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Abstract

Modern transportation systems are moving towards shared mobility with diverse demands, and resource
aggregation and coordination among different transport modes have become more and more significant. In this
study, we investigate the integrated train capacity allocation and timetable coordination for multimodal railway
networks to release the congestion of transfer hubs between metro and mainline rail networks. We consider
that a part of vehicles can be dynamically allocated to some metro trains to increase their capacity to take
more passengers at transfer hubs alighting from mainline rail trains. We formulate this problem into a mixed-
integer linear programming (MILP) model, which simultaneously generates the coordinated timetables of both
metro and mainline rail trains, as well as the train capacity allocation strategy in the network. The objectives
are to minimize the passenger travel time, passenger transfer time at the hubs and the operational costs for
rail managers. To tackle computational challenges in real-world instances, we develop an exact branch-and-cut
solution algorithm to generate (near-)optimal solutions more efficiently. In our algorithm, we propose five sets
of valid inequalities that are dynamically added to the model to strengthen the linear relaxation bounds at
each node. We also design a customized branching strategy in the search tree by imposing branching on the
key decision variables regarding the train sequences at transfer stations. Real-world case studies based on the
operational data of a realistic multimodal railway network in Beijing are conducted to verify the effectiveness
of our approach. The results demonstrate that our branch-and-cut-based approach outperforms commercial
solvers regarding solution quality and computational efficiency. Compared to the current non-coordinated train
timetable in practice, our approach by flexibly allocation train capacities can reduce the passenger transfer
waiting time by over 40%.

Keywords: Multimodal railway network, Capacity allocation, Train timetable coordination, Passenger de-
mand

1 Introduction
In an era of globalization, characterized by a surge in the demands for both human and freight mobility, swift

and efficient transportation service is increasingly crucial. Among the various evolving transportation services,
multimodal transportation, which stands out as an integrated solution catering to diverse needs, has been promoted
throughout the world and attracted significant attention in recent years (OECD, 2020; Wang et al., 2023c). For
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1

Manuscript File Click here to view linked References

https://www2.cloud.editorialmanager.com/trc/viewRCResults.aspx?pdf=1&docID=15677&rev=1&fileID=224454&msid=e55e118c-cf4d-44c5-b581-986c39ab07ed
https://www2.cloud.editorialmanager.com/trc/viewRCResults.aspx?pdf=1&docID=15677&rev=1&fileID=224454&msid=e55e118c-cf4d-44c5-b581-986c39ab07ed


example, the Shift2Rail Joint Undertaking launched Shift2MaaS to create an EU-wide multimodal travel experience
for all European citizens by connecting rail with other transport modes (Shift2Rail, 2020). Siemens Mobility, a
division of Siemens, has recognized multimodal transportation as a core business imperative for developing seamless
travel experiences for passengers in the next two decades (Siemens, 2023).

In public transportation systems, metro stations, as comprehensive passenger transport hubs of multiple trans-
portation modes (such as railways, buses, and aviation), play a prominent role in fostering regional economic
development, tourism, and cultural exchanges. With the increase in passenger demand, these metro stations always
suffer from significant transportation pressures due to the substantial influx of transfer passengers from external
transportation systems and the daily commuting needs of nearby residents. Each day, tens of thousands of passen-
gers gather, disperse, or transfer at these hubs for social and economic activities. For example, over two hundred
thousand passengers utilize trains and metros at the prominent transportation hub, Beijing West Railway Station
for their leisure and business needs, as illustrated in Figure 1. To enhance the operational efficiency of the urban and
regional transportation systems, there is an urgent requirement for well-integrated transport stations that facilitate
convenient travel and smooth transfer. A highly effective method to realize this objective involves the collaborative
optimization of schedules across various transportation modes, especially at these stations.
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Figure 1: Illustration of passenger congestion at transfer hubs

Moreover, the excessive passenger demand at metro stations takes challenges as a large number of passengers often
cannot board trains promptly due to the insufficient existing train loading capacity. This results in severe congestion
and operational risks at these stations. To alleviate the congestion, the concept of virtual coupling (VC), which
enables multiple vehicles to be virtually coupled into a platoon with very short following distance, has been promoted
globally and garnered significant interest in recent years (Quaglietta et al., 2020; Chai et al., 2023a). In the context
of virtual coupling, multiple vehicles can be rapidly coupled into a platoon with very short following distances,
while a platoon comprising multiple vehicles can also be decoupled to separated vehicles Different compositions of
train platoons offer the flexibility to modify the maximum number of passengers to which a train can cater. In
this sense, virtual coupling can potentially mitigate station congestion to improve service quality for passengers
while saving operational costs from the rail managers’ perspective in metro systems. Therefore, virtual coupling
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has become a hot research topic recently. Nevertheless, we notice that most of these studies are devoted to the
conceptual frameworks (Di Meo et al., 2019; Quaglietta et al., 2020) or control methodologies for virtual coupled
trains (Liu et al., 2021b). Meanwhile, the existing literature hardly addresses the scheduling of trains with different
compositions within multimodal networks at the tactical planning level.

Therefore, this paper focuses on optimizing the scheduling of trains with different loading capacities in a mul-
timodal railway network, including mainline railways and metros. In the network, mainline railways cater to
long-distance passengers traveling between cities, while metros not only bridge regional areas with external railway
systems but also serve the daily traveling needs of nearby residents, as shown in Figure 2. We aim to design a
coordinated timetable for railway and metro trains to minimize passenger traveling times and enhance transfer
efficiency. Meanwhile, with the high flexibility of virtual coupled trains, we consider employing trains with multiple
vehicles or carriages with larger loading capacities for busy metro stations to alleviate congestion while scheduling
trains with only a single group of carriages along less crowded metro lines to reduce operational costs. To this end,
we formulate a rigorous mathematical model with the objective of minimizing passenger travel time and operational
costs to optimize the coordinated timetable and train capacity allocation strategies simultaneously. By analyzing
the mathematical properties of the proposed model, we develop an exact branch-and-cut algorithm, consisting of
several sets of valid inequalities and a series of customized branching rules, to obtain high-quality solutions effi-
ciently. We also conduct real-world instances to quantitatively reveal the benefits of future multimodal rail mobility
and cast marginal insights for rail managers.
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Figure 2: Illustration of VC trains for multimodal railway transportation with transport hubs

1.1 Literature review

The train scheduling problem, which aims to generate an optimized timetable that is to be carried out by a
limited train fleet, is a very active and significant research field in railway traffic management over the past years.
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In particular, most recent studies in this field focus on the demand-oriented train schedule optimization problems,
for both single-line and network.

In single-line cases, the passenger demand-oriented train scheduling problem aims to optimize the service fre-
quency and arrival/departure times, in order to adapt to the time-varying demand (Wang et al., 2018; Lu et al.,
2023). For example, Niu and Zhou (2013) derived a time-variant demand-oriented timetabling approach and for-
mulated a nonlinear 0-1 integer model, solved by a genetic algorithm to minimize the total number of waiting
passengers and weighted remaining passengers. Barrena et al. (2014) addressed non-periodic timetable design with
time-variant passenger demands in a metro corridor and developed two nonlinear mathematical formulations to
minimize the passenger waiting time at the stations. Due to the computational intensity of these two models, they
proposed a fast adaptive large neighborhood search (ALNS) algorithm to obtain a good solution.

In the case of a network with multiple lines, the demand-oriented train scheduling problem becomes much more
complex due to the large volume of transfer passengers. There has been a growing focus on train timetable co-
ordination in urban railway networks to enhance transfer efficiency and provide seamless service for passengers.
For instance, Wu et al. (2015) developed a timetable synchronization optimization model to minimize the transfer
waiting time in a metro network during peak hours. Kang et al. (2016) explored the first train scheduling synchro-
nization problems, aiming to reduce the passenger’s long waiting time when transferring from one metro line to
another. Guo et al. (2020) proposed an MIP model to optimize the last train schedule to maximize the successful
transfer events and shorten the big difference between the last departure times. Considering a metro network where
different lines share physical tracks and/or platforms, Liu et al. (2023b) integrated train timetables, passenger flows,
and train speed profiles to dynamically adjust train schedules online, aiming to optimize the passenger satisfaction
and operational costs. They developed a bi-level model predictive control approach by considering rolling stock
availability and passenger demands at the higher level, while designing timetables and train speed profiles at the
lower level. In their follow-up work Liu et al. (2023a), they further proposed a scenario-based distributed model
predictive control approach to handle uncertain passenger flows in urban rail transit networks considering transfer
passengers between different lines. Note that the above literature only focuses on passenger-oriented train schedul-
ing within a single railway transportation mode, without considering the arrival patterns of transfer passengers
between multimodal railway networks.

Different from the above studies on specific operation periods (e.g., coordination of first or last trains), we observe
a growing number of studies exploring network-level train coordination problems to improve transfer conveniences
through the whole operation horizon (Wang et al., 2020; Yin et al., 2023). For example, Yin et al. (2021) developed
an MILP model for the coordination of train timetables among different metro lines to minimize the crowdedness of
transfer stations. A decomposition-based ALNS algorithm is proposed to enhance the computational efficiency of
large-scale instances. Yuan et al. (2023) integrated the train timetable coordination and skip-stop plan optimization
for metro networks to improve service quality. A decomposition and approximate dynamic programming approach
is designed to convert the original network-level problem into a series of small-scale subproblems for each metro
line.

Meanwhile, a few studies also addressed the coordination of trains in a multi-mode transportation framework, and
enhancing multimodal transfer efficiency has become a significant area of interest. Liu et al. (2021a) and Gkiotsalitis
et al. (2023a) reviewed the existing studies on public transport transfer coordination and synchronization in recent
years at the tactical planning phase and the real-time control phase respectively. In their follow-up work (Gkiotsalitis
et al., 2023b), a mixed integer quadratic program with a convex objective function was proposed to coordinate the
arrival times of trains on different urban rail lines that serve stations along a joint corridor, in order to maintain an
even headway among trains and reduce passenger transfer times. Long et al. (2020) formulated a bi-objective mixed-
integer linear programming model for the scheduling coordination of the last metro train and high-speed railway
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trains. Huang et al. (2021) proposed three integer programming models progressively to optimize the coordination of
the last metro train schedule with high-speed railway and aviation system. The estimation of transfer time between
different modes is the most important factor affecting the coordination quality. Wang et al. (2023c) focused on an
urban passenger transport hub and utilizing multimodal passenger simulation. They proposed a bi-objective integer
nonlinear programming model (INLP) incorporating train schedules and flexible routing plans in metro systems to
minimize passenger waiting time and operating costs simultaneously. Ning et al. (2023) investigate the integrated
optimization of last train timetabling in urban rail transit lines and bridging service (taxis and buses) design with
consideration of passenger path choices. Using pre-constructed path sets, they proposed a bi-objective mixed-integer
nonlinear programming (MINLP) model to minimize total passenger travel time and total passenger travel cost.
Ke et al. (2024) formulated a multi-commodity flow model in a time-space network to address the intermodal
timetabling problem for trains and flight services considering two different transfer modes: rapid walking transfer
and shuttle bus transfers. An Alternating Direction Method of Multipliers method is developed to decompose the
problem into four routing subproblems (i.e., train routing, flight routing, shuttle routing, and passenger routing) to
enhance the computation efficiency. As they considered unlimited train capacity, the effects of transfer passenger
demands were not explicitly captured in this work.

As the emerging technology VC allows for more flexible train services through rapid coupling and decoupling,
recent studies have emphasized that the advantage of VC is to dynamically adjust train capacity to meet fluctuating
passenger demand. For example, considering vehicle capacity can be dynamically adjusted according to the arrival
passengers at each station, Shi et al. (2020) and Shi and Li (2021) proposed an MILP model to optimize the timetable
and vehicle capacities in an urban transit line, with the objective of minimizing passenger waiting time and vehicle
operating costs. Zhou et al. (2022) developed an integrated approach to jointly optimize the train timetable and
rolling stock circulation plan in a metro line. They addressed non-equilibrium and time-dependent passenger
demand in this bidirectional line by considering a flexible train composition mode, which allows rolling stocks to
change their compositions through (un)coupling operations according to the passenger demand. Furthermore, Guo
et al. (2022) and Shi et al. (2022) presented a train capacity allocation strategy by flexibly reserving and releasing
carriages in an overcrowded metro line to minimize the total passenger waiting time and passenger accumulation
risk at all involved stations. Note that the above literature only considers a single urban transit line to address the
train scheduling problem, and the train timetables among multiple transportation modes are ignored. Considering
multiple connected lines in an urban rail transit network, Chai et al. (2023a) proposed an MILP formulation to
optimize the schedule of flexibly coupled trains. However, the model was solved by the commercial solver CPLEX,
which limits its implementation in real-world scale instances. In addition, the formulation only allows the train
composition of a maximum of two vehicles.

1.2 Paper contributions

From the relevant literature in this field, we see that there has been a growing trend to investigate the management
and operation of urban rail transit networks. Nevertheless, we notice that little research has been devoted to
multimodal railway networks, e.g., metro, mainline railway networks, etc. Different from the existing studies, this
paper aims to propose an integrated modeling approach for the capacity allocation and train coordination of multiple
rail networks with the help of emerging VC strategies. A detailed comparison of our study with relevant literature
is presented in Table 1. Our unique contributions are summarized as follows.

(1) We first propose the integrated capacity allocation and timetable coordination for multimodal railway net-
works, in which a part of vehicles can be dynamically allocated to different metro trains to alleviate the congestion
of transfer hubs between metro and mainline rail networks. We develop a novel MILP formulation for this problem
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in order to collaboratively optimize the timetables of both metro and rail networks as well as the train capacity
allocation strategy. The formulation integrates two types of network-dependent modeling approaches, that is the
space-time network for metro systems and the event-activity network for railway systems, to tackle train scheduling
problems in multimodal railway networks. Our objective function is constructed by considering multiple factors,
including passenger travel time, passenger transfer time at the hubs, and the operational costs for rail managers.
Different from the state-of-art, our approach not only incorporates internal passenger demand in railway and metro
systems but also addresses the coordination of these two modes by considering transfer passenger demand at transfer
stations in transport hubs.

(2) As our models contain a few sets of binary variables to indicate the synchronization of multiple networks,
which leads to computational difficulties with MIP solvers, we analyze the characteristics of our formulation and
then develop an exact branch-and-cut-based solution algorithm to generate high-quality solutions more efficiently.
In our approach, we propose and prove five sets of valid inequalities, which are dynamically added to the model to
enhance linear programming (LP) bound at each branching node. We also design a tailored branching strategy by
directing branching on critical binary variables (i.e., those determine the coordinated timetable of trains) within
the search tree to obtain better feasible solutions more quickly.

(3) To verify the effectiveness of our approach, we conduct two sets of experiments involving a set of small-scale
instances and a set of real-world large-scale instances based on the historical data of the railway-metro network in
Beijing. We compare the computational results obtained by our approach with two benchmarks, i.e., the commercial
MIP solver CPLEX and the practical timetable in Beijing. The experiments demonstrate that our branch-and-cut-
based solution approach evidently outperforms CPLEX. Our experiments also find that our approach can reduce
passenger transfer waiting time by over 40% compared with the current train timetable. Our results also reveal
several meaningful insights for rail managers in practice.

