creating a reference database of place cells and sig
natures. Assume the location and attributes of a set of landmarks is givens for a study 
area, and the visibility range of each landmark has been selected, the visibility areas 
occluded by buildings are first removed based on the line-of-sight of each landmark 
(Figure 16(a)) (Algorithm is provided in the supplementary material); then, the intersec
tions of all visibility areas are calculated to identify co-visible landmarks (a real world 
scenario for creating place cells is shown in Figure 15). After that,

1. if landmarks are considered as points, each of the intersection areas is divided suc
cessively using the lines connecting each pair of co-visible landmarks, the two 

Figure 14. An example of place cells created using different combinations of dividing lines. Note 
the shown relative orientations and qualitative angles are given for landmark pairs in the order of 
1–2, 1–3, and 2–3.
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corresponding perpendicular lines of each connecting line, and the circles cen
tered at the middle point of each connecting line segment.

2. if the extent of landmarks is considered, landmarks A, B on the X-Y plane are rep
resented by their convex hulls and each of the intersection areas is divided using 
the extended lines of the upper-upper, lower-lower, upper-lower and lower-upper 
tangents of each pair of co-visible landmarks, the two perpendicular lines of line 

Figure 16. (a) removing the visibility area of landmarks occluded by buildings; (b) storing cyclically 
equal place signatures (any rotated version could be stored as a representative).

Figure 15. A real-world scenario showing each step of the process of creating the place signatures 
(Google maps).
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ab (where a, b are the centroids of the two polygons) passing the two outer inter
sections a1b1, and circles centred at the middle points of line segment a2b2 

(where a2b2 are the inner intersections of line ab with the two polygons).

In each of the resulting areas, the same ordering, relative orientation, and qualita
tive angles can be observed between landmark pairs, so a random point is chosen 
from each such area to compute the corresponding place signatures. Note when the 
size of landmarks is considered, the two tangents from the viewer to each landmark 
are used to identify the ordering relations between visible landmarks. Finally, unique 
place signatures are identified and place cells sharing the same place signatures are 
indexed for ease of information retrieval in the next stage.

Additionally, the unique place signatures that are rotations of each other are con
sidered as cyclically equal, and stored using linked tables for future location retrieval. 
To check whether a sequence s1 is a rotation of s2, we first check whether they are of 
the same length; if so, we concatenate one sequence with itself then check whether it 
contains the other sequence. If so, they must be a rotation of each other. Note that all 
components of two place signatures need to be cyclically equal with corresponding 
shifts of the starting elements. One such example is shown in Figure 16(b).

3.5.1. Reference database management
The created place cells and signatures can be managed in a relational database, as 
shown in Figure 17, using a table Landmarks storing the information of individual 
landmarks, a table Place_cells storing the information of place cells, a table 
dividingLines storing all lines used to divide the space with their type fSL, PL, CLg
attached, and a table place_cells_relations storing the adjacency relations between cells 
with link to the associated dividing line.

Based on the type of a dividing line, we can infer that:

1. if viewers walk across a Straight Line (SL) connecting two visible landmarks A, B, 
the observed orders of the two landmarks will be reversed in adjacent areas;

Figure 17. The database diagram of landmarks, place cells and place signatures. Note the relative 
relations are stored between landmark 1–2, 1–3, and 2–3 sequentially.
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2. if viewers walk across one of the two Perpendicular Lines (PL) of the Straight Line 
connecting A, B, the observed relative orientations between the two landmarks will 
change between 1 and 3, or 3 and 5;

3. if viewers walk across a Circular Line (CL), the observed qualitative angles 
between the two corresponding landmarks will change between acute and 
obtuse;

4. if viewers walk across the visibility Boundary Line (BL) of a landmark, the land
mark will be removed or added into the visible landmark list.

3.5.2. Reference database updating to add new landmarks
When a new landmark is added into the study area, only those place cells within or 
with intersections to the visibility area of the new landmark need to be examined. 
These areas will be further divided using the three types of dividing lines of the corre
sponding visible landmarks, and the place signatures of the updated place cells will 
be calculated accordingly.

3.5.3. Impact of the uncertainty of reference landmark locations
Due to the inaccuracy of GPS devices used in data capturing, errors in map digitizing, 
remote sensing surveys, etc, it is not uncommon to see uncertainty in GIS maps 
(Fisher 2005, Cheung et al. 2004),. In this work, we assume the semantic information 
of landmarks are well defined in the maps, only the uncertainty in landmark locations 
is discussed.

Assume the degree of uncertainty in landmarks location is much smaller than their 
visibility range, this uncertainty will primarily affect how the spatial relations discussed 
above will be observed by viewers rather than which landmarks will be observed. By 
modelling the location uncertainty of each landmark using independent multivariate 
Gaussian distributions on X (Easting) and Y (Northing) directions, and assuming the 
errors on both directions are uncorrelated, the uncertainty of any two co-visible land
marks Aðx1, y1Þ and Bðx2, y2Þ can be propagated to the three types of space dividing 
lines SL, PL, CL using first-order Taylor series propagation, as detailed in the supple
mentary material. As each type of dividing line corresponds to a certain type of quali
tative spatial relation, we may expect viewers to observe a relation different to those 
stored in the database with a different likelihood which is depending on the viewers’ 
location w.r.t. individual dividing line. Using this procedure, the likelihood of viewers 
observing an inconsistent spatial relation between any two co-visible landmarks in a 
reference place cell can be pre-defined.

3.5.4. A simplified version of place signatures using relations between successively 
observed landmarks
Assume there are n co-visible landmarks to a viewer, there would be nðn−1Þ

2 sets of rela
tive relations between all ordered pairs of landmarks. For example, a signature with 35 
visible landmarks will have 595 sets of relative relations. Though providing this full set 
of information would make a place signature more unique (as discussed in Section 
3.1), it may be a great burden for humans to identify all such relations. Depending on 
the applications, it might be worth just providing the ðN − 1Þ groups of relations 
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between successively observed landmarks. Note that with a database of complete 
place signatures generated (as shown in Figure 17), this step is equivalent to extract
ing the kth elements from the relation vectors, where

k ¼ 1 −
iði − 1Þ

2
þ ði − 1ÞN, i ¼ 1, :::, N − 1; N � 2: (2) 

This simplified version will be used in the following location retrieval method.