The rest of this paper is organized as follows. Section 2 presents a detailed description of the studied problem.
Section 3 formulates the problem into an MILP model. Section 4 proposes an exact branch-and-cut-based solution
approach. Section 5 reports two case studies, i.e., a small case and a real-world case based on the detected data in
a realistic railway-metro network. Section 6 gives our conclusions and future research directions.

2 Problem Statement

2.1 Description of multimodal railway networks

Our study considers a multimodal railway transportation network consisting of multiple interconnecting railway
lines I and metro lines J . In railway systems, each line i ∈ I is associated with a set of railway stations Ui,
numbered as {1, 2, · · · , Ui}. Passengers in railway systems typically book their tickets in advance using a seat
reservation system to plan their journeys. Thus, in our problem, passengers with the same journey (i.e., sharing
the same origin and destination) are consolidated into passenger group p ∈ Pi on line i, and each passenger group
must be served by a train. We denote the number of passengers in group p as Np, and their planned origin and
destination stations are denoted as op and dp, respectively. In metro systems, each metro line j ∈ J is associated
with a set of metro stations Sj numbered as {1, 2, · · · , Sj}, where stations at both ends of each metro line j is
connected with a depot. The metro network involves a set of depots D for rolling stock allocation. The maximum
capacity of each depot d ∈ D to allocate rolling stock is Zmax

d . In addition, each depot d is connected to one or
more stations, i.e., trains from depot d can serve multiple lines simultaneously. We define Jd ⊂ J as the set of lines
that can be served by the rolling stock from depot d. Our problems consider to schedule a group of metro trains
Kj from a depot, passing through a sequence of stations {1, 2, · · · , Sj} and back to another depot on each metro
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Table 1: Summary of recent relevant studies on train timetable coordination and train capacity allocation in
comparison with our work

Publication Infrastructure
Capacity
allocation

Research
problem

Objective
Model
structure

Solution
algorithm

Kang et al. (2016)
Subway
network

No The first train timetabling Train arrival time differences
and the number of missed trains

MIP Local search

Yin et al. (2021) Urban rail
network

No Timetable coordination The congestion level of stations MILP ALNS

Wang et al. (2023b)
Metro
network

No The last train timetabling The latest time for passengers MILP Improved GA

Yuan et al. (2023)
Metro
network

No Timetable coordination
with skip-stop plan

The total passenger waiting
time and station crowding

MINLP Decomposition
and ADP

Yin et al. (2023) Urban rail
network

No Timetable synchronization The total waiting time of
passengers and synchronization
quality indicator

MIP ALNS

Ning et al. (2023) Multimodal
urban net-
work

No The last train timetabling
and bridging service design

The total passenger travel time
and total passenger travel cost

MINLP Adaptive itera-
tive algorithm

Zhou et al. (2022) Single metro
line

Yes Train timetabling and ca-
pacity allocation

The operational costs and pas-
senger waiting time

MILP VNS

Pan et al. (2023) Single metro
line

Yes Train timetabling and ca-
pacity allocation

The total involved costs MILP CG based
heuristics

This paper
Multimodal
rail network

Yes Capacity allocation and
timetable coordination and

The passenger travel time and
operational costs

MILP Branch-and-cut

1 Symbols description in Table 1: mixed integer programming (MIP); genetic algorithm (GA); approximate dynamic programming

(ADP); column generation (CG); Adaptive Large Neighborhood Search (ALNS); variable neighbourhood search (VNS)

line j. In this process, we need to consider that the rolling stock on each line j ∈ Jd is required to cover the trains
Kj with limited resources in depot d.

In the multimodal railway network, a set of transfer stations Vij connects railway line i with metro line j, where
passengers can transfer between railway and metro trains. In our problem, we consider a passenger from lines i

being able to transfer from a railway train to a metro train on line j if the departure time of the metro train k ∈ Kj

is neither earlier than nor too late with respect to the passenger’s arrival time at the transfer station s ∈ Vij . This
transfer indicates walking from one railway station to a metro station within the same transfer hub. When such a
transfer is feasible, we say that the timetables of two trains coordinate. Specifically, two trains on different lines
coordinate if the departure time of metro train k falls within a suitable time window with respect to the arrival
time of railway train l. We refer to this time window as coordination time window, denoted as [Lij

s , L
ij

s ], where Lij
s

and L
ij

s represent the minimum and maximum coordinated times at station s, respectively. Note that the minimum
coordinated time Lij

s , which denotes the minimum difference for a feasible transfer between the departure time of
metro trains and the arrival time of railway trains, ensures that passengers can walk from one railway station on
line i to a metro station on line j, implicitly representing the transfer walk time for passengers at transfer station s

in our problem. As shown in Figure 4, trains 1 and 4 on line i fail to coordinate with train k because train 1 arrives
too early and train 4 arrives too late at the transfer station s. Conversely, railway trains 2 and 3 do coordinate with
metro train k at station s. Our study aims to design train timetables in the multimodal rail network that facilitate
as many smooth transfers as possible. To this end, we design train timetables for both railway and metro systems
by slightly adjusting the departure and arrival times of trains in the network.
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Figure 3: Illustration of network layout in our problem

In addition to considering transfer passengers from railway trains at transfer hubs, we also need to account for
the arrival of passengers within the metro systems. In metro systems, it is widely recognized that the passenger
demand is time-dependent with varying arrival rates at different time periods. The dynamic passenger demand is
typically captured by using the passenger arrival rate for every station over time, which is a continuous function of
time. To model this time-dependent passenger demand, we discretize the planning time horizon (e.g., from 7:00 am
to 11:00 pm) into a set of timestamps T = {1, 2, · · · , T}, where τ is the index of timestamps. We assume that the
passenger demand remains constant within each timestamp, similar to the treatment in Huang et al. (2020). Thus,
we denote narr

s,τ,j as the number of arrival passengers at station s and timestamp τ on line j.

Remark 2.1 In principle, all passenger demand for rail transportation networks is essentially origin-destination
(OD) dependent. Nevertheless, the dynamics of passenger flow on the mainline railway are less evident than that
of the metro system. In the mainline railways, passengers book their tickets and make their travel plans in advance
according to the timetable proposed by the railway operators, so the number of passengers is almost predetermined
by the sold tickets based on the published schedule. That is to say, the specific OD-based passenger demand can be
captured accurately and treated as static constants (see e.g., Yang et al. (2016); Zhang et al. (2020)). In comparison,
the passenger flow in metro systems has different characteristics, since passengers usually do not care about the
train timetables before their trips, leading to the dynamic (time-dependent) features due to the randomness of
demands. In this sense, the OD matrices are seldom available as it’s uncertain where passengers will alight when
they arrive at the origin station. Instead, the arrival rates at each station can be easily collected in real time. Thus,
a common method to address dynamic time-dependent passenger demand in metro systems is to characterize it
through the passenger arrival rate at each station over time. For example, Wang et al. (2018), Huang et al. (2020),
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and Zhou et al. (2022) optimized train schedules by considering time-dependent passenger arrival rates and verified
the effectiveness of their models on Beijing metro systems.

As there is a sudden influx of transfer passengers from railway systems, along with the internal arrival of passenger
flows, extreme congestion often occurs at busy transfer stations in metro lines. To alleviate such congestion, we can
flexibly allocate additional capacity for trains on the overcrowded lines. One effective strategy involves employing
trains with multiple carriage groups on congested metro lines, while utilizing trains with a single carriage group
for other lines. In our study, the train composition, i.e., involving the number of carriage groups, can be changed
according to passenger demand at the depots D, located at both ends of each metro line. Note that in our problem,
train composition is only allowed to change at the depots, while remaining unchanged at stations during their
operations, similar to the assumptions in Zhou et al. (2022) and Pan et al. (2023). We note that since train
compositions remain unchanged at stations during their operations, but are changed before departure at the depots
located at both ends of each metro line, the dwell times of trains at each station are not affected by the flexible
capacity allocation. Thus, in our study, we consider the dwell times of trains at stations as given input parameters.
For each metro line j, we denote set Cj = {cmin

j , cmin
j + 1, · · · , cmax

j } as the number of carriage groups involved in
a train, where cmin

j and cmax
j respectively represent the minimum and maximum numbers of carriage groups that

can be included in a train. Taking Figure 5 as an example, the capacity of each group of carriages is set as 100,
resulting in train capacities of 100, 200, and 300 with one, two, and three groups of carriages, respectively. Figure
5(a) shows the number of cumulative passengers at each station without train capacity allocation, which is limited
by the fixed loading capacity of trains with two groups of carriages. Consequently, 100 passengers cannot board
train 1 at stations A and B, reducing service quality and increasing safety risks. In contrast, Figure 5(b) shows the
flexible capacity allocation strategy. Train 2 consists of only one group of carriages to save the operational costs,
while train 3 is executed by three groups of carriages. Obviously, train 3 with a larger loading capacity can transport
more passengers than the train without capacity allocation in Figure 5(a). As a result, the number of cumulative
passengers at stations is significantly reduced (e.g., from 100 to 0 at stations A and B), improving passenger service
quality.
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Figure 5: A simple example of train capacity allocation

2.2 Objective and Assumptions

The rail managers aim to provide high-quality services to passengers while also considering operational costs. In
the context of multimodal synchronization between railway and metro systems, the efficiency of passenger transfers
at transport hubs and the overall travel experience in each transportation mode are crucial for enhancing service
quality. Hence, our consideration involves the passenger travel and transfer time within railway and metro systems.
Furthermore, in congested metro networks such as the Beijing metro, passenger demand may exceed the total train
capacity, particularly during peak hours or in densely populated areas. This can result in a significant accumulation
of passengers at all involved stations, causing inconvenience and dissatisfaction. To avoid passengers being stranded
at stations, we implement a flexible train capacity allocation strategy in metro systems, ensuring that all waiting
passengers can board the first arriving train. In practice, the train capacity allocation strategy will certainly
influence the cost of train operations. Arising from the strategy, there is a trade-off relationship between the
passenger travel times and operational costs. Specifically, more trains involving more carriages with larger loading
capacity can reduce passenger travel and waiting times, while undertaking more carriages in service will inevitably
increase the operation cost for rail companies (Shi et al., 2022). Thus, our study aims to minimize the total travel
time of all considered passengers in multimodal transportation systems and the operational costs of train capacity
allocation.

To formulate the described problem without loss of generality, we adopt the following assumptions throughout
this paper.
Assumption 1. Our study only considers tackling congestion at metro stations caused by the substantial influx
of transfer passengers from railway systems, along with the daily commuting needs of nearby residents.
Assumption 2. In our study, the flexible capacity allocation strategy can better match the passenger demand
by employing trains with multiple carriage groups on congested metro lines, while utilizing trains with a single
carriage group for other lines. This strategy allows the train composition, i.e., involving carriage groups, to be
changed according to passenger demand (i.e., the number of waiting passengers). Thus, we assume that all waiting
passengers can board the first coming train with the flexible train capacity allocation strategy in metro systems.
Assumption 3. We assume that each railway station can accommodate all the trains that stop at the station.
Assumption 4. In our study, we assume that the section running time and station dwell time of each metro train
are predetermined, in order to optimize the train headway, departure times, and train formulation plans (Chai
et al., 2023b).
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The basic idea that Assumption 1 is valid in our study is as follows: In multimodal railway networks, train
timetable coordination is crucial to improve service quality for two-way transfer passengers—those moving between
metro and railway lines. In practice, the rail managers are more concerned with the large volume of passengers
alighting a mainline train (over 1,000 passengers for each mainline train), since a large part of these passengers taking
metro trains will lead to overcrowded transfer stations. Thus, we do not explicitly consider passengers transferring
from the metro to the railway. Assumption 3 is derived from the premise that, in principle, the capacity of railway
stations is generally sufficient to accommodate train stops except in cases of disruptions and disturbances. In this
sense, the capacity of railway stations in our problem has little effect on train scheduling, so we do not consider the
capacity of railway stations to simplify the model formulation.

3 Mathematical Formulations
This section presents the construction of mathematical formulations for the studied problem. Specifically, section

3.1 introduces our mathematical formulation. Here, we formulate the objective function and derive five sets of
constraints related to metro and railway train scheduling, the flow of passengers within these systems, and the
coordination of timetables. The linearization of our formulation is presented in Section 3.2. The overall MILP
optimization model is provided in Section 3.3.

3.1 Model Formulation

In this section, we construct the mathematical formulation for the investigated problem. First, we list all the sets,
parameters and decision variables used in the model formulation in Table 8 and Table 9 in Appendix A, respectively.
Then we present the derived constraints related to the integrated optimization problem. Finally, we introduce the
objective function in our formulation.

3.1.1 Constraints regarding metro train timetable

In metro systems, the train timetable contains information such as the departure and arrival times of each train
at each station, which provides important guidance for train operations. In our problem, the running time and the
dwell time of metro trains are given as input parameters, thus we only need to formulate the departure times of each
train to determine the metro train timetable. To this end, we define integer decision variables wj

k,s to represent the
departure time of train k at station s on metro line j, and the arrival times of each train can be obtained according
to wj

k,s. The constraints related to the metro train timetable are formulated in constraints (1)-(6):

wj
k,s+1

− wj
k,s = T run

k,s,j + T dwell
k,s+1,j , ∀k ∈ Kj , s, s+ 1 ∈ Sj , j ∈ J (1)

wj
k+1,s − wj

k,s ≥ hmin
j , ∀k, k + 1 ∈ Kj , s ∈ Sj , j ∈ J (2)

wj
k+1,s − wj

k,s ≤ hmax
j , ∀k, k + 1 ∈ Kj , s ∈ Sj , j ∈ J (3)

bjk,s,τ =







1− djk,s,τ , ∀k = 1, s ∈ Sj , j ∈ J , τ ∈ T

djk−1,s,τ − djk,s,τ , ∀k ∈ Kj\{1}, s ∈ Sj , j ∈ J , τ ∈ T
(4)

wj
k,s = djk,s,1 +

∑

τ∈T \{1}

τ · (djk,s,τ − djk,s,τ−1
), ∀k ∈ Kj , s ∈ Sj , j ∈ J (5)

djk,s,τ−1
− djk,s,τ ≤ 0. ∀τ, τ − 1 ∈ T , k ∈ Kj , s ∈ Sj , j ∈ J (6)

Constraints (1) are formulated to calculate the departure time of each train between two stations, where T run
k,s,j

represents the running time of train k from station s to station s+1 and T dwell
k,s,j represents the dwell time of train k
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at station s on line j. In general, the parameters T run
k,s,j and T dwell

k,s,j are pre-given by the dispatchers. To ensure the
safety of train operations, constraints (2) specify that the time difference between the departure of two successive
trains should be larger than the minimum headway time. Furthermore, constraints (3) impose a maximum headway
time between successive trains to guarantee a certain level of service in metro systems. To formulate train departures
with a time-indexed approach, an auxiliary binary variable djk,s,τ is introduced to represent train departures. Here,
djk,s,τ = 1 indicates that train k departs from station s before or at timestamp τ , and djk,s,τ = 0 otherwise.
Another auxiliary binary variable bjk,s,τ is introduced to determine if the timestamp τ falls between trains k − 1

and k at station s on line j. The value of variables bjk,s,τ can be derived from variables djk,s,τ , formulated as
bjk,s,τ = djk−1,s,τ − djk,s,τ in constraints (4). Specifically, if and only if train k − 1 departs before or at τ and train
k departs after τ , resulting in djk−1,s,τ = 1 and djk,s,τ = 0, then we have bjk,s,τ = djk−1,s,τ − djk,s,τ = 1; otherwise
bjk,s,τ = 0. Constraints (5) describe the relationship between wj

k,s and djk,s,τ . Specifically, when train k departs from
station s at the first timestamp (i.e., τ = 1), wj

k,s = djk,s,1; otherwise, the departure time wj
k,s of train k at station

s is equal to the earliest timestamp τ at which djk,s,τ equals 1, i.e.,
∑

τ∈T \{1} τ · (djk,s,τ − djk,s,τ−1
). Constraints (6)

ensures that variable djk,s,τ is non-decreasing with respect to the timestamp τ .
We use Figure 6 as an example to illustrate the departures of two successive trains k − 1 and k from the same

station s on line j. Trains k − 1 and k depart from station s at timestamps 2 and 5, respectively, as indicated by
the green dotted rectangle. For any timestamp τ ≥ 2, we have djk−1,s,τ = 1, and for any τ ≥ 5, djk,s,τ = 1. Thus,
we can derive that bjk,s,τ = djk−1,s,τ − djk,s,τ = 1, for τ = 2, 3, 4, which represents the time interval between the
departures of these two successive trains from station s. Some previous studies in the literature used this approach
to formulate linear constraints for passenger boarding operations (e.g., Niu and Zhou (2013), Zhou et al. (2022)).
In our study, we use the representation of bjk,s,τ to model waiting passengers in metro systems, as detailed in the
next section.

1 2 3 4 5 t

Train k-1 Train k

Station s

j

ksb t

1,

j

k sd
t-
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ksd t

0

0

0

1

0

1

1

1
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1

0
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Figure 6: Illustration of two train departures with the time-indexed formulation

One of the most significant differences in train capacity allocation is its ability for trains to change compositions
flexibly, involving groups of carriages and improving the utilization of rolling stock resources. This flexibility
enhances the utilization of rolling stock resources. Thus, an essential consideration for the flexible allocation of
train capacity is the efficient utilization of resources within the constraints of a limited fleet size. To this end, we
define a set of integer variables vjd, j ∈ Jd, d ∈ D to indicate the fleet size of rolling stock assigned to line j from
depot d, and integer variables cjk to represent the number of carriages involved by train k on line j. As the use
of carriages does not exceed the designated fleet size, we derive the following set of constraints regarding limited
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rolling stock resources:

∑

j∈Jd

vjd ≤ Zmax
d , ∀d ∈ D (7)

∑

k∈Kj

cjk ≤ vjd, ∀j ∈ Jd, d ∈ D (8)

cmin
j ≤ cjk ≤ cmax

j . ∀k ∈ Kj , j ∈ J (9)

Constraints (7) guarantee that the fleet size of rolling stock from depot d to the connected lines Jd should be less
than the maximum fleet size Zmax

d of available rolling stock in depot d due to the limited budget of rail managers.
Constraints (8) ensure that the number of carriages utilized by trains operating on line j should be less than the
allocated fleet size of rolling stock for that line from depot d. Constraints (9) set the threshold [cmin

j , cmax
j ] for the

number of carriages involved by each train.

3.1.2 Constraints for modeling passenger flow in metro systems

To model the passenger flows on each metro line, we define the following five sets of decision variables for line
j: nbjk,s denotes the number of passengers boarding train k at station s; nwj

k,s represents the count of passengers
waiting for train k at station s; ncjk,s indicates the residual capacity of train k at station s; najk,s represents the
number of passengers alighting from train k at station s; and nrjk,s represents the number of passengers remaining
in train k after departing from station s. The constraints related to the modeling of passenger flows are formulated
in constraints (10)-(15):

nbjk,s = nwj
k,s, ∀k ∈ Kj , s ∈ Sj , j ∈ J (10)

nbjk,s ≤ ncjk,s, ∀k ∈ Kj , s ∈ Sj , j ∈ J (11)

nwj
k,s =







∑

τ∈T bjk,s,τ · narr
s,τ,j +

∑

e∈Earr
is

∑

p∈Pi
Np · r

i
p,e · φ

ij
k,e,s ·R

ij
s , ∀s ∈ Vij , k ∈ Kj , i ∈ I, j ∈ J

∑

τ∈T bjk,s,τ · narr
s,τ,j , ∀s ∈ Sj , k ∈ Kj , j ∈ J

(12)

ncjk,s =







cjk ·Dmet, ∀s = 1, k ∈ Kj , j ∈ J

cjk ·Dmet − nrjks−1
+ najk,s, ∀s ∈ Sj\{1}, k ∈ Kj , j ∈ J

(13)

najk,s =







0, ∀s = 1, k ∈ Kj , j ∈ J

Qj
s · nr

j
k,s−1

, ∀s ∈ Sj\{1}, k ∈ Kj , j ∈ J
(14)

nrjk,s =







nbjk,s, ∀s = 1, k ∈ Kj , j ∈ J

nrjk,s−1
+ nbjk,s − najk,s. ∀k ∈ Kj , s ∈ Sj\{1}, j ∈ J

(15)

Constraints (10) and (11) indicate the number of boarding passengers nbjk,s is associated with the number of
waiting passengers nwj

k,s and the residual capacity ncjk,s of train k at station s. In our problem, as the flexible train
capacity allocation strategy can provide a larger loading passenger capacity with more carriages into service, all
waiting passengers can board the first coming train, which is formulated by constraints (10). In addition, constraints
(11) guarantee that the number of boarding passengers nbjk,s at station s does not exceed the residual capacity
ncjk,s of train k. In fact, constraints (10) and (11) indicate that there are no stranded passengers (who are unable
to board the first coming train due to the limited residual capacity) at stations in metro systems addressed in our
problem. Constraints (12) describe that the passengers nwj

k,s waiting for train k consist of those arriving at station
s after the departure of train k−1 and those transferring from railway train connected by train k at transfer station
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s ∈ Vij . Constraints (13) indicate the residual capacity ncjk,s of train k at station s (when the passengers have
alighted at the station s but have not boarded) is related to the number of in-vehicle passengers (i.e., the difference
between the number of onboard passengers nrjk,s−1

from previous stations and the number of alighting passengers
najk,s at current station) and the number of carriages cjk involved by the train at current station. Constraints (14)
indicate the number of alighting passengers at station s is proportional Qj

s to the number of passengers on board
nrjk,s−1

at the previous station. We note that there are no alighting passengers at the origin station s = 1 for
each line, which is the starting point of the passenger loading dynamics. Constraints (15) model the number of
passengers remaining onboard when train k departs from station s. These constraints indicate that when a train
dwells at a station, some in-vehicle passengers whose destination is the current station need to alight, and then
passengers waiting on the platform are allowed to board this train if there exists available capacity.

Remark 3.1 In our model, binary variables bjk,s,τ and djk,s,τ are mainly used to establish the relationship between
traffic flow and passenger flow within metro networks. Specifically, by incorporating variables bjk,s,τ and djk,s,τ , we
derive constraints (12) that describe the number of waiting passengers based on time-independent passenger arrivals
and train departure times. In this sense, variables bjk,s,τ and djk,s,τ are actually auxiliary decision variables in our
model to model the demand-driven timetable problem by interconnecting with passenger flow demand and traffic
flow supply. We note that this type of binary variables bjk,s,τ and djk,s,τ is associated with a very huge number,
which makes the model difficult to be solved by commercial solvers effectively. In our problem, given the fixed train
running times and dwell times, once the departure time of each train at the first station is determined, i.e., for any
train k on line j, when we have the value of djk,s,τ for s = 1 and τ ∈ T , the values of all remaining variables djk,s′,τ

for s′ ∈ Sj\{1} and τ ∈ T can be subsequently obtained. Leveraging this property, we can derive the following set
of equalities regarding variables djk,s,τ :

djk,s′,τ ′ − djk,s,τ = 0, ∀τ, τ ′ ∈ T : τ ′ = τ +
s′−1
∑

s′′=1

(T run
k,s′′,j + T dwell

k,s′′,j), s = 1, s′ ∈ Sj\{1}, k ∈ Kj , j ∈ J

It is worth noting that although this set of equalities is quite extensive, it implicitly simplifies the complexity
involved in determining the variables djk,s,τ , to improve the computation efficiency.

3.1.3 Constraints regarding railway train scheduling

In our problem, the scheduling of railway trains can be formulated using an event-activity network, a widely
employed method for traffic management in railway systems (Zhu and Goverde, 2019). Within railway networks,
the train scheduling for each line i ∈ I can be represented by an event-activity network. This network is denoted as
a directed graph Gi = (Ei, Ai), where Ei is the set of events, and Ai is the set of activities for line i. For a railway
line i, an event e ∈ Ei signifies either the arrival or departure of a train at a station, while an activity a ∈ Ai

connects two such events. Let Edep
iu ⊂ E represent the subset of events corresponding to departures from station u,

and Earr
iu ⊂ E denote the subset of events corresponding to arrivals at station u. We use le to represent the train

associated with event e. Activities Ai are categorized into train activities and headway activities. A train activity
a ∈ Atrain

i can be either a running activity a ∈ Arun
i between departure and arrival events at adjacent stations or

a dwell activity a ∈ Adwell
i within the same station. A headway activity represents the headway time between two

trains running on the same track in a segment, denoted as a ∈ Atrack
i . Figure 7 illustrates the event-activity network

Gi = (Ei, Ai) for two trains running on a railway line i with three stations.
To ensure the safety of trains in railway lines, we define the binary decision variable λi

a, which determines whether
event e takes place before or after event f , a = (e, f), and variable tie, which represents the beginning time of event
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Figure 7: Illustration of an event-activity network formulation for two trains and three stations

e in line i. Based on the above decision variables, we next present the following constraints to formulate railway
train timetable:

tie − qie ≥ 0, ∀e ∈ Ecr
i , i ∈ I (16)

tie − qie = 0, ∀e ∈ Ei\E
cr
i , i ∈ I (17)

tif − tie = T run
a , ∀a = (e, f) ∈ Arun

i , i ∈ I (18)

tif − tie ≥ T dwe
a , ∀a = (e, f) ∈ Adw

i , i ∈ I (19)

λi
a + λi

a′ = 1, ∀a = (e, f) ∈ Atrack
i ∧ a′ = (f, e) ∈ Atrack

i , i ∈ I (20)

tif − tie +M1(1− λi
a) ≥ hmin

a , ∀a = (e, f) ∈ Atrack
i , i ∈ I (21)

λi
a − λi

a′ = 0. ∀(a, a′) ∈ Bi, i ∈ I (22)

In our study, we focus on the coordination between mainline railway and metro rail systems, instead of optimizing
the train schedules for the whole mainline railway network. Therefore, our model focuses on optimizing the schedules
of trains that stop at the transfer stations. To avoid the case that our optimized train schedules affect the whole
mainline railway network, constraints (16) and (17) specify that the beginning time of events Ecr

i can be adjusted
slightly based on the planned timetable to improve the coordination of train timetables in multimodal networks.
Constraints (18) indicate the running time T run

a of a train in each segment, where activity a corresponds to the
running activity in line i. Constraints (19) indicate the dwell time T dwe

a of a train in each railway station, where
activity a corresponds to the dwell activity in line i. Constraints (20) indicate the sequence of two departure/arrival
events e and f , i.e., event e takes place before or after event f . If event e takes place before event f , λa = 1; otherwise,
λa = 0. Constraints (21) guarantee that if event e ∈ E takes place after event f ∈ E, represented by tif − tie < 0,
then λi

a must be equal to 0. Furthermore, if event e ∈ E takes place before event f ∈ E, then λi
a = 1, and hence the

minimum headway time hmin
a between events e and f is respected. Note that the parameter M is a large positive

number (e.g., the considered time horizon). Constraints (22) ensure that no overtaking takes place with a segment
in railway lines. Specifically, both a = (e, f) and a′ = (e′, f ′) are segment headway activities (i.e., a, a′ ∈ Atrack

i ),
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where e, f ∈ Edep
iu , e′, f ′ ∈ Earr

iu+1, le = le′ and lf = lf ′ . In other words, a corresponds to two departures and a′

corresponds to two arrivals of the same trains. The activity pair (a, a′) is called an order activity pair and the set
Bi is defined as the set of all order activity pairs on line i. Thus, constraints (22) ensure that trains le and lf arrive
in station u+ 1 in the same order as how they departed from station u, i.e., λa = λa′ .

3.1.4 Constraints for modeling passenger flow in railway systems

In railway systems, passengers who travel on the railway network book tickets in advance. Therefore, they use a
seat reservation system to plan the trains to take during their journey (Zhan et al., 2021). In the context of seat
reservation systems, the passenger demand is given and fixed, which can be split into different groups P according
to their journey. Typically, passengers make the train choice decisions to maximize their utility, i.e., minimize their
traveling time between their origin station op and their destination dp. To formulate the train choice decisions,
we define the binary decision variables rip,e to represent if passengers in group p choose train le to travel. The
constraints related to the modeling of passenger flows in railway systems are formulated in constraints (23)–(28):

∑

e∈E
dep
iop

rip,e = 1, ∀p ∈ Pi, i ∈ I (23)

∑

e∈Earr
idp

rip,e = 1, ∀p ∈ Pi, i ∈ I (24)

rip,e = rip,f , ∀p ∈ Pi, (e, f) ∈ Atrain
i , i ∈ I (25)

rip,e ≤ max{0,min{tie − Tp + 1, T dwe
a }}, ∀p ∈ Pi, a = (e, f) ∈ Adw

i : e ∈ Edep
iop

, i ∈ I (26)

rip,e ≤ T dwe
a , ∀p ∈ Pi, a = (e, f) ∈ Adw

i : e ∈ Earr
idp

, i ∈ I (27)
∑

p∈Pi

rip,e ·Np ≤ Drail. ∀e ∈ Ei, i ∈ I (28)

Constraints (23), (24), and (25) ensure the transition of passengers from their origin stations, to their destination,
and via some intermediate stations respectively. Constraints (26) indicate that passengers can get on a train at a
station if and only if the train stops there (i.e., T dwe

a > 0, a ∈ Adwell
i ) and departs no earlier than their intended

departure time (i.e., tie ≥ Tp, e ∈ Edep
iop

). Note that when any term of the min{·} operator is smaller than 1
(i.e., min{·} ≤ 0, since tie, Tp, and T dwe

a are all integers), constraints (26) will reduce to rip,e ≤ 0. To ensure the
first term of the min· operator is not less than 1 when the condition tie ≥ Tp holds, we express it as tie − Tp + 1.
Similarly, constraints (27) ensure that passengers can arrive at their destination only by taking trains that stop at
the destination. Constraints (28) guarantee that the number of boarding passengers in train le does not exceed its
loading passenger capacity.