4. A coarse-to-fine location retrieval method using visible landmarks 
based place signatures

To identify a viewer’s location, they first need to report their observations by starting 
from the left-most landmark in their FOV, and continuously providing the types of fol
lowing landmarks as well as their relative orientations and qualitative angles by turn
ing clockwise until returning to the starting landmark. This step could potentially be 
automated if a camera(s) is used to capture the scene, though the information of 
ordering, occlusion as well as relative angles between 2D landmarks can be extracted 
from a single (panoramic) image, extracting the relative orientations between consecu
tive landmarks may need 3D cues.

In this work, we assume such a place signature psj is ready for use and the refer
ence database is complete or at least the landmarks in urban environment are modi
fied gradually and the reference database is reviewed regularly such that the observed 
place signatures will be similar to those stored ones. Then, the location retrieval task 
turns to finding those place cell(s) in the database with the most similar signature PSi 

to the observed one, which is equivalent to finding those PSi with the smallest dis
tance to the queried place signature, written as:

PSi ¼ fa : a 2 DatabaseÙð8b 2 Database : distðb, cÞ � distða, cÞÞg (3) 

where c is the observed signature, and distð, Þ measures the similarity of two signa
tures (see Section 4.1 and Section 4.2 below). The ideal situation is that viewers can 
observe all surrounding landmarks and their relations correctly so an exact match can 
be found in the database, but this is often not the case due to inaccurate perception 
and possible uncertainty in landmark locations. For example, a landmark could be 
occluded by cars or identified as a wrong type by viewers, or certain non-existent 
landmarks could be reported by mistake.

In the following sections, we will first discuss the pros and cons of a basic distance 
metric for real-time place signature matching in Section 4.1, then introduce a coarse- 
to-fine location retrieval method based on signature indexing in Section 4.2.

4.1. The pros and cons of a basic distance metric: edit distance

As each place signature is composed of three ordered sequences of landmark types, 
relative orientations and qualitative angles, the effect caused by perception errors are 
exactly the same as deleting, inserting or substituting characters in strings. Edit 
Distance or Levenshtein distance (Navarro 2001), a commonly used distance metric for 
string matching, would be a good candidate metric for comparing place signatures.
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It measures the similarity of two strings by counting the minimum number of dele
tion, insertion, substitution or transposition (Damerau 1964) of characters required to 
transform the source string into the target one. When the complete set of relations 
between all ordered pairs of landmarks are considered, graph edit distance (Abu- 
Aisheh et al. 2015) can be used by representing landmarks as nodes with attached 
attributes (e.g. type) and representing ordering relations between landmarks as direc
tional edges with other types of spatial relations attached. Then, finding the edit dis
tance between two graphs is to find the minimum number of required edit operations 
on nodes and edges to transform one graph into another. For example, given an 
observed (and complete) place signature with three landmarks shown in Figure 18(a), 
its distances to all reference signatures are shown on the corresponding place cells in 
Figure 18(b). It can be seen that the queried place cell is correctly identified with a 
distance 0.

However, it is time-consuming to employ edit distance for real-time place signature 
matching, especially for large-size databases with long place signatures. As mentioned 
earlier, a simplified place signature with n landmarks is attached with a sequence of n 
landmark types, and two sequences of at least (n – 1) spatial relations between 
ordered landmark pairs. Given two place signatures with n1 and n2 landmarks, it will 
take quadratic time Oð3n1n2Þ to compare the two signatures of landmark types (and 
Oð2n1ðn1 − 1Þn2ðn2 − 1Þ=22Þ ¼ Oð2ðn1n2Þ

2
Þ time to compare the qualitative relations). 

If there are P distinct place signatures in the reference database and the maximum 
number of landmarks in a place signature is �n2, the total comparing time would be 
Oð3n1�n2 � PÞ, which is linear to the size of the reference database, the length of the 
queried place signature, and the maximum length of reference place signatures.

For example, given a randomly selected place signature with 17 landmarks 
hFFGGGGFGBGGGGGGJIi from the Leeds dataset (will be detailed in Section 5.1), it took 
0.04 seconds to calculate its edit distance to another randomly selected ignature with 
three landmarks, running on a laptop with Intel Core i7-7500U CPU @ 2.70 GHz proces
sor using MatLAB R2021a. If we assume all reference place signatures contain an aver
age of 35 landmarks and P ¼ 1, 178, 445 (i.e. numbers are from the Leeds dataset), it 

Figure 18. An example of using edit distance to compare place signatures. It can be seen that the 
corresponding place cell of the signature shown in Figure (a) is correctly identified as the one with 
the smallest distance (dist ¼ 0).

24 L. WEI ET AL.



would take approximately 0:04 � 35=3 � 1, 178, 445 seconds (around 152.76 hours) on 
the same machine to search through the whole database. In fact, it even took 
316 seconds to finish this procedure using parallel processing on a High Performance 
Computing facility with 12-cores. This time complexity makes edit distance impractical 
for real-time place signature matching. Therefore, it is important for us to investigate 
more efficient methods to quickly reduce the number of candidates such that more 
time-expensive yet more accurate methods could be used.

In the following sections, a coarse-to-fine location retrieval method is proposed by 
gradually reducing the number of candidates using weighted MinHash, Jaccard distance 
of bags, and Edit distance by considering the uncertainty in landmarks perception.

4.2. The proposed coarse-to-fine location retrieval method

4.2.1. Preparation step: representing place signatures as vectors of numbers using 
k-mers
To facilitate the use of other distance measures, the original place signatures are first 
mapped to vectors of numbers using K-shingles (k-grams) (Leskovec et al. 2014) (or k-mers 
in Bioinformatics (Arbitman et al. 2021)), which are substrings of length k contained in a 
document or a sequence. Each component of a place signature is represented as a vector of 
k-mers by selecting a certain k (or a combination of different ks). For example, given ten 
types of landmarks represented by fA, B, C, D, E, F, G, H, I, Jg, there could be up to 101 dis
tinct 1-mers and 102 2-mers in a sequence of visible landmark types. The vector of 1-mer 
term counts (tc) in a sequence hAFFJBAAAGBFFi would be h4200041001i, as shown in 
Table 2.