3.1.5 Constraints for the coordination of train timetable

On the basis of the above formulation, the railway train schedule determines the arrival times tie of each event
e ∈ Earr

iu at station u on each railway line i, and the metro timetable determines the departure times wj
k,s of each

metro train k at station s on each line j ∈ J . The timetable of railway train le of line i and metro train k of
line j will then be coordinated at transfer station s ∈ Vij if Lij

s ≤ wj
k,s − tie ≤ L

ij

s is satisfied and metro train k

is identified as the first connecting train for train le. To formulate the coordination relationship between railway
and metro trains, we introduce four sets of binary decision variables as follows. The first set of variables xij

k,e,s

determines if the difference between the departure time of train k on line j and the arrival time of train le on line
i is greater than or equal to Lij

s at transfer station s ∈ Vij . The second yijk,e,s determines if train k on line j is
the first available connecting train for the arrival railway train le on line i at transfer station s. The third set of
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variables zijk,e,s determines whether the difference between the departure time of train k on line j and the arrival
time of train le on line i is less than or equal to L

ij

s at transfer station s. The last set of variables φij
k,e,s indicate

whether the timetables of metro train k on line j and railway train le on line i are coordinated at transfer station
s ∈ Vij . Given these defined variables, we can denote the following constraints to formulate the coordination of
railway train timetable and metro train timetable in the network:

wj
k,s − tie ≥ Lij

s −M2(1− xij
k,e,s), ∀e ∈ Earr

is , k ∈ Kj , s ∈ Vij , i ∈ I, j ∈ J (29)

wj
k,s − tie < Lij

s +M3x
ij
k,e,s, ∀e ∈ Earr

is , k ∈ Kj , s ∈ Vij , i ∈ I, j ∈ J (30)

wj
k,s − tie ≤ L

ij

s +M4(1− zijk,e,s), ∀e ∈ Earr
is , k ∈ Kj , s ∈ Vij , i ∈ I, j ∈ J (31)

wj
k,s − tie > L

ij

s −M5z
ij
k,e,s, ∀e ∈ Earr

is , k ∈ Kj , s ∈ Vij , i ∈ I, j ∈ J (32)

yijk,e,s = xij
k,e,s − xij

k−1,es, ∀e ∈ Earr
is , k, k − 1 ∈ Kj , s ∈ Vij , i ∈ I, j ∈ J (33)

φij
k,e,s = yijk,e,s · z

ij
k,e,s, ∀e ∈ Earr

is , k ∈ Kj , s ∈ Vij , i ∈ I, j ∈ J (34)
∑

k∈Kj

φij
k,e,s = 1, ∀e ∈ Earr

is , s ∈ Vij , i ∈ I, j ∈ J (35)

Constraints (29) and (30) with a big-M structure indicate if the time difference between the departure of metro
train k on line j and the arrival of train le on line i is larger than or equal to Lij

s . Specifically, when xij
k,e,s = 1,

constraint (29) becomes wj
k,s−tie ≥ Lij

s , which means that train k departs from station s at least Lij
s time units later

than the arrival time of train le. Meanwhile, constraint (30) becomes wj
k,s − tie < Lij

s +M3, and this constraint will
always be satisfied due to the big-M value. If xij

k,e,s = 0, constraint (30) becomes wj
k,s− tie < Lij

s and constraint (29)
will always be satisfied. Similarly, constraints (31) and (32) indicate if the time difference between the departure
of metro train k on line j and the arrival of train le on line i is less than or equal to L

ij

s . Constraints (33) indicate
that the values of variables yijk,e,s can be determined by xij

k,e,s and xij
k−1,es. Specifically, variable yijk,e,s is equal to

1 if and only if xij
k,e,s = 1 and xij

k−1,e,s = 0, which means train k is the first connecting train for railway train
le. Constraints (34) ensure that the timetables of metro and railway trains are coordinated only when the time
difference between the departure of metro train k on line j and the arrival of train le on line i at transfer station s

falls within [Lij
s , L

ij

s ]. Specifically, if yijk,e,s = 1 and zijk,e,s = 1, φij
k,e,s is set to 1; otherwise φij

k,e,s equals 0. Finally,
constraints (35) guarantee each railway train must be coordinated by a metro train in the network.

We take Figure 8 as an example to illustrate the timetable coordination at transfer station s of a railway train
le on line i and metro train k on line j. Because the departure times of trains k, k + 1, and k + 2 are later than
the arrival time of train le at station s plus the minimum coordinated time Lij

s , we can easily obtain xij
k−1,e,s = 0,

xij
k,e,s = 1, xij

k+1,e,s = 1 and xij
k+2,e,s = 1. Meanwhile, as train k is the first connecting train for the arrival train le,

yijk,e,s = 1. In addition, since trains k − 1 and k depart from the station earlier than the arrival time of train le at
station s plus the maximum coordinated time L

ij

s , we have zijk−1,e,s = 1 and zijk,e,s = 1. As indicated in constraints
(34), we thus obtain φij

k,e,s = 1, which represents train le is coordinated by train k at station s.

3.1.6 Objective Function

In this study, both the economic and service objectives are considered from the perspectives of operators and
passengers. In reality, the operational costs of the rolling stock (carriage in our problem) undertaking train services
are affected by many complex factors, e.g., energy consumption, maintenance costs, running kilometers, etc. In our
study, for convenience, we introduce parameter g to represent the operational cost of employing a single carriage
in a train running from the original station to the terminal station (i.e., implementing a service), as motivated by
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Figure 8: Illustration of coordination events at transfer station

Wang et al. (2018), Shi et al. (2022) and Zhou et al. (2022). Thus, the operational costs can be calculated as follows.

M cost =
∑

j∈J

∑

k∈Kj

g · cjk (36)

From the perspective of passengers, the total passenger travel time, including waiting time and onboard travel
time, will be considered in the objective function to improve service quality and transfer efficiency. In our problem,
the total passenger travel time includes the passenger travel time F rail in railway systems and the passenger travel
time Fmetro in metro systems, and the transfer time F tra for passengers at the transfer stations. The computation
of total passenger travel time and waiting time in metro systems is indicated by equation (37). The total passenger
waiting time is derived as the sum of the waiting time for newly arriving passengers between two successive trains
and the waiting time for the detained passengers, the latter equal to 0 according to constraints (10).

Fmetro =
∑

j∈J

∑

k∈Kj

∑

s∈Sj

∑

τ∈T

∑

t≥τ

bjk,s,t · n
arr
s,t,j · T

unit +
∑

j∈J

∑

k∈Kj

∑

s∈Sj

T run
k,s,j · nr

j
k,s (37)

The passenger travel time in railway systems is calculated as:

F rail =
∑

i∈I

∑

p∈Pi

∑

e∈Earr
idp

(tie · r
i
p,e − Tp) ·Np (38)

The transfer time for passengers at transfer stations is derived as follows.

F tra =
∑

i∈I

∑

j∈J

∑

k∈Kj

∑

s∈Vij

∑

p∈Pi

∑

e∈Earr
is

Np · r
i
p,e · φ

ij
k,e,s · (w

j
k,s − tie) ·R

ij
s (39)

Finally, by introducing four weight coefficients, i.e., θ1, θ2, θ3, and θ4 to balance the above four parts, the objective
function in our study can be written as follows:

min θ1 ·M
cost + θ2 · F

rail + θ3 · F
metro + θ4 · F

tra

Naturally, decision-makers can strike a balance among different perspectives by adjusting the values of these four
coefficients in the objective function. For example, if the decision-makers prefer higher passenger satisfaction with
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less passenger traveling time, coefficient θ2, θ3, θ4 can be set much larger than θ1; otherwise, a large value of θ1 can
be employed for fewer operational costs.

In our proposed model, some constraints have nonlinear forms, e.g., constraints (12) and constraints (34), which
make the model hard to be solved by some commercial solvers directly (e.g., CPLEX and GUROBI). Thus, we
linearize these nonlinear constraints by applying transformation properties proposed by Williams (2013) for solution
convenience. Interested readers may refer to this reference for more details. For the sake of compactness, the details
of these linearization techniques are detailed in Appendix B.

3.2 Overall optimization model

Since the involved nonlinear constraints (12), (34), (38) and (39) are reformulated as the equivalent linear forms,
we construct the following optimization model for the studied problem:

min Ω = θ1 ·M
cost + θ2 · F

rail + θ3 · F
metro + θ4 · F

tra

s.t. Constraints (1)-(11), (13)-(33), (35)-(37), (49)-(56) (40)

Notice that model (40) is an MILP formulation, where the decision variables can be classified into four categories.
The first type of variables, i.e., xij

k,e,s, yijk,e,s, zijk,e,s, φij
k,e,s, is associated with the binary decision variables that

determine the timetable coordination of railway and metro trains. The second refers to integer variables, i.e., the
timing decision variables wj

k,s and tie, which are employed to formulate the times of metro and railway trains,
respectively. The third type indicates the binary variable rip,e to represent the train choice for passenger groups
in railway systems. The last refers to integer variables cjk, representing the number of carriages involved by metro
trains. The total number of variables and constraints is listed in Table 2.

Table 2: Number of involved variables and constraints in the optimization model (40)
Variables or constraints Total number
Variables
Binary variables xij

k,e,s, yijk,e,s, zijk,e,s, φij
k,e,s 4 · |I| · |J | · |K| · |E| · |Vij |

Binary variables rjp,e |J | · |P| · |E|

Integer variables wj
k,s, cjk 2 · |J | · |K| · |S|

Integer variables tie |I| · |E|

Continuous variables nwj
k,s, ncjk,s, najk,s, nbjk,s 4 · |J | · |K| · |S|

Constraints regarding metro systems
Constraints (1)-(15) 15 · |Kj | · |Sj | · |J |

Constraints regarding railway train scheduling
Constraints (18)-(19) 3 · |Atrain

i | · |I|

Constraints (20)-(21) 3 · |Atrack
i | · |I|

Constraints regarding passenger flow in railway train systems
Constraints (23)-(24) 2 · |Pi| · |I|

Constraints (25)-(28) 3 · |Pi| · |I| · |A
train
i |

Constraints for the coordination of timetable
Constraints (29)-(35) 7 · |Earr

is | · |Kj | · |Vij | · |I| · |J |

To obtain a better root relaxation gap in the branch-and-bound tree, we introduce different values (that are as
small as possible) to replace the big-M parameters while still keeping the correctness of the formulation. In our
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model (40), a total of 6 groups of big-M are employed in constraints (21), (29-32), (53) and (55-56). We next present
the determined values of the big-M used in the model. The big-M in constraints (21) needs to be determined as
the maximum value of |T |+hmin

a to guarantee that the left-hand side of constraints (21) is always larger than hmin
a ,

a ∈ Atrack
i . The big-M in constraints (29) needs to ensure the left-hand side of these constraints is always larger

than or equal to the right-hand side when xij
k,e,s = 0. Thus, the M2 is taken as the maximum value of |T |+Lij

s . The
big-M in constraints (30) needs to ensure the left-hand side of the one is always rigorously less than the right-hand
side when xij

k,e,s = 1. Thus, the M3 is taken as the maximum value of |T | − Lij
s . With the analogous idea as the

M2 and M3, M4 and M5 in constraints (31) and (32) are determined as |T | − L
ij

s and |T | − L
ij

s , respectively. The
big-M in constraints (53) and (55-56) are taken as the maximum value of |T | to ensure that the auxiliary variables
must be less than the considered time horizon.

Remark 3.2 The space-time network and event-activity network are two widely recognized modeling techniques in
train scheduling formulation, each offering distinct characteristics and benefits. In our model formulation, we adopt
the event-activity network to formulate train scheduling in railway systems, while leveraging space-time network-
dependent approaches to tackle the metro train scheduling problem, to take advantage of these two modeling
techniques. The event-activity network method denotes an event as the arrival or departure of a train at a station,
while an activity bridges two events, representing trains running between stations, dwelling at stations, departure
intervals, and other related activities. This method effectively characterizes the departure, arrival, dwell, and
movement of each train through events and activities, thereby facilitating constraints such as train overtaking and
running orders. Thus, it is frequently utilized in modeling train scheduling in railway networks comprising multiple
tracks and routes, as studied by Veelenturf et al. (2016) and Zhu and Goverde (2019). On the other hand, the
space-time network modeling method excels in capturing flow-based problems across high-dimensional times and
spaces by comprehensively representing all temporal and spatial points. Given the continuous influx of passengers
and the high frequency of train departures in metro systems, the space-time network method, with high-density
time and space division, is often employed to describe the passenger flow, traffic flow, and their interrelationships,
as demonstrated in Yin et al. (2017) and Wang et al. (2023a).

4 Branch-and-Cut Algorithm
Due to the large number of binary auxiliary and decision variables, the size of the model (40) escalates rapidly.

Consequently, solving real-life instances to optimality using MIP solvers may become impractical due to the excessive
computational time required. To address this challenge, we next present a branch-and-cut (BaC) approach. This
method involves identifying valid inequalities and designing tailored branching strategies based on the theoretical
properties of the model.

4.1 Valid inequalities

The above model (40) is sufficient to solve the addressed problem, while it contains numerous linear programming
(LP) relaxation feasible spaces. It is possible to add additional inequalities to reduce the feasible space without
removing integer solutions. In this section, we introduce five sets of valid inequalities to refine the formulation of
the proposed MILP model (40). Theoretically, an inequality is deemed valid for an MILP if every integral solution
of the MILP satisfies it. In other words, valid inequalities are constraints that approximate the feasible space to
the integer convex hull. As a result, a valid inequality known as a “cutting plane”, can be incorporated into an
MILP to enhance its LP bounds and formulation (Fischetti et al., 2017; Wolsey, 2020) that will be more tractable
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to solve.
In our problem, one main reason for a weak LP relaxation stems from the binary variables xij

k,e,s, y
ij
k,e,s, z

ij
k,e,s,

and φij
k,e,s, because these four sets of variables determine the coordination of train timetables in multimodal railway

networks. They are involved in the discretization constraints modeled with the help of big-M parameters. Thus,
we introduce some valid inequalities to strengthen the linear relaxation and speed up the solution process. We
prove these valid inequalities are valid for the proposed model. This means that in any integer feasible solution,
the valid inequalities are not violated. On the other hand, when solving a LP relaxation, they can further constrain
the solution space and thus cut off fractional solutions.