Other vector representations are also available (Table 2), such as the frequency of 
terms (tf) by dividing tcs with the total counts of terms appeared in a sequence, the 
appearance of terms (ta) by counting whether each term appears (1) or not (0) in a 
sequence, or the binarized term counts (btc) (Arbitman et al. 2021) by calculating the 
average count of all distinct k-mers in a sequence and keeping those elements with a 
count below the average as 0 and others as 1, etc. The representation using ta is 
selected in this work as it is shown in the experiments (Section 5) that it provides the 
best location retrieval performance compared to other representations.

Similarly, the sequence of relative orientations can be converted to vectors of num
bers using K1 ¼ Rk2½k1, k2�3

k terms of f1 2 3; 11 12 13 21 22 23 31 32 33; … g; and the 
sequence of qualitative angles can be represented using K2 ¼ Rk2½k1, k2�2

k terms of f0 

Table 2. An example of representing a sequence of landmark types hAFFJBAAAGBFFi as vectors 
of numbers.
k¼ 1 A B C D E F G H I J sum ¼ 12, fk¼1 ¼

12
101

tc: 4 2 0 0 0 4 1 0 0 1
tf 0.33 0.17 0 0 0 0.33 0.08 0 0 0.08
ta 1 1 0 0 0 1 1 0 0 1
btc: 1 1 0 0 0 1 0 0 0 0
k¼ 2 AA … AF AG … BA … BF … FF … FJ GB … JB … sum ¼ 11, fk¼2 ¼

11
102

tc 2 0 1 1 0 1 0 1 0 2 0 1 1 0 1 0
tf 0.18 0 0.09 0.09 0 0.09 0 0.09 0 0.18 0 0.09 0.09 0 0.09 0
ta 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0
btc 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0
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1; 00 01 10 11; … g, where ½k1, k2� set a range of values for k between k1 and k2. Then, 
we can either concatenate the three vectors or use them sequentially for distance 
matching. Though using them sequentially can reduce instantaneous memory require
ments, there is a potential that true positives could be filtered out in an earlier stage 
because it is unknown which part of the signature could be incorrectly observed. 
Therefore, the three vectors are concatenated as one vector for the following analysis.

After mapping each place signature into a vector of a fixed-length K ¼ K1 þ K2 þ

K3, alternative distance metrics include cosine distance (Ballatore et al. 2013, 
Shahmirzadi et al. 2018, Steiger et al. 2016), Hamming distance (Arbitman et al. 2021), 
Jaccard distance (Leskovec et al. 2014), etc. The time complexity of calculating these 
distances between two vectors is OðP�KÞ which is better than Edit distance but still lin
ear to the size of distinct vectors. More explicitly, O(Edit distance) � O(Jaccard bags) �
O(Jaccard Distance) � O(Hamming distance) � O(Cosine distance)). Detailed compari
son will be given in Section 5.3.1.

As observations are subject to errors and an exact match may not exist in the data
base, it would be useful if ‘similar’ reference place signatures are placed together so 
we will only to examine the distances to these similar ones.

4.2.2. Step 1: initial fast screening using locality sensitive hashing (LSH)
Hashing is a technique that maps input data of different length to a fixed-length of 
values or keys to quickly identify a set of potential matches for a given query 
Leskovec et al. (2014). Being different from other Hashing methods to avoid hashing 
collision, LSH (or approximate Hashing) methods hash vectors such that similar ones 
are more likely to be hashed to same buckets and dissimilar ones into different ones 
(Leskovec et al. 2014, Marçais et al. 2019, Arbitman et al. 2021). One most used LSH 
method is MinHash which efficiently approximates Jaccard distance (Leskovec et al. 
2014) by randomly generating n hash functions to simulate the random permutations 
of term ids, then mapping each input vector to a vector of n minimum hash values. 
This method can only be applied to unweighted vectors with binary values, such as 
vectors of term appearance (ta) (an example was given above in Table 2).

To take account of the exact number of terms appeared in each place signature, 
Weighted MinHash (Ioffe 2010, Shrivastava 2016) is used in this work to map vectors of 
term counts (tc) to vectors of nhash hash values such that the probability of drawing 
identical samples for a pair of inputs is identical to their Jaccard similarity. The algo
rithm is summarised in Algorithm 1.

Algorithm 1: Weighted MinHash (Ioffe 2010).

1: procedure W_MINHASH(x, nhash)
2: % generate random hash variables
3: K: ¼ length(x)
4: for i¼1 to nhash do
5: Sample ri, ci � Gamma(2,1)
6: Sample bij � Uniform(0,1)
7: end for
8: % calculate Hash values for each vector x
9: for i¼1 to nhash do
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10: for iterate over xj s.t. xj > 0 do
11: tj ¼ floor log xj

rij
þ bij

� �

12: yj ¼ exp ðrijðtj − bijÞÞ

13: zj ¼ yj � exp ðrijÞ

14: aj ¼ cij=z
15: end for
16: h� ¼ minjaj

17: hashPairs[i] ¼ (h�, th� )
18: end for
19: return hashPairs
20: end procedure

Using this method, the hash vectors of all reference place signatures are pre-com
puted offline and place signatures with the same hash vectors are placed in a same 
group, resulting in Pl unique reference hash vectors, where Pl � P: When an observation 
is provided by viewers, it is first hashed to a vector of nhash values using the same set of 
hash functions, then compared with all reference hash vectors by counting the number 
of positions with different hash values, noted as n0. By setting a threshold to the propor
tion of different positions t ¼ n0

nhash
, 0 � t � 1, those reference vectors with a proportion 

less than the threshold are considered as ‘similar’ candidates.
The comparison process requires O(d) time to compute the hash values of a vector 

of d non-zero values, and OðPl � nhashÞ time to compare with all reference hash vectors, 
which is linear to the number of hash functions nhash and the number of buckets Pl 

(i.e. the number of unique vectors of hash values). Then, candidates in the ‘similar’ 
buckets can be further examined in the following steps.

Note that since Weighted MinHash is an approximation of Jaccard distance (which 
requires exhaustive searching through the whole database), detailed comparison of their 
retrieval performance in terms of query time and precision-recall will be given in the experi
ment Section 5.3.3. Note the recall and precision rate of exhaustive searching using Edit dis
tance is not directly compared due to its impractical time complexity as discussed earlier in 
Section 4.1. Overall, LSH can significantly reduce the number of candidates in a fraction of 
the time compared to using Jaccard distance, and feeding this reduced set of candidates 
into the next stage with an exact matching metric will only take the corresponding propor
tion of the exhaustive searching time while maintaining the same precision rate. For 
example, the LSH approach can reduce the average number of candidates per query to half 
the size of the database at a recall rate 1 using nearly 10% of the searching time of using 
Jaccard distance. This suggests that by using at most 1=10þ 1=2 ¼ 3=5 of the exhaustive 
searching time, the same precision rate can be achieved with LSH. When a slightly smaller 
recall rate is considered, e.g. 0.97, the number of candidates can be reduced to 1/30 of the 
database size, which totaled in 1=10þ 1=30 ¼ 2=15 of the exhaustive search time.