Our first set of valid inequalities arises from the binary variables yijk,e,s that represents whether metro train k on
line j is the first available connecting train for arrival railway train le on line i at the transfer station. Since each
railway train can only be coordinated by a metro train in the considered network as indicated in constraints (35),
the first connecting train k is the one that coordinates with each train le in railway systems. Using this property,
we introduce the following inequalities related to yijk,e,s to strengthen our MILP formulation:

∑

k∈Kj

yijk,e,s = 1, ∀e ∈ Earr
is , s ∈ Vij , i ∈ I, j ∈ J (41)

Proposition 4.1 Inequities (41) are valid for the MILP model (40).
Proof 4.1 For any railway train le, e ∈ Earr

is , i ∈ I, let us suppose that there exist feasible solutions xij
k,e,s represent-

ing the time relationship between railway train le and metro trains Kj on line j, such that for trains k′ departing
earlier than train k (i.e., k′ < k), we have xij

k′,e,s = 0, and for trains k and k′′ departing after k, xij
k,e,s = xij

k′′,e,s = 1.
According to constraints (33), we can calculate yijk,e,s = 1 for train k, while for the remaining trains k′ ∈ Kj\{k} on
line j, we have yijk′,e,s = 0. This indicates that only train k is the first available connecting train of arrival railway
train le at the transfer station s ∈ Vij . Therefore, the proof is complete. □

Based on the description of the first set of valid inequalities above, once metro train k is the first connecting
train for railway train le, i.e., yijk,e,s = 1, the train k must be able to coordinate with the railway train at station s

(φij
k,e,s = 1). Thus, we can obtain zijk,e,s = 1 according to constraints (34). In addition, if a metro train k fails to

coordinate with a railway train le due to their time difference larger than the maximum coordinated time L
ij

s , i.e.,
zijk,e,s = 0, then the railway train must not be coordinated by the metro train k. In other words, train k must not
be the first connecting train for train le. Thus, we have yijk,e,s = 0. Using this property, we can derive the following
class of inequalities:

zijk,e,s − yijk,e,s ≥ 0, ∀e ∈ Earr
is , k ∈ Kj , s ∈ Vij , i ∈ I, j ∈ J (42)

Proposition 4.2 Inequities (42) are valid for the MILP model (40).
Proof 4.2 For a railway train le, e ∈ Earr

is , i ∈ I, let us suppose that there exist feasible solutions yijk,e,s and
zijk,e,s that represent the coordination relationship between train k and le, such that constraints (42) is violated,
i.e., yijk,e,s = 1 and zijk,e,s = 0. This implies that train k does not coordinate with train le. According to constraints
(29)-(33), we thus derive the following set of equalities:

xij
k′,e,s = 1, k′ ∈ {k, k + 1, · · · ,Kj}

xij
k′,e,s = 0, k′ ∈ {1, 2, · · · , k − 1}

zijk′,e,s = 0, k′ ∈ {k, k + 1, · · · ,Kj}

Combining the above three sets of equalities, we can explicitly obtain that for the train le, the variables φij
k,e,s = 0

for all trains k ∈ Kj on metro line j. This violates constraints (35) that each railway train should be coordinated
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by a metro train in the network. In other words, there is no feasible solution in which inequalities (42) are violated.
Therefore, the proof is complete. □

Next, we consider another type of valid inequalities arising from the coordination time window. Recall that the
minimum and maximum coordinated times exist for each transfer station s ∈ Vij connecting lines i and j in the
network. As specified in constraints (29)-(32), binary variables xij

k,e,s impose the time difference between the train
k departure and train le arrival at station s to satisfy the minimum coordinated time, while variables zijk,e,s impose
their time difference to meet the maximum coordinated time. Thus, for any railway train le, e ∈ Earr

is , i ∈ I, the
departure time of each metro train k on line j is either larger than the arrival time of the train le plus Lij

s or less
than the arrival time of the train le plus Lij

s . This condition can be expressed symbolically as xij
k,e,s = 1 or zijk,e,s = 1

or both xij
k,e,s and zijk,e,s equal to 1 for each train k. Using this property, we introduce the following two sets of

inequalities related to xij
k,e,s and zijk,e,s to strengthen our MILP formulation:

∑

k∈Kj

zijk,e,s +
∑

k∈Kj

xij
k,e,s ≥ |Kj |+ 1, ∀e ∈ Earr

is , s ∈ Vij , i ∈ I, j ∈ J (43)

∑

k∈Kj

zijk,e,s +
∑

k∈Kj

xij
k,e,s ≤

L
ij

s − Lij
s

hmin
j

+ |Kj |+ 1, ∀e ∈ Earr
is , s ∈ Vij , i ∈ I, j ∈ J (44)

Proposition 4.3 Inequities (43) and (44) are valid for the MILP model (40).
Proof 4.3 We first prove that inequalities (43) are valid. For railway train le, e ∈ Earr

is , i ∈ I, we assume that a
total of |Kj | metro trains operate on line j. These trains depart from the transfer station s ∈ Vij connected with
railway line i, and are potentially coordinated with train le. Let us suppose that the time difference between the
departures of two trains k and k+1 and the arrival of train le falls within the coordination time window. According
to constraints (29)-(32), we can obtain the value of variables xij

k,e,s and zijk,e,s for each metro train k on the line j,
as shown in Figure 9. Furthermore, we can derive the following set of equalities:

xij
k′,e,s = 0, k′ ∈ {1, 2, · · · , k − 1}

xij
k′,e,s = 1, k′ ∈ {k, k + 1, · · · ,Kj}

zijk′,e,s = 1, k′ ∈ {1, 2, · · · , k + 1}

zijk′,e,s = 0, k′ ∈ {k + 2, k + 3 · · · ,Kj}

Combining the above four sets of equalities, we can explicitly derive the following equalities for railway train le,
e ∈ Earr

is , i ∈ I:
∑

k∈Kj

xij
k,e,s = |Kj | − k + 1,

∑

k∈Kj

zijk,e,s = k + 1,

Then, we can obtain that
∑

k∈Kj

zijk,e,s +
∑

k∈Kj

xij
k,e,s = |Kj |+ 2 ≥ |Kj |+ 1,

Therefore, the proof of the validity of inequalities (43) is complete.
Next, we prove that inequalities (44) are valid. Using the same example illustrated in Figure 9, let us assume

hmin
j ≤ L

ij

s − Lij
s ≤ 2hmin

j . Thus we have |Kj |+ 2 ≤
L

ij

s −Lij
s

hmin
j

+ |Kj |+ 1 ≤ |Kj |+ 3, and we can derive the following
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Figure 9: An illustrative example of valid inequalities (43) and (44)

inequality:
∑

k∈Kj

zijk,e,s +
∑

k∈Kj

xij
k,e,s = |Kj |+ 2 ≤

L
ij

s − Lij
s

hmin
j

+ |Kj |+ 1

It is essential to note that this inequality remains valid for other cases involving different values of the minimum
headway time hmin

j and the coordination time window [Lij
s , L

ij

s ]. For instance, if 2hmin
j ≤ L

ij

s − Lij
s ≤ 3hmin

j , then
train k + 2 may coordinate with train le. In this case, we have

∑

k∈Kj

zijk,e,s +
∑

k∈Kj

xij
k,e,s = |Kj |+ 3 ≤

L
ij

s − Lij
s

hmin
j

+ |Kj |+ 1

Hence, the proof is complete. □

We can take advantage of the railway headway time parameters to define the last family of valid inequalities.
Let us consider the train timetables on two lines i and j to be coordinated at a given transfer station s such that
the minimum headway time hmin

a for railway trains is greater than the length of the coordination time window, i.e.,
hmin
a > L

ij

s − Lij
s . If a railway train le coordinates with a metro train k, the coordination of k with railway trains

le1 or le2 is impossible since there would not be enough time units to ensure solution feasibility, where le1 and le2

represent the train departing before and after train le, respectively. Generalizing the previous idea, we obtain the
following result by extending the headway inequalities proposed in Fouilhoux et al. (2016):

∑

e∈Earr
is

φij
k,e,s ≤

L
ij

s − Lij
s

hmin
a

+ 1, ∀k ∈ Kj , s ∈ Vij , i ∈ I, j ∈ J (45)

Proposition 4.4 Inequities (45) are valid for the MILP model (40).
Proof 4.4 We consider that there is a group of railway trains arriving at transfer station s with the minimum
headway time hmin

a . Let us assume hmin
a ≤ L

ij

s − Lij
s ≤ 2hmin

a such that train k is coordinated with trains le2 and
le3 at the station s, i.e., φij

k,e2,s = φij
k,e3,s = 1, as shown in Figure 10. So, we can derive the following inequality:

∑

e∈Earr
is

φij
k,e,s = 2 ≤

L
ij

s − Lij
s

hmin
a

+ 1
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We note that this inequality remains valid for other cases involving different values of the minimum headway time
hmin
a and the coordination time window [Lij

s , L
ij

s ]. For instance, if 2hmin
a ≤ L

ij

s − Lij
s ≤ 3hmin

a , then train le4 runs
on line i with the minimum headway time may be coordinated by train k in this example. In this case, we have

∑

e∈Earr
is

φij
k,e,s = 3 ≤

L
ij

s − Lij
s

hmin
j

+ 1

Thus, the proof is complete. □

4.2 Branching strategy

In the BaC framework, the branching strategy emerges as a pivotal step, given its profound influence on algorith-
mic performance through the generation of child nodes. In the context of MILPs, the branching strategy typically
unfolds in two phases: first, identifying a candidate variable or a set of them for branching, and then creating child
subproblems by imposing bounds on these variables to compel them away from fractional values.

In this study, we introduce a branching strategy (BS) according to the properties of the model (40) to decide the
selection of node children. The fundamental insight driving our branching strategy is that the values of variables
φij
k,e,s determine the ranges of railway train arrival times and metro train departure times. Therefore, branching on

these variables at the beginning of a branch-and-bound search can potentially produce a rough schedule of involved
trains. This initial branching may direct the search and expedite the branching process. Specifically, we set priority
to branch on the coordinated variable φij

k,e,s, while other variables are branched according to the default strategies
provided by CPLEX, i.e., the node with the lowest bound is chosen for branching, following the common practice
in the field of operations research (see e.g., Zhang et al. (2021); Chai et al. (2024)). The priority given to branching
on variable φij

k,e,s is adjusted based on the number of nodes explored within the branch-and-bound search tree.
Specifically, if the number of nodes explored falls within the range [Oσ, Oσ + m] with m denoting the size of the
range and σ representing the frequency of our branching strategy execution, we apply our branching strategy to
create two subproblems (nodes) by branching on the variable φij

k,e,s. Otherwise, if the number of explored nodes lies
outside this range, the node with the lowest bound is chosen for branching on other variables. After executing the
aforementioned branching strategy at σ branching, it is necessary to update the range of nodes from [Oσ, Oσ +m]
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to [Oσ+1, Oσ+1 +m] for the subsequent σ + 1 branching. Specifically, we calculate Oσ+1 using the formula:

Oσ+1 = Oσ + κ ·m,

where κ represents the updated step-size. To ensure the branching captures the search procedure by updating the
nodes range, we establish a link between κ and the objective function value (VOF) of the LP relaxation at the root
node, as well as the current best lower bound (LB). Thus, we heuristically determine the step-size κ as follows:

κ = ln(LB/VOF) + 1.

This equation indicates that κ is equal to 1 at the root node due to LB=VOF. Subsequently, κ is marginally larger
than 1 at the start of the solving process since LB is close to VOF. Nevertheless, as the solution progresses, the
difference between LB and VOF is getting bigger, leading to a much larger step-size κ. In summary, our branching
strategy BS is frequently executed with a small step-size (i.e., marginally above 1) on the frontier (near the root
node) of the search tree. As the search proceeds, our branching strategy is utilized less frequently, and the branching
node is automatically chosen instead (i.e., choosing the node with the lowest bound for branching).

Next, we introduce our branching strategy on the coordinated variables φij
k,e,s. In the solution process, if an

optimal solution to the coordination of train timetables is not an integer, then there must exist a railway train
le such that 0 <

∑

k∈Kj
φij
k,e,s < 1. Then branching is applied on a fractional

∑

k∈Kj
φij
k,e,s, where we select the

special ordered set strategy for branching. In the realm of discrete optimization, the special ordered set strategy
typically pertains to cases where at most one variable can take a non-zero value for a set of variables, with all others
remaining at 0 (Wolsey, 2020). This implies a selection of at most one from a set of possibilities. The fundamental
concept of the special ordered set strategy involves prioritizing sets of binary variables by establishing an order
among variables rather than individually addressing each variable in existing literature (see e.g., Coniglio et al.
(2021); Adelgren and Gupte (2022)).

In our algorithm, the idea of the strategy involves prioritizing certain sets of binary variables by defining an order
among variables. In our problem, recalling constraints (35), we have

∑

k∈Kj

φ̃ij
k,e,s = 1, ∀e ∈ Earr

is , s ∈ Vij , i ∈ I, j ∈ J (46)

with φ̃ij
k,e,s ∈ {0, 1} for any train le, e ∈ Earr

is at station s ∈ Vij . It is evident that the aforementioned constraints
adhere to the implementation case of the special ordered set strategy; each feasible solution for e ∈ Earr

is and s ∈ Vij

ensures that at most one variable in the set Kj = {1, 2, · · · ,Kj} can be set to one. Thus, at each branching node,
we can effectively construct a new set Υj from Kj according to the value of φ̃ij

k,e,s, where some variables may have
fractional values at the current node, and then explore the nodes in Υj at first.

Next, we introduce the observation behind the selection of Υj ⊆ Kj : for each arrival event e ∈ Earr
is and station

s ∈ Vij , the variables φ̃ij
k,e,s in constraints (46) can be sequenced according to the order of metro trains, i.e., the

index of train k ∈ Kj . The priority assigned to each variable is inversely proportional to the train index; the
earlier the train departs, the higher the priority. This is because a lower index implies an earlier train departure,
which subsequently leads to reduced passenger transfer time within the coordination time window in our problem.
Consequently, we establish the following principles to determine the set Υj at each branching node:

Υj := {k ∈ Kj |k ≤ η} where η :=
∑

k∈Kj

k · φ̃ij
k,e,s (47)

where η is a parameter indicating the branching value of the branching strategy. Within this special ordered set
strategy, we denote a penalty to the value of η with the train k, favoring the selection of variables associated with
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earlier trains k ∈ Υj . According to the constructed set Υj , the search direction within each branching node of the
searching tree changes based on the following cases:

∑

k∈Υj

φij
k,e,s = 1 or

∑

k∈Υj

φij
k,e,s = 0 (48)

Using the LP relaxation solution φ̃ij
k,e,s = {0.1, 0.7, 0, 0.2} for k ∈ Kj = {1, 2, 3, 4} as an illustrative example,

we calculate the branching value η as follows: 1.1 + 2 × 0.7 + 4 × 0.2 = 2.3. Thus, we get the set Υj = {k ∈

Kj |k ≤ 2.3}. Consequently, we split the fractional variables φ̃ij
k,e,s into two new subproblems as φij

1,e,s + φij
2,e,s = 1

and φij
3,e,s + φij

4,e,s = 0, i.e., φij
3,e,s = φij

4,e,s = 0 due to φij
k,e,s ∈ {0, 1}. In this case, the branching scheme proves

significantly more effective compared to the traditional approach of branching on a single variable at each step,
leading to a considerable reduction in the number of nodes required in the branch-and-bound tree.

4.3 Branch-and-cut implementation

In this section, we describe the whole framework of our BaC algorithm (as shown in Figure 11) and provide
detailed of its implementation mainly from the following four phases:

•Phase 1: Initialize. During the initialization phase, only the constraints involved in the model (40) are
included in the MILP. To get a tighter formulation for the model (40), five sets of valid inequalities (41-45) proposed
in Section 4.1 can be added to the model, either during the initialization phase or dynamically based on the LP
relaxation solutions, i.e., they are added later in the algorithm when the LP relaxation solutions violate these
inequalities.

•Phase 2: Select and branch on nodes. Following the initialization phase, the branching tree comprises
only a single root node. This node is automatically chosen to initiate the branch-and-bound process. By solving
the LP relaxation of the root node and branching on variables randomly, two (or more) new nodes are created,
which then constitute the list of unexplored nodes. The determination of the nodes to be explored next in the
solving process is essential. As demonstrated in Section 4.2, if the number of explored nodes falls within the range
[Oσ, Oσ +m], the special ordered set branching strategy is employed to branch on variables φij

k,e,s, generating two
subproblems (nodes). Otherwise, the node with the best bound is chosen for branching on other integer and binary
variables, following the default branching decision in the CPLEX solver. After executing the branching strategy at
σ branching, it is necessary to update the range of nodes from [Oσ, Oσ +m] to [Oσ+1, Oσ+1 +m] for the next σ+1

branching.
•Phase 3: Solve LP and update bounds. Solving the LP relaxation of one resulting subproblem at the

generated node aims to derive potentially new bounds. The other node(s) are added to the list of unexplored nodes.
The upper bound (UB) and LB of the node preceding the current node in the branching tree are updated with the
newly found bounds. If a set of new integer solutions is identified, it updates the UB accordingly. If the LB of this
node surpasses the best-known UB, i.e., LB≥UB, there is no need for further investigation of this node, and it is
pruned, thereby being not explored anymore. After pruning, another node in the list is chosen for solving. If its
bound is lower than the best-known upper bound, there is still room for improvement, prompting the algorithm to
continue branching on this node eventually.