4.2.3. Step 2: Candidates refinement using jaccard distance of bags with an adap
tive distance threshold
The Jaccard distance of two sets s1 and s2 is one minus the Jaccard similarity of the 
two sets, defined as the ratio of the size of their intersection and the size of their 
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union (Leskovec et al. 2014), written as:

Jðs1, s2Þ ¼ 1 −
jS1 \ S2j

jS1 [ S2j
¼ 1 −

P
minða1, a2Þ
P
ða1 þ a2Þ

(4) 

When the number of terms appeared in each sequence is considered, the above 
Jaccard distance turns to Jaccard distance of bags (Jaccard bags): the intersection of 
two sets is the sum of the minimum number of each term appeared in the two 
sequences, and their union is the total number of terms (Leskovec et al. 2014). For 
example, the 1-mer tc vectors of two sequences ‘ACBC’ and ‘ADCA’ are respectively 
a1 ¼ ½1 1 2 0� and a2 ¼ ½2 0 1 1�, and their Jaccard bags is Jbðs1, s2Þ ¼

1 −
P
½1 0 1 0�P
½3 1 3 1�

¼ 6=8:

After calculating the Jaccard distance to all candidates found in the weighted 
MinHash step, the k-nearest candidates or those with a distance less than a threshold 
can be kept as the refined candidates. Although setting up a high distance threshold 
would allow severely deformed place signatures being corrected retrieved (recalled), 
it will inevitably bring in more false positives for those queries with smaller percep
tion errors. Therefore, an adaptive threshold is chosen for each queried place 
signature by taking a fixed threshold t1 (e.g. t1 ¼ 0:59), or the lth (e.g. l¼ 50) lowest 
distance m(l) between the queried and reference candidates, whichever is 
smaller, ti ¼ minðt1, mðlÞÞ:

Through above procedures, the number of candidates can be quickly reduced to an 
acceptable level, enabling the usage of Edit distance to examine whether the number 
of candidates could be further reduced while retaining the same recall rate.

4.2.3. Step 3: Further candidates refinement using Edit distance by considering the 
uncertainty in landmarks perception
As each place signature is composed of three sequences, the edit distance between 
two place signatures ps1, ps2 is the weighted sum of the distances of the three com
ponents:

dðps1, ps2Þ ¼ w1 � dðtype1, type2Þ þ w2 � dðro1, ro2Þ þ w3 � dðra1, ra2Þ (5) 

All weighting factors are set equally as 1/3 in this work. The costs of deletion, inser
tion and substitution of elements were defined by considering the likelihoods of errors 
in landmarks perception. For example, we could imagine that it is often more likely 
for us to miss an existing landmark (e.g. due to occlusion) than to ‘discover’ a non- 
existent one if we assume the reference database is complete. Therefore, if a viewer 
reports a sequence hABCi and there are two reference signatures hABCDi and hABi, 
although the edit changes to them are both one, it would be more likely for the 
viewer to be in a place where hABCDi should be observed by missing a ‘D’ than in a 
location where hABi should be observed by adding a ‘C’. This suggests that, generally, 
the edit cost of deleting a landmark should be lower than the cost of inserting a land
mark. Similarly, we can imagine that once we observed a landmark, it would be very 
unlikely for us to misidentify its general type (given a limited number of options), at 
least more unlikely than missing the landmark. These observations can help us set up 
a global constraint on the edit cost of deleting, inserting and substituting landmarks in 
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this work:

Constraint 1 : Csubs � Cins � Cdel (6) 

In addition to the global constraint, it is worth noting that the costs associated 
with deletion, insertion and substitution changes in Edit Distance can vary depending 
on the attributes of landmarks. For example, imagine a situation that a viewer reports 
a sequence ACD, two candidate signatures ‘ABCD’ (‘bin’ stands for bin) and ‘AJCD’ (‘J’ 
stands for tree) would be ranked equally with one edit change of deletion for both 
candidates. But could ‘ABCD’ be slightly more likely to be the correct match given that 
bins are usually much shorter than trees thus more likely to be occluded by other 
objects?

In general, the bigger a landmark is on viewers’ retina or the image plane of cam
eras (which means taller, wider or closer), and more salient it is (depending on factors 
like colour, pattern, static/flashing etc.), the less likely it will be missed or being identi
fied as a wrong type. Therefore, it should be assigned with higher change costs. This 
relation could be expressed as: wn

1 / fheight, size, visual salienceg: For example, the 
above example of bin and trees deletion can be expressed as: wbin

1 Cdel < wtree
1 Cdel: A 

more detailed discussion on the uncertainty in landmarks and place signature percep
tion is given in the supplementary material.

After calculating the edit distance between a query place signature and all candi
dates, the final candidates are identified by choosing those with k-smallest distances to 
the queried one, or those with a distance below a threshold te ¼ b � lenðpsqÞ, where b 
is a proportion value (e.g. b ¼ ½0 1=6 1=6 3=6 4=6 5=6 1�) and lenðpsqÞ is the length 
of the queried place signature.

4.2.4. Assigning a probability to retrieved location hypotheses
After finding the final candidate(s) for each queried place signature, we can represent 
our estimate of the viewer’s initial location with a probability density function distrib
uted over the corresponding place cells of those candidate reference place signatures 
using a set of M particles loct ¼ ðloc1

t , :::, locM
t Þ: Each particle contains the information 

of a candidate place cell and is considered as a hypothesis of the viewer’s location. A 
uniform probability can be assigned to the viewer’s possible locations inside each 
place cell w.r.t the area of the place cell, as PðSiÞ ¼ 1=jXkj where Xk is the total vol
ume/area of a place cell. This information can be used to further refine the viewer’s 
location or trajectory as they start moving and continue providing their observations.

5. Experiments and evaluation

To evaluate the proposed location retrieval method, a reference database of place 
cells and place signature was created for the city centre of Leeds in the UK following 
the methods presented in Section 3 and 4; then, a set of place signatures were ran
domly selected and modified to simulate observations and used to evaluate the pro
posed location retrieval method by examining the query precision, recall and time 
complexity.
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5.1. Creating a reference database of place cells and place signatures

The studied area in this work is situated in the city centre of Leeds in the UK, as shown 
in Figure 19. It covers an area of 6:47km2, including 3:82km2 free space after exclud
ing those occupied by buildings. Semantic and spatial discrepancy were identified in 
landmark datasets sourced from Find open data and OpenStreetMap (OSM), for 
example, street lights were stored in a table called street_light in Find open data, but 
labelled as ‘highway’ ¼ ‘street_lamp’ in the OSM map. As detailed alignment between 

Figure 19. Overview of the Leeds Dataset. Top left) the location of the Leeds dataset in the UK. 
Top right) the studied area in Leeds city centre. A detailed view of the landmarks/place cells in the 
area outlined in blue is given in the bottom figure. Bottom) A zoomed view of the exemplar area 
divided by visibility boundary lines and lines connecting each visible landmark pair.
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different datasets is out the scope of this work, only the data from Find open data 
was used. The landmarks include street lights, traffic signals, bins, trees, bus stops, etc. 
Although there is no limit of the number and type of landmarks being used in the 
proposed method, a total of 8,108 landmarks of ten types were used in this experi
ment, respectively represented using one character in hABCDEFGHIJi, as summarized 
in Table 3.

Considering that the test scenario is in a dense urban environment, a 30-meter visi
bility range was selected from experience to construct the reference place signatures. 
The ‘free’ space was divided into 2,224,059 place cells of distinct place signatures with 
four components, including the observed ordered sequences of landmark types (sym
bols), relative orientations, qualitative angles, and whether the landmarks are distrib
uted all around the viewer, or only on one side. Some statistics of the created dataset 
are given in Table 4.

For example, the average number of co-visible landmarks in a place cell is 35, and 
the maximum number is 168 due to close distribution of parallel street lights in certain 
areas. In the dataset under study, when only considering the categories of the ordered 
sequences of landmarks in the place signatures, the most frequently occurring signa
ture or the one with the largest spatial coverage is hGGGi. This indicates that a 
sequence of three streetlights is observable in the majority of areas, as streetlights 
comprise 56% of the landmarks in the collected dataset. However, after adding the 
relative orientations and angles between landmarks, the place cells are further divided, 
resulting in a reduction of the maximum coverage of a single signature from 0:23km2 

to one third of that value (0:08km2)”.
Furthermore, as the size of individual place cell might be different, the count of 

place cells sharing the same signature may not well describe its potential location 
ambiguity. To better understand the discriminating ability of each place signature, we 
define their spatial coverage as the summed area of all place cells sharing this signa
ture, noted as scj; and their spatial deviation as the standard deviation of the centroids 
ðcx , cyÞ of these place cells, written as sdj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðcxÞ þ varðcyÞ

p
: Generally, place signa

tures with a small spatial coverage and deviation are relatively centralized, while those 
with a large deviation are Loosely distributed and viewers may observe them from 
many scatter locations. The maximum coverage of a single signature is 81, 738:7m2 

and the average is 1:71m2: The top-50 signatures with the largest coverage are dis
played in Figures 20 and 21.

In the following sections, the overall performance of the proposed location retrieval 
method is evaluated step by step using randomly selected and modified place signa
tures from the above dataset.

Table 3. Summary of the ten types of landmarks used in the experiments.
Landmark Symbol Number (%) Landmark Symbol Number (%)

bicycle_parking A 53 (0.65) road sign F 888 (10.95)
bin B 348 (4.29) street light G 4,566 (56.31)
bollards C 356 (4.39) toilets H 3 (0.037)
bus stop D 245 (3.02) traffic signals I 113 (1.39)
memorial E 2 (0.02) tree J 1,534 (18.92)
Total 8,108 (100)
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5.2. Evaluation criteria and observation simulation

5.2.1. Evaluation criteria for location retrieval
In this work, given the observed place signatures at N locations, a list of ‘similar’ refer
ence signatures will be retrieved from the database. The precision, recall rates and time 
complexity of location retrieval methods are evaluated. A retrieved candidate is consid
ered as a True positive (TP) if it is the correct correspondence of the queried signature, 
otherwise a False Positive (FP). If none of the retrieved candidates contain the queried 
one, this query is considered as a False Negative (FN). Then, the recall and precision 
rates are defined as below:

Table 4. This table shows the statistics of the created place cell and place signature database 
when applying different types of spatial relations on the Leeds landmarks dataset, including using 
ordered sequences of landmark Symbols (landmark type), ro(relative orientations between land
marks), ra (relative angles between landmarks), symbolsþ roþ ra (a combination of the three 
types of relations), or þenclosed (the three relations plus an extra element of landmarks 
enclosure).
Attributes symbols ro ra symbolsþ roþ ra þ enclosed

N. of distinct place signatures 1,178,445 1,916,974 9,011 2,224,059 2,232,311
Max. coverage of a single signature (km2) 0.2359 0.2032 0.2099 0.0817 0.0817
Avg. coverage of a single signature (m2) 3.23 1.98 422.86 1.71 1.71
Signature with the largest coverage hGGGi h3i h0i hGG, 3, 1i hGG, 3, 1, 0i

Figure 20. The spatial coverage and spatial deviation of the top-50 place signatures with the larg
est coverage when individual component of place signatures is used for comparison (1).
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Recall ¼

P
TP

P
ðTP þ FNÞ

¼

P
TP

N
, Precision ¼

P
ðTPÞ

P
ðTP þ FPÞ

(7) 

At a given recall rate, the method with a higher precision rate would suggest that 
fewer irrelevant candidates (FN) are retrieved; while at a given precision rate, the 
method with a higher recall rate would suggest that more true positive candidates 
can be identified for the same amount of candidates.