•Phase 4: Find and add cuts. At this phase, the algorithm searches for violated inequalities, i.e., finding
cuts. In principle, there are two potential scenarios for finding cuts: Firstly, if the LP solutions of a node fail to
satisfy one of the valid inequalities (41-45), the unsatisfied inequality is added to cut fractional solutions of the LP
relaxation, after which the LP relaxation at the node is re-solved. Secondly, if the LP solutions of a node satisfy
all proposed valid inequalities, the algorithm assesses whether the number of explored nodes falls within the range

26



Nodes fall into 
                ?

Initialization 
phase

Solving LP on 
generated node 
for model (40)

Updating bounds

LB>=UB?

Pruning the node

Yes

No

Succeed

Fail

Algorithm 
terminates

Yes

No List of nodes 
is empty?

 

Finding cuts
(41-45)

Add cuts 
(41-45)

Selecting the lowest 
bound node for 

branching

Yes No
[ , ]O O ms s

+

Branching on 
variable

Selecting the root 
node

, ,

ij

k e sj

Figure 11: The framework of the branch-and-cut algorithm

[Oσ, Oσ +m] and selects a branching node in the list of unexplored nodes to execute the next iteration. It is worth
noting that if the list of unexplored nodes is empty, the current best upper bound represents the optimal solution.

5 Numerical Experiments
In this section, we present the computational results on two sets of numerical experiments. The first set of

experiments, conducted on a small-scale network, aims to demonstrate the effectiveness of different valid inequalities
and branching strategies. The second set is implemented on a real-world instance of a railway-metro network in
Beijing, to assess potential benefits for railway operators through the application of train capacity allocation and
the coordination of train timetables. All models and algorithms in this section are coded in C++ on a workstation
equipped with 32 Intel Xeon 6140 processors and 32GB RAM. In addition, we utilize the IBM ILOG CPLEX
Optimization Studio 12.10.0 solver on the same platform.
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Figure 12: Network layout in the small-scale case study

5.1 Small-scale case study

5.1.1 Network layout and parameter settings

As shown in Figure 12, the small-scale case study considers a network with a bi-directional metro line and a
unidirectional railway line. The network involves four railway stations (denoted as stations A to D), ten metro
stations (numbered from 1 to 10), and two depots located at the ends of the metro line. In this network, there is
a transfer hub involving railway station D and metro stations 4 and 7, where passengers can alight from railway
trains at station D and transfer onto metro trains at either station 4 or station 7 according to their needs. The
planning time horizon is set as two hours, and we divide it into 120 time units (i.e., |T | = 120).

To simulate passenger flow dynamics during peak and off-peak hours in metro systems, we generate time-
dependent passenger demand using the following strategy: For the initial 60 time units (i.e., one hour), we utilize
a roughly monotone increasing value to represent the number of arrival passengers narr

s,τ,j , τ ∈ {1, 2, · · · , 60}; in the
subsequent 60 time units, i.e., τ ∈ {61, 62, · · · , 120}, we generate a roughly decreasing passenger arrival numbers.
The passenger demand in metro systems is depicted in Figure 13. Concerning passenger flows in railway systems, we
consider 20 passenger groups, each containing 300 passengers. We randomly generate their intended trips including
the origin station op, destination station dp, and the intended departure time Tp. The details of the generated
passenger groups for railway systems are provided in Table 3. The other parameters associated with the small-scale
case study are summarized in Table 4.

Using the network described above, we construct 6 instances by changing the number of scheduled trains and
the coordination time window in our experiments. Specifically, we fix the number of railway trains to 10, while the
number of scheduled trains on each metro line is either 10 or 20, and the coordination time window is set as [1,5], [3,6]
or [5,10]. Combining these input parameters, we construct a total of 6 instances. For example, instance 1 involves
10 metro trains with a time window of [1,5], while instance 2 involves 10 metro trains with a time window of [3,6].
To assess the effectiveness of different valid inequalities (41-45) and branching strategies, we adopt the following
methods to tackle these 6 instances. “None” signifies that the instance is directly solved by MIP solver CPLEX,
utilizing the branch and cut algorithm which involves solving a sequence of LP subproblems, branching, adding cuts,
and leveraging heuristics, all with the default parameter settings; “Constraints” indicates that the proposed valid
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Figure 13: Passenger demand variations in metro systems in the small case study

inequalities are directly added into the model right from the beginning; “Cuts” denotes that the valid inequalities
are added to the model dynamically during the BaC process, facilitated by setting generic callbacks; “BS” represents
the utilization of the proposed branching strategy without employing valid inequalities; Finally, “BaC” combines
the branching strategy with dynamically added cuts. In these experiments, the computational time limit is set as
600s, i.e., we terminate the algorithm and return the current best solution when reaching ten minutes.

5.1.2 Computational results with different cuts and branching strategies

Table 5 reports the computational results for six small-scale instances. In Table 5, we report the number of branch-
and-bound nodes, the computational times, and optimality gaps. In the final column of Table 5, we respectively
report the LP relaxation lower bound values (at the root node in the branch-and-bound tree) for “Constraints”
strategies, to assess the tightness of each set of valid inequalities, the number of added user cuts for “Cuts” strategies,
and the number of created branches for BS, to evaluate the effectiveness of our branching strategy. For our BaC
method, we list the number of added user cuts and created branches within parentheses.

From the experimental results of Table 5, we observe that all the methods can obtain the (near-)optimal solutions
within the computational time limit for the majority of instances due to their relatively small scales. Particularly,
for instances 1 and 2, the default CPLEX solver (“None” in Table 5) efficiently solves the model in 90 seconds.
However, its performance rapidly decreases as the number of metro trains increases and the coordination time
window expands. Regarding the “Constraints” strategies, we notice that the reduction in computational times is
not obvious compared to default CPLEX, despite slightly larger objective function values at the root node (i.e.,
LP bound) by incorporating constraints into the model. Furthermore, for instances 4-6, adding all constraints (i.e.,
“All” in Table 5) shows less computationally effective than the default CPLEX solver. This is attributed to the
substantial number of constraints required in the model initially, leading to a time-consuming solution process.
The computational results on these six instances also reveal that (45) is the strongest set of cuts, as the strategy
exclusively adding constraints (45) yields the most positive impact on reducing the computational time and the
number of explored nodes in the search tree.

In terms of the “Cuts” strategies, it is obvious that these strategies obtain better solutions compared to both
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Table 3: The information of passenger groups in the small-scale case study
Passenger
group p

Origin
station op

Destination
station dp

Intended departure
time Tp (min)

Volume Np

1 Station A Station D 1 300
2 Station B Station D 9 300
3 Station A Station C 5 300
4 Station A Station D 15 300
5 Station A Station B 20 300
6 Station A Station D 20 300
7 Station B Station D 10 300
8 Station A Station C 15 300
9 Station A Station D 10 300
10 Station A Station B 13 300
11 Station A Station D 1 300
12 Station B Station C 35 300
13 Station A Station C 5 300
14 Station C Station D 20 300
15 Station A Station B 10 300
16 Station A Station D 31 300
17 Station B Station D 19 300
18 Station A Station C 35 300
19 Station A Station D 20 300
20 Station A Station D 20 300

“Constraints” strategies and the default CPLEX solver. For instance, in instance 5, we can get a feasible solution
with an optimality gap of 2.78% by dynamically adding inequalities (45). Similarly, in instance 6, the optimality
gap is further reduced to 4.01% by adding the valid inequalities dynamically, which evidently outperforms the other
methods and reveals the great benefits of these valid inequalities. From the results in Table 5, we observe that
when dynamically adding inequalities (41), the number of cuts remains zero for all instances 1-6. This suggests
that inequalities (41) may be a set of redundant constraints for our MILP model. In other words, the original
constraints of the model (40) already imply the imposition of inequality (41), resulting in inequality (41) failure to
cut any fractional solution in the domain of LP in the model. Another interesting phenomenon is that, dynamically
adding cuts (42) can cut some fractional solutions in instances 2 and 3, i.e., 3 and 8 cuts are added in the model for
instances 2 and 3, respectively. Nevertheless, in instances 4-6, no user cuts (42) are added in the solution process.
This is probably because for different instances, the different input parameters (e.g., the minimum headway time and
the coordination time window) affect the value of the fractional solution and the constant term in the inequalities
(42), which further affect the action of the cuts. The computational results on these six instances also reveal that
adding all inequalities or all but (41) is the best strategy for obtaining a high-quality solution for the MILP model,
especially for large instances.

An important insight from the table is that both BS and BaC can still obtain (near-)optimal solutions across all
six instances. Even in the challenging instance 6, both strategies produce solutions with less than a 4% optimality
gap. The reason is that our BS branching strategy facilitates early branching on the coordination decision variables
(i.e., φij

k,e,s) to guide the search direction effectively. Therefore, BS can help find high-quality and feasible solutions
much faster than the default CPLEX solver, which employs random branching. These results reveal the significance
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Table 4: The input parameters in the small case study
Parameters Notations Values Unit
Loading passenger capacity of a railway train Drail 1200 person
Loading passenger capacity of a metro train Dmet 800 person
Alighting rate Qj

s 0.5
Passenger transfer rate Rij

s 0.3, 0.5
Metro train dwell time T dwell

k,s,j 1 minutes
Metro train running time T run

k,s,j 3 minutes
Coordination time window [Lij

s , L
ij

s ] [1,5], [3,6], [5,10] minutes
Metro time headway hmin

j , hmax
j 3,15 minutes

Railway time headway hmin
a 3 minutes

The minimum/maximum number of carriages in metro trains cmin
j , cmax

j 1,3
Cost of using one carriage g 200
The maximum rolling stock allocated in depot Zmax

d 30

of tailored branching strategies. In particular, we also notice that the BaC method outperforms BS for instances
5 and 6, illustrating the effectiveness of combining valid inequalities with our customized branching strategies. We
report the computational results of the obtained train timetables, the capacity allocation and the coordination
strategies for instance 1 in the small case study in Appendix C.

5.2 Real-world case study

In this section, we conduct real-world case studies on the realistic railway-metro network in Beijing. We use
historical passenger demand data in the network and compare our approach with the non-coordinated train timeta-
bles. Furthermore, we investigate the benefits of flexible capacity allocation in alleviating congestion. We also
implement a series of sensitivity analyses on the key parameters, such as the coordination time window, to provide
rail managers with valuable managerial insights.

5.2.1 Description of field data and parameter settings

As illustrated in Figure 14, our real-world experiments are conducted on a network involving a metro line, i.e., Line
No.4 in Beijing metro, and two railway lines, i.e., Beijing-Zhangjiakou high-speed railway line and Beijing-Tianjin
intercity railway line.

These lines are selected due to their significance as the primary commuter and travel corridors in both urban and
regional areas of Beijing. Specifically, Line No.4 serves as the main north-south corridor for commuters in Beijing,
and carries transfer passengers from Beijing South Railway Station and Beijing North Railway Station. Both
the Beijing-Zhangjiakou high-speed railway and the Beijing-Tianjin intercity railway are major components of the
“Eight Vertical and Eight Horizontal High-Speed Railway Network” in China, with a large number of passengers
traveling in and out of Beijing on these two railway lines every day. In particular, as a pivotal transportation
project for the 2022 Winter Olympics, the Beijing-Zhangjiakou high-speed Railway caters to a substantial volume
of athletes traveling between the two cities.

In the network, Line No.4, including 34 physical stations, has bidirectional tracks with two operation directions
for train services. In this paper, the operation direction from TGY station to AHQB station is the upstream
direction, while the opposite direction is the downstream direction. Due to the independent nature of passenger
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Table 5: Computational results in the small-scale case study
Selection Number of nodes Computation time (s) Gap (%) LP bound/Number of cuts/Branches

Instance 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Constraintsa LP Bound

None 4629 8781 13455 890 2922 4412 19 89 600 600 600 600 0 0 3.11 1.7 3.59 5.01 200163 200453 200875 200057 200348 200882

Only (41) 4722 9032 13211 1566 2567 4456 13 90 600 600 600 600 0 0 3 1.97 3.61 4.44 200163 200453 200875 200057 200348 200882

Only (42) 4231 5287 12169 2110 2761 4501 26 45 600 600 600 600 0 0 2.58 2.22 3.57 5.33 200163 200503 200905 200057 200348 200882

Only (43) 4482 5198 9256 1362 2453 4182 29 52 600 600 600 600 0 0 2.97 2.71 3.87 4.35 201212 200809 200889 200060 200361 200900

Only (44) 4539 4286 10162 2408 2216 2025 22 44 600 600 600 600 0 0 2.69 1.22 3.63 5.5 200163 200453 200879 200073 200348 200882

Only (45) 251 1082 9437 731 1205 4499 10 43 600 600 600 600 0 0 2.43 1.41 2.89 4.66 202316 202968 200875 200064 200355 200882

All but (41) 406 924 10013 592 299 3388 10 45 600 600 600 600 0 0 2.38 1.83 3.56 5.23 202316 202971 200905 200074 200360 200901

All but (42) 296 1391 9308 807 1312 4501 9 36 600 600 600 600 0 0 2.4 1.13 3.71 4.88 202316 202971 200875 200074 200355 200889

All but (43) 3211 2172 9788 4212 1514 3222 10 40 600 600 600 600 0 0 2.4 1.88 3.98 4.44 202316 202968 200905 200074 200355 200882

All but (44) 165 1480 8999 1483 2211 3434 10 31 600 600 600 600 0 0 2.52 1.13 3.65 4.89 202316 202968 200905 200064 200355 200889

All but (45) 4861 4421 11164 2803 2324 1988 20 42 600 600 600 600 0 0 3.12 1.88 3.62 5.01 200163 200453 200905 200074 200348 200901

All 406 910 10233 634 454 3509 15 26 600 600 600 600 0 0 2.43 1.83 3.62 5.23 202316 202971 200905 200074 200360 200901

Cutsa User cuts

Only (41) 4623 8781 8913 886 2770 4412 22 92 600 600 600 600 0 0 3.02 1.7 3.59 4.56 0 0 0 0 0 0

Only (42) 4623 8962 9340 890 2810 4454 23 55 600 600 600 600 0 0 2.44 1.7 3.59 4.65 0 3 8 0 0 0

Only (43) 5110 5598 10733 744 470 3279 24 54 600 600 600 600 0 0 3.34 1.78 3.68 4.56 4 6 19 14 14 19

Only (44) 4623 8781 11009 1119 350 761 23 45 600 600 600 600 0 0 2.37 1.14 3.54 5.22 0 0 22 16 14 16

Only (45) 2157 4383 8913 658 1697 3772 12 39 600 600 600 600 0 0 3.68 1.15 2.78 4.64 5 2 11 4 10 8

All but (41) 1965 4321 9676 357 1823 3437 26 58 600 600 600 600 0 0 2.4 1.1 2.84 4.01 7 5 52 27 44 41

All but (42) 1965 4321 11576 354 2126 3256 17 34 600 600 600 600 0 0 2.22 1.1 2.84 4.73 7 5 51 27 44 42

All but (43) 1857 4383 10212 1981 488 1883 18 36 600 600 600 600 0 0 2.89 0.92 3.99 4.44 6 2 32 17 20 24

All but (44) 1965 4321 12266 2489 874 3812 18 35 600 600 600 600 0 0 2.23 1 3.18 4.24 7 5 32 22 23 25

All but (45) 5233 5598 11964 766 4534 3862 26 40 600 600 600 600 0 0 2.33 1.31 3.96 4.76 2 6 42 25 38 36

All 1965 4321 10102 354 2107 3456 26 58 600 600 600 600 0 0 2.4 1.1 2.84 4.01 7 5 52 27 44 41

Branch Branches

BS 2061 5657 10045 367 670 1035 26 59 600 600 600 600 0 0 2.4 1.2 2.67 3.51 1 3 4 11 16 13

BaC 1860 4451 8805 402 1919 1562 26 61 600 600 600 600 0 0 2.39 1.25 2.21 3.04 7(1b) 6(2b) 38(6b) 30(4b) 37(7b) 45(9b)

a Since we propose three groups of valid inequalities (41)-(45), we respectively test these cuts in our experiments.
For example, “All but (41)” means that we add inequalities (42-45) in the corresponding experiment.

b The values in parentheses represent the number of created branches.
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Figure 14: Layout of a railway-metro network in Beijing

flow in the upstream and downstream directions, these are considered two separate metro lines. Besides, there are
two depots connected with the origin and destination stations of these two lines. Specifically, depots A and B are
connected to station AHQB and station TGY, respectively, where trains can perform turnaround operations, as
indicated by green dots in Figure 14. For the Beijing-Zhangjiakou high-speed railway line, we focus on five large
stations, i.e., Zhangjiakou, Xuanhuabei, Huailai, Qinghe, and Beijing North Railway station, that could be used
for train original departure and final arrival. For Beijing-Tianjin intercity railway line, we consider five stations
including Tianjin, Tianjinxi, Langfang, Beijing South, and Beijing railway station for train departures and arrivals
in our experiments.