5.2.2. Simulation of observations with errors
The observed signatures by viewers are simulated by first randomly selecting N¼ 1000 
place signatures from the reference database (or any other numbers or multiple sets 
of place signatures), then distorted to mimic different types of perception errors. To 
do this, we assume the probability of a landmark being deleted (p1) varies between 
different types of landmarks, while the probability of a landmark being substituted 
(p2) or being inserted (p3) in each trial of observation are the same for all types of 
landmarks. For example, bollards are assigned a higher probability of p1(0.3) compared 
to traffic signals (0.05) as they are often much shorter than traffic signals which are 
often have flashing signals attached. The assigned values of p1 are given in Table 5, 
and p2 and p3 are set as 0.01 in the experiments. Note that these probabilities were 
chosen by authors based on the usual size, height and width of individual type of 
landmarks as the explicit information is not provided in the datasets. Future experi
ments will be needed to understand the actual probabilities in different environ
ments/scenarios.

Figure 21. The spatial coverage and spatial deviation of the top-50 place signatures with the larg
est coverage when individual component of place signatures is used for comparison (2).
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For each type of landmark in the selected place signatures, a random number 
Nsub

i , Ndel
i and Ni

ins 
are respectively generated from a binomial distribution 

binorndðNi, piÞ (i¼ 2, 1, 3) to simulate how many landmarks of this type are to be sub
stituted, missed, and inserted, where Ni is the total number of this type of landmarks 
in the selected place signatures. Note insertion is simulated after substitution and dele
tion so the number of landmarks is recalculated as Ni : Then, Nsub

i and Ndel
i unique ran

dom integers are generated respectively between ½1, Ni� to simulate which of this type 
of landmarks are to be substituted and deleted; and Ni

ins 
numbers are generated 

between ½1, Ni � to suggest where landmarks are to be inserted after. After that, each 
of the Nsub

i landmarks are replaced by a randomly generated different landmark type; 
each of the Ndel

i landmarks as well as their related spatial relations are deleted from 
the original signatures; and landmarks and relevant relations are inserted after each of 
the Ni

ins 
landmarks with randomly generated numbers between ½1, 10�, f1, 3, 5g and 

f0, 1g: In this step, two of such spatial relations with respect to the previous and fol
lowing landmarks also need to be inserted if a landmark is inserted after the first 
element and before the last element of a landmark sequence; otherwise, only one 
element of each such spatial relations needs to be inserted.

After these steps, the N modified place signatures are used in all following experi
ments to evaluate the location retrieval performance.

5.3. Evaluation of the proposed location retrieval method

The proposed location retrieval method is evaluated step by step by first comparing 
Jaccard bags with other distance metrics, then comparing Weighted MinHash with 
another approximated Hashing method, following by evaluating the proposed adap
tive distance metric and the contribution of using Edit distance by considering the 
uncertainty of landmarks perception.

5.3.1. Theoretical comparison of different distance metrics
Given a query place signature with n1 landmarks and K (

P
k 10k þ 3k þ 2kÞ terms to 

represent the three components of a place signature, the following distance metrics 
are evaluated, including:

1. The Edit distance between original place signatures. It will take OðP � 3n1�n2Þ time 
to search across the whole database of P reference place signatures, where �n2 is 
the maximum length of a reference place signature, where n1 and �n2 are the 
number and average number of landmarks in the query and reference place 
signatures;

Table 5. The probability of different types of landmarks being missed/deleted in a trial of 
observation.
Landmark Symbol p1 Landmark Symbol p1

bicycle_parking A 0.2 road sign F 0.1
bin B 0.2 street light G 0.05
bollards C 0.3 toilets H 0.3
bus stop D 0.1 traffic signals I 0.05
memorial E 0.2 tree J 0.1
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2. The cosine distance between term frequency (tf), term counts (tc), or tf-inverse docu
ment frequency (tf-idf) vectors (Ballatore et al. 2013, Steiger et al. 2016, 
Shahmirzadi et al. 2018,). In tf-idf, the frequencies of terms appeared in a 
sequence are weighted by their Inverse Document Frequency in the corpus of 
sequences idfðtÞ ¼ 1þ log10

N
ntþ1 , where N is the number of reference signatures 

and nt is the number of them containing the term t.
Given an observed place signature, it is first represented as a vector vq of K tf 

or tf-idf values by concatenating the three components, then compared with all 
reference tf or tf-idf vectors vp using cosine distance: cosðvp, vqÞ ¼ 1 − vp�vq

kvpkkvqk
: As 

the inverse document frequency idfðt; PÞ of terms appeared in a corpus was pre- 
calculated and assumed to be consistent, we only need to calculate the term fre
quency in each queried signature. It will take OððPc þ 2Þ � KÞ time (with time 
OðPc � KÞ for dot production and O(2K) for calculating the norm of a queried vec
tor) by using this measure where Pc is the number of distinct tf (or tf-idf, tc) refer
ence vectors and K is the number of terms;

3. The Hamming distance between term appearance (ta) or binarized term counts vec
tors using logical exclusive function xor as both vectors are binary. It will take 
OðPh � 2KÞ time using this measure where Ph is the number of distinct reference 
Hamming vectors;

4. The Jaccard distance between binary term appearance (ta) vectors using logical xor 

and or functions as: Jðs1, s2Þ ¼

P
xorða1, a2ÞP
orða1, a2Þ

: It will take OðPta � 4KÞ time by using 

this measure where Pta is the number of distinct reference ta vectors.
5. The Jaccard bags between tc vectors (Section 4.2). It will take OðPtc � 4KÞ time by 

using this measure where Ptc is the number of distinct reference vectors of tc.

As the length n2 of original place signatures can be as high as 168 (as shown in 
Table 4), P is generally large, and the number of distinct term count vectors Ptc is gen
erally higher than the number of distinct binary vectors of term appearance Pta, it can 
be expected that O(Edit distance) � O(Jaccard bags) � O(Jaccard Distance) �
O(Hamming distance) � O(Cosine distance)).

5.3.2. Evaluation of the recall and precision rate of different distance measures
To compare the performance of different distance measures, a threshold between 
½0, 1� is selected for each distance measure other than Jaccard bags, whereas a thresh
old between ½0:5, 1� is selected. Reference place signatures with a distance below the 
selected threshold are considered as ‘similar’ candidates of a queried sample. Then, 
the recall rate, the average number of candidates per sample (which is equivalent to 
the inverse of Precision rate), and the average time per query using different distance 
measure are compared. At a same recall rate, a lower average number of candidates 
would suggest a better performance.

As shown in Figure 22 (left), the three methods using Jaccard bags with tcs (blue 
lines) gave the smallest number of candidates at a same recall rate, followed by the 
methods using Jaccard distance with term appearance (blue lines), cosine distance 
(green lines) and Hamming distance (magenta lines). With regards to the performance 
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of different k-mers, generally, when the same distance measure is considered, the 
methods using 2-mer suggest lower numbers of candidates than those using 1-mer, or 
the combination of 1-mer and 2-mers. This may be because in some sense the order
ing information between consecutive landmarks is kept in 2-mer terms but completely 
lost in 1-mer terms. Note that k-mers with k> 2 are not used in this experiment due 
to the high memory demands. For example, selecting k¼ 3 would convert each place 
signature into a ð103 þ 33 þ 23 ¼ 1, 035Þ-dimensional vector, which requires approxi
mately ten times the memory for storing all reference data compared to using 
k¼ 2 ð102 þ 32 þ 22 ¼ 113Þ:

While for the average time per query, as seen from the right part of Figure 22, 
both Jaccard distance and Jaccard bags take more time to query through the whole 
database (blue and blue bars) than other methods, which is consistent with our theor
etical analysis in Section 5.3.1. Note edit distance is not directly compared at this stage 
due to its unpractical time complexity as discussed in Section 4. However, once the 
number of candidates is reduced to an acceptable level using other methods, its per
formance will be compared in a later section. All experiments were run on a PC with 
an IntelVR CoreTM i7-7500U CPU @ 2.70 GHz and one processor.

5.3.3. Evaluation of the locality sensitive Hashing methods on location retrieval
As Jaccard distance and Jaccard bags based methods provide the best performance in 
recall-precision, experiments in this section evaluate whether locality-sensitive hashing 
techniques can reduce the initial query time while keeping the performance in loca
tion retrieval. To do this, the tc vectors of reference place signatures are mapped to 
Weighted MinHash vectors using n random hash functions, and the term appearance 
vectors are mapped to unweighted MinHash vectors (Leskovec et al. 2014). Both 
methods require time OðPl � nÞ which is linear to the number of hash functions n and 
the number Pl of unique hash vectors. As there are generally more unique tc vectors 
than term appearance vectors, we would expect Weighted MinHash take slightly more 

Figure 22. Comparison of multiple distance measures for location retrieval using 1000 randomly 
selected and distorted place signatures. (Left) The recall rate and the average number of candi
dates per quert; (right) the average query time per sample.
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time than the non-weighted method if same numbers of hash functions are used. The 
recall rates and the average number of candidates per query of the two methods are 
shown in Figure 23 were drawn by choosing different thresholds for the proportion of 
different buckets between ½0, 1�:

As shown in Figure 23 (right)), the query time per sample was significantly reduced 
to nearly ten percent of the original exhaustive searching time by using approximate 
hashing methods (green bars and red bars).

With regarding to their performance in identifying candidates, it can be seen from 
Figure 23 (left) that tests using weighted MinHash (blue/magenta lines) generally sug
gest lower numbers of candidates than MinHash (green lines) at the same level of 
recall rate. More specifically, the weighted method with 50 random functions on 2-mer 
tc vectors (red dashed line with stars) gave the lowest number of candidates when 
the recall rate is below 0.97 while using the same method on 1þ 2-mer terms (red 
solid line with triangles) gave the lowest number of candidates when the recall rate is 
above 0.97. This suggests that 2-mer tcs are enough for most cases while the combin
ation of 1-mer and 2-mer terms are needed for some extreme cases.

To keep as many true positives as possible, a large threshold is selected for 
Weighted MinHash method with 1þ 2-mer terms, followed by Jaccard on 2-mer terms 
(as seen in Figure 22) for location refinement. The average number of candidates was 
brought down to 1/30 of the size of the database at recall rate 0.97, and half the size 
of the database at recall rate 1. Then, feeding these candidates into the next exhaust
ive step will only take the corresponding proportion of the original computation time 
but retain the same levels of recall rate. For example, it can be seen from Figure 23
(left) that after combing these two steps, the curve of recall and average candidate 
numbers (shown as a magenta dashed line with squares) is almost the same as the 
exhaustive method using Jaccard bags on 2-mer terms (blue line with stars), but the 
average query time per sample was reduced from 1:97s to 0:40s, shown as stacked 
red/blue bars in Figure 23 (right). Note that the average number of candidates still 

Figure 23. Comparison of the performance of Jaccard Distance, Jaccard bags, MinHash and 
Weighted MinHash in location retrieval using 1000 random place signatures, Left) The recall rate 
and the average number of candidates per query. (Right): the average query time per sample by 
using different methods.
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increases sharply when the recall rate approaches 1. This is because the same distance 
threshold was used on Jaccard Bags for all queried samples and a large distance 
threshold will inevitably bring in more false positive for certain queries. In the next 
section, the proposed adaptive threshold on Jaccard bags is evaluated.

5.3.4. Evaluating the contribution of adaptive distance thresholds on Jaccard dis
tance of bags
In this experiment, an adaptive distance threshold is chosen for Jaccard bags for each 
queried sample by taking the smaller value of a fixed threshold t and the lth lowest dis
tance m(l) between the queried sample and all candidates. The results of using l¼ 50 
and l¼ 110 with a list of fixed values of t between 0.5 and 0.9 are shown in Figure 24
as dashed lines in blue. It can be seen that the average numbers of candidates are sig
nificantly reduced. For example, at a recall rate 0.9, the average number of candidates 
was reduced to around 3, 000 by using ti ¼ minð½t, mð110Þ�Þ on Jaccard Bags, which is 
only one-third of the number when using a fixed threshold (line in magenta), and one- 
eighth of the number when using weighted MinHash only (red dashed line).

5.3.5. Evaluating the contribution of edit distance by considering the uncertainty 
in landmarks perception
The candidates can be further refined using edit distance. The results by setting all 
costs as one (i.e. Csubs ¼ Cins ¼ 1), and by considering the difference in landmarks per
ception with a higher substitution and insertion cost (i.e. Csubs ¼ Cins ¼ 5, Cdel ¼ 1) are 
shown in Figure 25. It can be seen that whether a large or a small threshold is chosen 
for Jaccard bags, the corresponding maximum recall rates can all be achieved after 
adding the edit distance while the average numbers of final candidates are reduced, 
especially by setting different edit costs. For example, by using minðt, mð110ÞÞ, the 
average number of candidates was reduced from 7, 000 to 36 while keeping the max
imum recall rate. Although it is more time-expensive using using minðt, mð50ÞÞ as 
more candidates need to be examined by edit distance, the maximum recall rate is 

Figure 24. Comparison of the performance of Jaccard distance of bags on place signature match
ing by using or not using an adaptive distance threshold.
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slightly higher. Therefore, depending on the required precision of specific applications 
and the available computing resources, a different l could be selected.