These three lines are interconnected in the network, resulting in two transfer hubs, i.e., Beijing North Railway
Station and Beijing South Railway Station. Beijing North Railway station and metro station XZM are located in
the same transport hub, which connects with the Beijing-Zhangjiakou high-speed railway line and metro Line No.4,
while Beijing South Railway station connects the Beijing-Tianjin intercity railway line and the metro line. Therefore,
in addition to passengers traveling on the railway lines and the metro lines, we also account for passengers alighting
from railway trains and transferring onto metro trains at these transfer stations in the network. For example, the
passengers can travel from Zhangjiakou Railway station, alight at Beijing North Railway station, and then walk to
metro station XZM to board metro trains on line No.4.
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In the real-world experiments study, we construct a total of 10 testing instances with different numbers of planned
metro trains during the period 7:00 am to 10:00 am. As the railway train timetable is fixed in a cycle time (e.g.,
three months) in daily operation, we fix the planned number of trains on both railway lines as eight during this
period in our case study. In railway systems, the passenger information of the railway line is based on real data
from the ticket booking system, but we have revised some of this because we only considered part of the data, and
the actual passenger data is confidential. We generate 20 passenger groups, each comprising passengers according
to their intended trip. The details of the passenger groups are reported in Table 13 in Appendix D. For the metro
systems, we use the real-world passenger demand data collected on a weekday in January 2020 in the Beijing metro
in this set of numerical experiments. The weight coefficients θ1, θ2, θ3 and θ4 in the objective function are set as
0.3, 0.07, 0.003, 0.6, respectively. The input parameters such as the coordination time window for each transfer
station, the cost of using one carriage, and the minimum and maximum groups of carriages involved by each metro
train are detailed in Appendix D.

As the computational results in the previous section have shown that the BaC algorithm performs the best in
solving instances, we next only use our BaC algorithm to solve the constructed ten instances. In the following
experiments, the computational time limit is set as 9000s.

5.2.2 Comparison with the non-coordinated train timetable in practice

In this subsection, we compare the coordinated train timetable with the non-coordinated timetable currently
used in practice. The non-coordinated timetable is obtained by solving two independent models for railway sys-
tems (constraints (16-28)) and metro systems (constraints (1-15)), respectively, without considering the passenger
transfers. Based on the solutions obtained from the train timetables of railway and metro trains, we can calculate
the passenger transfer time F tra analytically according to the passenger flows.

Table 6 reports the computational results for the two train timetables on the ten instances. Specifically, we
present the objective function value (denoted as “Obj”), passenger transfer time at the transfer stations (i.e., F tra),
operational costs (i.e., M cost), the computation time (denotes as “Com”), and the optimality gap (denoted as
“Gap”) until the time limit. The value of Gap is the percentage gap between the best upper bound (UB) and the
best lower bound (LB) computed by our BaC algorithm, i.e., Gap = (UB − LB)/UB × 100%. Furthermore, in the
last two columns of Table 6, we respectively report the performance improvements “OPI” for Obj and “TPI” for
F tra with the coordinated timetable compared to the non-coordinated timetable. Here, we note that CPLEX takes
about 10 minutes to obtain the solution for the non-coordinated timetables of railway and metro trains. Thus, we
do not report the computation time and gap of this strategy in Table 6 for brevity.

From the results in Table 6, we see that with the increase of metro trains, the value of F tra decreases, while the
operational cost M cost increases for the coordinated timetable. This is because higher train service frequency, which
reduces the departure interval of metro trains at transfer stations, can reduce the passenger transfer time. Naturally,
rail managers need to employ more carriages to perform more train services. In addition, we see that the coordinated
timetable obtains much better Obj values than the non-coordinated timetable for all instances. For example, in
instance 3, the coordinate timetable can reduce the Obj by 12.70% (from 477,005 to 416,445) compared to the
non-coordinated timetable. In terms of the operational costs M cost, we notice that the coordinated train timetable
results in lower costs, i.e., fewer carriages in service, compared to the strategy without coordination (except for
instances 2 and 4). For example, in instance 8, the operational cost M cost decreases from 522,000 to 512,000 with
the coordinated timetable, indicating cost savings for rail managers. This result further demonstrates that since
the flexible capacity allocation strategy allows trains to change the carriages involved according to the specific
passenger demand, the coordinated train timetable with fewer waiting passengers at transfer stations can reduce
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the usage of carriages in service. Compared with the non-coordinated timetable, the most outstanding advantage
of the coordinated timetable is the reduction of the passenger transfer time (i.e., F tra). For example, in instance 4,
the passenger transfer time decreases from 207,920 to 102,640, indicating that the waiting time for passengers who
alight from railway trains to transfer to metro trains can be evidently reduced. From the last two columns of Table
6, we see that on average, the OPI and TPI with coordination compared with the non-coordinated timetable reach
9.05% and 40.17%, respectively, in the case study. These values demonstrate that a well-coordinated train timetable
enables metro trains to depart from transfer stations to connect railway trains within a coordination time window,
thereby reducing operational costs for rail managers and simultaneously enhancing service quality for passengers.
Here, an interesting phenomenon is that, instead of increasing the number of planned metro trains, an appropriate
number of planned metro trains can significantly reduce the passenger transfer time with the coordinated timetable
compared to the non-coordinated timetable. For example, in instances 9 and 10, the value of TPI is approximately
27%, while the TPI exceeds 65% for instances 5 and 6. This observation suggests that an appropriate number of
metro train services (e.g., 40 trains in our experiments) can yield more significant benefits for improving service
quality for transfer passengers with the coordinated timetable, particularly in terms of operating cost savings.

Table 6: Comparison between the coordinated and non-coordinated train timetables on the real-world instances
Instance Metro Coordinated timetable Non-Coordinated timetable OPI TPI

index trains Obj F tra M cost Com(s) Gap(%) Obj F tra M cost (%) (%)

1 16 501953 274400 322000 4500 0 538528 412480 326000 6.79 33.48

2 20 466932 222880 342000 6120 0 482459 238400 342000 3.22 6.51

3 26 416445 113520 366000 8510 0 477005 300960 368000 12.70 62.28

4 30 407686 102640 382000 9000 3.83 436729 207920 382000 6.65 50.63

5 36 436661 113440 436000 9000 7.23 546079 357280 448000 20.04 68.25

6 40 417758 95600 420000 9000 7.97 544711 366960 424000 23.31 73.95

7 46 401882 92100 478000 9000 9.12 413405 123200 480000 2.79 25.24

8 50 415359 92920 512000 9000 9.78 430973 128560 522000 3.62 27.72

9 56 410845 87500 503000 9000 11.23 446787 120560 504000 8.04 27.42

10 60 405153 86960 502000 9000 12.56 419207 117920 504000 3.35 26.26

Average - 428067 128196 426300 8213 6.17 473588 237424 430000 9.05 40.17

5.2.3 Experiments with different capacity allocation strategies

In this subsection, we compare the performance of three strategies for computing train capacity allocation plans.
The first strategy involves no train capacity allocation (denoted as “No TCA”) in the metro systems, and the
second strategy is to randomly generate a set of trains in which we allocate carriages flexibly (denoted as “Random
TCA”). The third strategy is to use our optimization-based approach to allocate carriages for each train, which is
denoted as “TCA-based approach”. Regarding the no TCA and random TCA strategies, we first generate a set of
train capacity allocations (i.e., the number of carriages involved by each train) using these strategies. We then use
each train capacity allocation plan as input to compute the performances, including the average carriage crowding
degree, the average number of waiting passengers at each station, the average number of stranded passengers unable
to board the first train, the maximum number of stranded passengers at all stations, and the operational costs.

Table 7 presents these performances for three strategies in the case study. The testing instances 1-5 are the same
as those in Section 5.2.2. We see that for all performances, apart from the operational costs, the no TCA strategy
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is the worst among the three strategies. This is expected because of the large difference between the over-saturated
passenger demand and the limited train capacity. With the randomly generated train capacity allocation plan, the
numbers of waiting and stranded passengers are both reduced compared to the strategy with no TCA. For example,
in instance 1, the random TCA reduces the average number of stranded passengers by 13.6% (from 8,743 to 7,696)
compared to no TCA. Nevertheless, the random allocation strategy requires a large number of carriages, resulting
in the largest operational costs for all testing instances. From the results in Table 7, we can see that our TCA-based
approach evidently outperforms other strategies in all testing instances. Although the TCA-based approach needs
to employ more carriages to perform train services, the carriage crowding degree can be reduced by an average of
0.64 compared to no TCA, which can significantly enhance the passenger travel experience. Furthermore, we also
notice that the TCA-based approach notably mitigates the stranded passengers to 0, i.e., all waiting passengers
can board the first train at stations, highlighting the importance of an optimized train capacity allocation plan for
reducing passenger travel time and operational risks. In summary, we conclude that the overall performance can
be noticeably improved with our optimization-based approach.

Table 7: Comparison among the different capacity allocation strategies on the real-world instances

Performance Strategy
Instance

1 2 3 4 5

Carriage crowding
degree

No TCA 0.95 0.95 0.92 0.92 0.91
Random TCA 0.82 0.82 0.81 0.79 0.8
TCA-based approach 0.34 0.32 0.29 0.27 0.24

Average waiting
passengers

No TCA 13224 9779 6599 5186 3655
Random TCA 12426 9062 6432 4982 3234
TCA-based approach 1798 1639 1491 1426 1355

Average stranded
passengers

No TCA 8743 5792 3255 2129 1204
Random TCA 7696 5144 2802 1313 870
TCA-based approach 0 0 0 0 0

Maximum stranded
passengers

No TCA 25489 17279 11234 8519 5543
Random TCA 24089 15035 10781 4532 2234
TCA-based approach 0 0 0 0 0

Operational costs
No TCA 260000 280000 302000 314000 340000
Random TCA 336000 384000 418000 392000 452000
TCA-based approach 322000 342000 366000 382000 436000

5.2.4 Sensitivity analysis with different coordination time window and weight coefficients

In this subsection, we investigate the impact of the coordination time window and the weight coefficients in
the objective function on the integrated capacity allocation and timetable coordination problem. Two sets of
experiments are conducted: In the first set of experiments, we vary the coordination time window by changing the
minimum and the maximum coordinated times. In the second set of experiments, we vary the weight coefficients
to analyze the trade-off between the operational costs and passenger transfer time in the objective function. The
other input parameter settings remain consistent with those in instance 2 of Section 5.2.2.

First, we investigate the impact of the coordination time window on our model. To this end, we incrementally
set the coordination time window [Lij

s , L
ij

s ] as [1, 15], [1, 20], [3, 15], [3, 20], [5, 15], [5, 20], [8, 15] and [8, 20]. The cor-
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responding results are presented in Figure 15(a). Analyzing these results, we notice that both the Obj and the F tra

exhibit a rising trend as the minimum and maximum coordinated times increase. For instance, when the coordina-
tion time window is [8, 20], Obj is approximately 515,000, while the passenger transfer time F tra reaches 289,000.
In addition, we also notice that when only the maximum coordinated time is changed while keeping the minimum
coordinated time constant, the values of Obj and F tra show slight variation. For example, when the coordination
time window shifts from [3, 12] to [3, 20], the Obj remains approximately 433,500, and the F tra remains unchanged
at 160,000. Conversely, Obj and F tra evidently increase if the minimum coordinated time is altered while keeping
the maximum time constant. This demonstrates that the obtained coordinated train timetable is more dependent
on the minimum coordinated time and less affected by the maximum coordinated time, as the objective function
favors shorter passenger transfer times. An interesting feature of Figure 15(a) is that when the coordination time
window changes, the Obj and F tra exhibit similar and closely aligned trends in this set of experiments. This indi-
cates that changes in the coordination time window primarily impact passenger transfer time, with minimal effect
on the operational efficiency of individual transportation systems in multimodal transportation. This insight is very
useful for rail managers to design a well-coordinated train timetable within a reasonable coordination window in
the future.

Next, we analyze the sensitivity with different weight coefficients in the objective function. In our formulation,
four weight coefficients (θ1, θ2, θ3, and θ4) are introduced to integrate the passenger travel time and operational
costs into a single objective. Since the passenger travel time in railway and metro systems has less effect on
the objective function compared to the passage transfer and operational costs according to the results in Section
5.2.2, we only vary the weight coefficients of θ1 and θ4 to explore the trade-off between operational costs M cost

and passenger transfer time F tra. In this set of experiments, we sequentially set these two weight coefficients as
θ1 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and θ2 = 0.8, 0.7, 0.6, 0.5, 0.4, 0.3. From the results in Figure 15(b), we can observe that
as the weight θ4 involving F tra in the objective function decreases, passenger transfer time F tra exhibits an upward
trend. On the other hand, when we increase the value of θ1, the operational costs take a decreasing tendency in
this set of experiments. These results demonstrate that when rail managers pay more attention to service quality
for transfer passengers, more carriages involved in trains will be employed in services, increasing operational costs.
In addition, an interesting observation is that when the weight coefficients change only slightly, the values of F tra

and M cost remain almost constant. For example, when the weights change from (0.2, 0.7) to (0.3, 0.6), the transfer
time F tra is approximately 222,880, and the operational costs are both 342,000. This is probably because small
changes in weight coefficient do not evidently impact the optimal solution, i.e., the number of carriages involved in
trains and the departure/arrival times of all considered trains in our experiments. In summary, the trends in the
values of F tra and M cost suggest that trains with more carriages can enhance service quality for passengers, but
employing more carriages in service inevitably increases operational costs for rail managers.

6 Conclusions and future research
In this paper, we studied the integrated train capacity allocation and timetable coordination in multimodal railway

networks, where a part of vehicles can be dynamically allocated to different metro trains to alleviate the congestion
of transfer hubs. We proposed a new mathematical model that optimizes the timetables of both metro and railway
networks and the train capacity allocation strategy. The objective is to minimize the passenger travel time, passenger
transfer time and operational costs for rail managers. Different from the state-of-the-art, our formulation not only
incorporates internal passenger demand in railway and metro systems but also addresses the coordination of these
two modes by considering transfer passenger demand at transfer stations. To tackle the computational difficulties

37



[1,12] [1,20] [3,12] [3,20] [5,15] [5,20] [8,15] [8,20]

Coordination time window

4

4.2

4.4

4.6

4.8

5

5.2
O

bj
105

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

F
tr

a

105

The objective funtion (Obj)

Passenger transfer time (Ftra)

(a) Obj and F tra with the different coordination time window

(0.1,0.8) (0.2,0.7) (0.3,0.6) (0.4,0.5) (0.5,0.4) (0.6,0.3)

Weight coefficients (
1
,

4
)

2.15

2.2

2.25

2.3

2.35

F
tr

a

105

3.3

3.35

3.4

3.45

3.5

M
co

st

105

Passenger transfer time (Ftra)

Operation costs (Mcost)

(b) F tra and Mcost with different weight coefficients

Figure 15: Sensitivity analysis with different coordination time window and weight coefficients

arising from the binary variables related to the synchronization of multiple networks, we developed an exact branch-
and-cut-based solution algorithm. The algorithm involves five sets of valid inequities and a customized branching
strategy based on the model properties, to obtain high-quality solutions within a reasonable computation time.
Finally, we conducted experiments on two sets of instances, including small-scale instances and real-world large-
scale instances based on the field data of the Beijing railway-metro network. Our experiment results demonstrate
that our proposed branch-and-cut-based approach computes optimal or near-optimal solutions and outperforms the
state-of-the-art MIP solvers. Meanwhile, we also find that our approach by flexibly allocation train capacities can
reduce the passenger transfer waiting time by over 40%, compared to the current non-coordinated train timetable.
Additionally, several sets of experiments on sensitivity analysis were conducted to further explore the impact of key
parameters in the model.

Our future work will focus on the following two key aspects. First, this study only takes a first step of integrating
capacity allocation and timetable coordination for multimodal railway networks. In future research, we aim to
extend this integration to more transportation modes and broader transport hubs to provide door-to-door services
for passengers. Another meaningful extension is to consider a more specific rolling stock circulation plan in the
multimodal railway network, to explore more practical scenarios of virtual coupling patterns in metro and railway
systems.
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Appendix A. Sets, parameters and variables for the model formulation

Table 8 lists all the sets, parameters, and subscripts used in the model formulation. Table 9 lists all the decision
variables defined in the model formulation.

Table 8: Sets, parameters and subscripts for the model formulation

Notations Detailed definition
Sets

I = {1, 2, · · · , I} Set of railway lines
J = {1, 2, · · · , J} Set of metro lines
D = {1, 2, · · · , D} Set of depots in metro systems
T = {1, 2, · · · , T} Set of timestamps in the discretized time horizon, indexed by τ

Kj = {1, 2, · · · ,Kj} Set of trains on line j in metro systems
Sj Set of stations of line j in metro systems
Ui Set of stations of line i in railway systems
Jd Set of metro lines served by the rolling stock from depot d

Pi Set of passenger groups on railway line i

Vij Set of transfer stations connected with railway line i and metro line j

E Set of events
A Set of activities
Edep

iu /Earr
iu Subset of events corresponding to the departures/arrivals from/at station u

Ecr
i Set of events that can be slightly adjusted on railway line i

Atrain
j Set of train activities including running activities and dwell activities on railway line j

Arun
i /Adw

i /Atrack
i Set of train running/dwell/track headway activities on railway line i

Bi Set of all order activity pairs on railway line i, (a, a′) ∈ Bi

Input parameters
T run
k,s,j The running time of train k from station s to s+ 1 on line j

T dwell
k,s,j The dwelling time of train k at station s on line j

T run
a /T dwe

a The running/dwell time for running activity a

Np The number of passengers in group p

Rij
s Transferring rate of passengers from railway line i to metro line j at station s, Rij

s ∈ [0, 1]

Dmet The loading passenger capacity of a carriage in metro systems
Drail The loading passenger capacity of a railway train
Zmax
d The maximum capacity of depot d to allocate rolling stock

Qj
s Alighting rate of onboard remaining passengers at station s on metro line j, Qj

s ∈ [0, 1]

Tp The intended departure time of passengers in group p

Lij
s /L

ij

s The minimum/maximum coordinated time at station s between railway line i and metro line j

T unit The unit length of discretized time intervals
hmin
j /hmax

j The minimum/maximum headway time between two successive trains from stations in metro line j

hmin
a The minimum headway time for track headway activity a

cmin
j /cmax

j The minimum/maximum number of carriages in service train on metro line j

narr
s,τ,j The number of arrival passengers at station s and timestamp τ in metro line i

op/dp Origin station and destination station of passenger group p

qie The planned beginning time of event e on railway line i

g The cost of one carriage involved by metro trains

Appendix B. Linearization of nonlinear formulations
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Table 9: The decision variables for the model formulation

Notations Detailed definition
Auxiliary variables

bjk,s,τ Determines if the timestamp τ is between trains k − 1 and k at station s on line j

djk,s,τ Determines if train k departs from station s before or at timestamp τ on line j

nwj
k,s The number of passengers waiting for train k at station s in line j

nbjk,s The number of passengers boarding on train k at station s in line j

ncjk,s The residual loading capacity of train k at station s in line j

najk,s The number of passengers alighting from train k at station s in line j

nrjk,s The number of passengers remaining in train k after departing from station s in line j

Main variables
wj

k,s The departure time of train k at station s in metro line j

cjk The number of carriages involved by train k on metro line j

tie The beginning time of event e on railway line i

λi
a Determines if event e takes place before event f in railway line i, where a = (e, f)

rip,e Determines if passengers in group p choose train le in railway line i

vjd The fleet size of rolling stock assigned to line j from depot d

xij
k,e,s Determines if the time difference between departure of train k and event e at station s is larger than Lij

s

yijk,e,s Determines if train k is the first available connecting train for arrival train le at station s

zijk,e,s Determines if the time difference between departure of train k and event e at station s is less than L
ij

s

φij
k,e,s Determines if train le on line i and train k on line j are coordinated at transfer station s

Lemma 3.1. For constraints (12), the nonlinear term rip,e · φ
ij
k,e,s is a multiplication of two binary variables. By

introducing an auxiliary variable βij
peks, constraints (12) can be rewritten as the following linear form:

nwj
k,s =







∑

τ∈T bjk,s,τ · narr
s,τ,j +

∑

e∈Earr
is

∑

p∈Pi
Np · β

ij
peks ·R

ij
s , ∀s ∈ Vij , k ∈ Kj , i ∈ I, j ∈ J

∑

τ∈T bjk,s,τ · narr
s,τ,j , ∀s ∈ Sj , k ∈ Kj , j ∈ J

(49)































βij
peks ≤ rip,e,

βij
peks ≤ φij

k,e,s, ∀p ∈ Pi, e ∈ Earr
is , s ∈ Vij , k ∈ Kj , i ∈ I, j ∈ J

βij
peks ≥ rip,e + φij

k,e,s − 1,

βij
peks ∈ {0, 1}.

(50)

Lemma 3.2. For constraints (34), the nonlinear expression is a multiplication of two binary variables. We can
replace these nonlinear constraints using the following linear form:



















φij
k,e,s ≤ yijk,e,s, ∀e ∈ Earr

is , k ∈ Kj , s ∈ Vij , i ∈ I, j ∈ J

φij
k,e,s ≤ zijk,e,s, ∀e ∈ Earr

is , k ∈ Kj , s ∈ Vij , i ∈ I, j ∈ J

φij
k,e,s ≥ yijk,e,s + zijk,e,s − 1. ∀e ∈ Earr

is , k ∈ Kj , s ∈ Vij , i ∈ I, j ∈ J

(51)

Lemma 3.3. For constraints (38), the nonlinear term tie · r
i
p,e is a integer variable multiplied by a binary variable.
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By introducing an auxiliary variable γi
pe = aie · r

i
p,e, constraints (36) can be rewritten as the following linear form:

F rail =
∑

i∈I

∑

p∈Pi

∑

e∈Earr
idp

(γi
pe − Tp) ·Np (52)


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





γi
pe ≤ M6 · r

i
p,e,

γi
pe ≤ tie, ∀p ∈ Pi, e ∈ Earr

idp
, i ∈ I

γi
pe ≥ tie −M6(1− rip,e),

γi
pe ≥ 0.

(53)

Lemma 3.4. Based on the linearization process in constraints (50), we can replace the nonlinear term rip,e ·φ
ij
k,e,s ·

(wj
k,s− tie) in constraints (39) by introducing two auxiliary variables µ̂ij

peks = βij
peks · z

j
ks and µ̌ij

peks = βij
peks · t

i
e. Thus,

constraints (39) can be rewritten as the following linear form:

F tra =
∑

i∈I

∑

j∈J

∑

k∈Kj

∑

s∈Vij

∑

p∈Pi

∑

e∈Earr
is

Np · (µ̂
ij
peks − µ̌ij

peks) ·R
ij
s (54)
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µ̂ij
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ij
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peks ≤ wj

k,s, ∀p ∈ Pi, e ∈ Earr
is , s ∈ Vij , k ∈ K, i ∈ I, j ∈ J

µ̂ij
peks ≥ wj

k,s −M6(1− βij
peks),

µ̂ij
peks ≥ 0.

(55)
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is , s ∈ Vij , k ∈ K, i ∈ I, j ∈ J

µ̌ij
peks ≥ tie −M6(1− βij

peks),

µ̌ij
peks ≥ 0.

(56)

Appendix C. The computational results for instance 1 in the small-scale
case study

Table 10 reports the computational results of the obtained train timetables in railway systems and the coordi-
nation strategies, i.e., the connected metro trains, for instance 1 in the small case study. Table 11 reports the
computational results of the obtained train timetables in metro systems and the capacity allocation strategies, i.e.,
the number of carriages involved, for instance 1 in the small case study.

Appendix D. The input parameters in the real-world case study

Table 12 reports the input parameters associated with the real-world case study. In the real-world case study,
the coordination time window between two railway lines and two metro lines at two transfer stations (i.e., Beijing
North Railway Station and Beijing South Railway Station) is the same and equal to [5,20]. Besides, we set the
minimum and maximum numbers of carriages involved by each metro train as 6 and 10, respectively. In our study,
we do not consider the maximum time headway between trains in railway systems. This is because the objective
function for railway systems favors less passenger travel time. As a result, trains typically tend to be scheduled to
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Table 10: The computational results for railway train timetables and coordination strategies for instance 1 in the
small-scale case study

Railway Departure times tie, e ∈ Edep
iu (min) Arrival times tie, e ∈ Earr

iu (min) Loading Passenger Coordinated metro train k

train le Station A Station B Station C Station A Station B Station C group p Upstream Downstream

1 0 13 26 10 23 36 2,7,14 2 2

2 5 18 31 15 28 41 1,3,11,13 3 3

3 10 23 36 20 33 46 9,15 4 4

4 15 28 41 25 38 51 4,8,10 5 5

5 20 33 46 30 43 56 5,6,17 6 6

6 25 38 72 35 48 82 12 9 9

7 30 43 68 40 53 78 19 9 9

8 35 48 65 45 58 75 16 8 8

9 40 53 87 50 63 97 20 10 10

10 45 58 83 55 68 93 18 10 10

Table 11: The computational results for metro train timetables and capacity allocation strategies for instance 1 in
the small-scale case study

Metro Departure times wj
k,s (min) The number of

train k Station 1(6) Station 2(7) Station 3(8) Station 4(9) Station 5(10) carriages cjk

Upstream
direction

1 11 15 19 23 27 2

2 25 29 33 37 41 2

3 30 34 38 42 46 1

4 35 39 43 47 51 1

5 40 44 48 52 56 1

6 45 49 53 57 61 1

7 53 57 61 65 69 1

8 64 68 72 76 80 2

9 71 75 79 83 87 2

10 86 90 94 98 102 3

Downstream
direction

1 22 26 30 34 38 3

2 33 37 41 45 49 2

3 38 42 46 50 54 1

4 43 47 51 55 59 1

5 48 52 56 60 64 1

6 53 57 61 65 69 1

7 60 64 68 72 76 1

8 72 76 80 84 88 1

9 79 83 87 91 95 2

10 94 98 102 106 110 3
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depart from each station at the minimum time headway, aiming to minimize overall passenger travel time. Table
13 provides the detailed information of passenger groups in railway systems for the real-world case study.

Table 12: The input parameters in the real-world case study
Parameters Notations Values Unit
Loading passenger capacity of a railway train Drail 2400 person
Loading passenger capacity of a metro train Dmet 400 person
Alighting rate Qj

s 0.2 0.6
Passenger transfer rate Rij

s {0.3, 0.5, 0.5, 0.3}

Metro train dwell time T dwell
k,s,j 0.5 minutes

Metro train running time T run
k,s,j 2 minutes

Coordination time window [Lij
s , L

ij

s ] [5,20] minutes
Metro time headway hmin

j , hmax
j 3,20 minutes

Railway time headway hmin
a 3 minutes

The minimum/maximum number of carriages cmin
j , cmax

j 6,10
Cost of using one carriage g 2000
The maximum rolling stock allocated in depot Zmax

d 150
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Table 13: The information of passenger groups in the real-world case study
Passenger
group p

Origin
station op

Destination
station dp

Intended departure
time Tp (min)

Volume Np

Beijing-Zhangjiakou High-speed Railway
1 ZJK HL 0 900
2 ZJK QH 5 800
3 ZJK QH 8 1000
4 ZJK QH 10 800
5 ZJK QH 13 800
6 ZJK BJN 9 600
7 ZJK BJN 12 600
8 ZJK BJN 16 800
9 ZJK BJN 23 800
10 ZJK BJN 28 1200
11 ZJK BJN 31 400
12 ZJK BJN 34 800
13 XHB QH 10 600
14 XHB QH 18 600
15 XHB QH 25 800
16 XHB BJN 29 700
17 XHB BJN 36 700
18 XHB BJN 40 800
19 HL QH 26 800
20 HL BJN 46 900

Beijing-Tianjin Intercity Railway
1 TJ LF 0 800
2 TJ LF 5 800
3 TJ BJS 8 800
4 TJ BJS 10 1000
5 TJ BJS 13 800
6 TJ BJS 20 400
7 TJ BJS 32 800
8 TJ BJ 9 600
9 TJ BJ 17 800
10 TJX LF 10 600
11 TJX BJS 17 400
12 TJX BJS 23 800
13 TJX BJS 27 1400
14 TJX BJS 36 800
15 TJX BJS 39 1000
16 TJX BJ 46 800
17 TJX BJ 48 800
18 LF BJS 44 800
19 LF BJS 49 1000
20 LF BJ 56 800
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