5.3.6. Comparison with other methods
As the concept proposed by Weng et al. (2020) is close to our approach, the same Leeds 
dataset was tested on that method by comparing the performance on place cells generation 
and signature query. After sampling the study area as regular grids for every 10 meters on 
the East-West and North-South directions, 257x253¼ 65, 021 point locations and their corre
sponding place signatures (i.e. sequences of visible landmarks and quantified angle indices 
w.r.t North) were created. The average coverage of the reference place signatures is 248m2 

compared to 1:71m2 using our approach (Table 4). We then queried through this reference 
database using the same set of 1000 simulated viewer observations of randomly selected 
and modified place signatures. Note that as accurate measurement of angles are not 
assumed to be available in our work, only the sequences of landmark types were used for 
query. With the exhaustive searching method, it took about 45.9 seconds in average to cal
culate the edit distance between a query and all reference signatures. And the averaged 
query time was 0.36s (before applying edit distance) and 6.31s (after adding edit distance) in 
our approach by comparing all components of place signatures. Furthermore, only 4, 275 of 
the created reference signatures using Weng et al. (2020) were exactly the same as those 
1178, 445 signatures encoded with our method (Table 4), this is partly because occlusions 
from buildings was not considered, and partly because the fixed-distance space division 
method only encode the observations from the center point of each 10x 10m2 square. It is 
difficult to quantify the difference between the observations from each center point and 
elsewhere inside each grid as this will depend on the number, type and distribution pattern 
of landmarks surrounding each individual place cell. Our approach provides a much more 
complete and accurate description of the environment. It also provides much richer informa
tion to help infer viewers’ movement if they start crossing different types place cell dividing 
lines, as previously discussed in Section 3.5.

Figure 25. The recall rate and average number of final candidates after using edit distance. (Left) 
the results after adding the basic edit distance are shown as red lines, and the results by consider
ing the difference in landmark perception are shown in magenta and green. (Right) the average 
query time per sample.
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Concerning other vision-based place recognition methods relying on geo-referenced 
images or LiDAR datasets, we think that they are not directly comparable to our 
approach, first because they are challenging to be scaled up in terms of the availability 
of the reference datasets and of the complexity of the retrieval process through the vis
ual features being used; second because although they may provide a more precise loca
tion or 6D pose, this is often achievable within a smaller search area; but this does make 
them complementary to our approach which can be exploited upstream to reduce the 
search area quickly and thus reducing the overall time complexity.

6. Discussion

6.1. Ability to handle similar scenes

In this work we proposed a location retrieval framework using urban landmarks, such as 
road signs, along with qualitative spatial relations to describe and retrieve locations. We 
acknowledge that this can be a challenge in the environment where we have a lot of 
similar scenes. However, this is a common problem in vision-based approaches, which is 
why in this work we propose to add the spatial configurations of visible landmarks to 
describe places, more specifically, the perceived qualitative spatial relations of visual 
landmarks in an egocentric reference frame. These relations are frequently used by 
humans for communicating places but are not well-studied in the literature for localisa
tion. By including these spatial relations in a framework for location indexing, the search 
area of an agent’s initial locations can be quickly narrowed down. The initial location(s) 
can then be refined using other cues, such as changes in observations when the agent 
moves or additional sensor input. It should be noted that our goal is not to solve the 
location-retrieval problem in one go, but rather as an upstream method by exploring the 
available information in large-scale open data. This approach has a range of potential 
applications where an agent’s initial location is unknown or cannot be trusted, such as to 
re-estimate an agent’s global location for loop closure in vision-based global mapping or 
in urban canyons, or to process the visual content from social networks or crowd- 
sourced data with unreliable geolocation metadata.

6.2. Point objects

In this work, urban objects are simplified as point objects for usage in a place signa
ture. This is partly due to the availability of the reference data, and partly to simplify 
the approximate retrieval approach by enhancing the signature with semantic infor
mation instead of complex geometrical and visual attributes. It is possible to expand 
this semantic information with more detailed visual, semantic and spatial attributes if 
available as explained in the supplementary material. Note that when considering 
attributes such as 3D shapes and other characteristics for perception, more compli
cated features may be more suitable instead of only treating landmarks as points.

7. Conclusion

In this work, a qualitative place signature is proposed to describe locations using the per
ceived qualitative spatial relations between co-visible landmarks from viewers’ 
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perspective. A framework is proposed to divide the space such that consistent place sig
natures can be observed inside each place cell; and a coarse-to-fine location retrieval 
method is proposed to identify viewers’ possible location(s) by efficiently reducing the 
number of candidates using weighted MinHash and Jaccard bags, hypotheses refinement 
using edit distance by considering the uncertainty in landmarks perception. A reference 
database was created for the city of Leeds in the UK using openly available landmark 
datasets and observations were simulated to evaluate the proposed location retrieval 
method. The results suggest that by using weighted MinHash and Jaccard bags with 
adaptive distance thresholds for initial screening, the number of false positives can be sig
nificantly reduced to an acceptable level in less than a second; while incorporating the 
edit distance by considering the difference in perception error could further reduce the 
number of candidate locations by keeping the high recall rate. As the proposed 
approach only requires storing the configuration of high-level landmarks and utilising an 
approximate Hashing step for fast screening, it is easy to scale up thus can be exploited 
as an upstream approach for other location/pose refinement techniques. This technique 
could be used indoors, given a suitable database of landmarks and it will help in urban 
canyons where there are not enough satellites in view. For future work, we plan to create 
a more complete and coherent reference landmarks dataset by resolving the semantic 
and spatial discrepancy in different datasets using methods such as ontology alignment 
(Stoilos et al. 2005, Li et al. 2009) and geometry matching (Du et al. 2017), to test the pro
posed method in virtual reality environment by considering landmarks with extended 
sizes, and to extend the proposed scheme from single location retrieval to trajectory 
identification by considering the movements of agents.
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