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Abstract — In the rapidly evolving field of human-machine 

interfaces (HMI), particularly in the realm of touch screen 

technologies, capacitive touch sensing has gained prominence due 

to its superior flexibility and cost-effectiveness compared to other 

touch interfaces, such as resistive-based methods, infrared touch 

sensors, and surface acoustic wave sensors. However, this 

advancement comes with increased emission and susceptibility to 

Electromagnetic Interference (EMI) and similar disturbances, 

notably due to factors like operating sensing frequency and 

voltage. The previous research underscored the challenges of 

Electromagnetic Emission and some drawbacks of operating 

capacitive sensors at higher excitation frequencies. Characteristics 

of traditional capacitance to digital circuits like sigma-delta 

capacitive sensing circuits operate at higher frequencies, thus 

producing challenges in terms of emission and susceptibility. This 

paper offers a detailed assessment of the conducted 

electromagnetic emissions in a self-oscillating capacitance-to-time 

converter. The study primarily investigates how conducted 

emission characteristics change in response to the sensing circuit’s 
operating frequency and voltage variations. The oscillating 

capacitive sensing circuit conducts sensing with a single clock 

cycle, thus mitigating some of the issues associated with the 

traditional capacitive sensing circuits, such as sigma-delta 

capacitive sensing, which generally require a higher frequency of 

operations. The results indicate that as the sensing frequency and 

the operating voltage decrease, the conducted emission of the 

sensor improves; this phenomenon can be particularly beneficial 

in high EMI environments like the automotive industry, where 

capacitive touch sensors are placed close to sensitive electronics. 

Keywords — Conducted Emission, Frequency Domain 

Analysis, Time Domain Analysis, Time-Frequency Domain 

Analysis. 

I. INTRODUCTION 

Touch-sensing technology is pivotal in various applications, 

especially in consumer electronics such as smartphones, tablets, 

and laptops. This technology can be broadly classified into 

resistive-based, infrared sensing, surface acoustic wave sensing, 

and capacitive touch sensing. In general, two types of touch 

sensing are widely used, i.e., Resistive touch sensing, which 

operates by detecting voltage changes across a resistor due to 

the touch action, and capacitive touch sensing, which measures 

variations in capacitance caused by a touch action [1], [2]. 

Among the two, capacitive touch sensing, recognized for its 

cost-effectiveness and adaptability, is more prevalently used 

than resistive-based touch sensing in consumer electronics and 

HMI within the automotive industry[3], [4]. Capacitive sensing 

is further divided into self-capacitance and mutual capacitance-

based touch sensing, as illustrated in Fig. 1. Fig. 2 shows the 

general working process of both types of capacitive sensing. 

 
Fig. 1. (a) Self-Capacitance based touch sensing (b) Mutual-Capacitance based 

touch sensing. 

 
Fig. 2. General working flow of capacitive touch sensing. 

Capacitive touch sensing is particularly vulnerable to 

conducted and radiated EMI, a problem that is exacerbated as 
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the sensing frequency rises. For instance, researchers have 

observed touchscreen malfunctions in consumer devices caused 

by minute, i.e., a few µA common-mode (CM) currents 

originating from power adapters [5]. 

In capacitive touch sensing, the traditional method to 

measure change in capacitance involves sending small discrete 

charge packets to the sensor capacitor and comparing the total 

number of charge packets required to charge the sensing 

capacitor against a reference capacitor [6], [7], [8]. The sigma-

delta sensing circuit is a prime example of this technique. The 

speed and resolution of this method are closely tied to the 

operating frequency, where operating frequency is directly 

proportional to the sensing speed, which poses challenges in 

terms of EMI/EMC [9], [10]. 

This paper presents an analysis of the conducted emission 

by a self-oscillating capacitive sensing circuit, and the influence 

of operating frequency and amplitude is also shown. Unlike the 

traditional sensing circuit, the proposed circuit uses a single 

oscillating cycle to do sensing, in which the speed and 

resolution depend on the change in the duty cycle. 

The rest of this paper is arranged as follows:  Section II 

details the working of the sensing circuit. Section III discusses 

the analysis of the conducted emission. Section IV examines 

conclusions on the results. 

II. EXPERIMENTAL SETUP AND PROCEDURES FOR 

EVALUATING CONDUCTED EMISSION 

A. Principle and working of an Oscillating Capacitive Sensing 

Circuit 

Fig. 3 demonstrates a design for an oscillating capacitive 

sensing circuit. Central to this circuit is a relaxation oscillator, 

similar to the one discussed in [11]. The relationship between 

the sensing capacitance, denoted as Csen, and the output voltage, 

Vdo, is described by equations (1)-(5) where Ton, Toff, and fosc, 

represent the duration of the oscillator's on-time, off-time, and 

its oscillation frequency, respectively. 𝐾 = 𝑅1 𝑅2⁄                                                     (1) 𝐽 = (𝐶𝑠𝑒𝑛 − 𝐶𝑜𝑓𝑓) 𝐶𝐼𝑛𝑡⁄                               (2) 𝑇𝑜𝑛 = 𝑅𝑟𝑒𝑓 ∗ 𝐶𝐼𝑛𝑡 ∗ 𝐾                                   (3) 𝑇𝑜𝑓𝑓 = 𝑅𝑟𝑒𝑓 ∗ 𝐶𝐼𝑛𝑡 ∗ (𝐾 − 2𝐽)                   (4) 𝑓𝑜𝑠𝑐 = 1 (𝑇𝑜𝑛 + 𝑇𝑜𝑓𝑓)⁄                                 (5) 

 

Fig. 3 Self-Oscillating Capacitive touch sensing circuit. 

This study focuses on how the circuit performs with varying 
combinations of operating voltages and frequencies. Table 1 and 
Table 2 provide an outline of the operational settings tested with 
the sensing circuit. Fig. 4 displays the output Vdo waveform 
during the touched and untouched events, captured under the 
operating conditions characterized by 0.59kHz and 5V. The 
proposed circuit is fabricated on a Printed Circuit Board (PCB) 
as shown in the Fig. 5. 

Table 1 Operating Frequencies of Sensing Circuit 

Frequency 
(in kHz) 

34.1 20.0 10.9 5.7 4.2 2.3 1.0 0.93 0.7 0.59 

Table 2 Operating Voltages of Sensing Circuit 

Peak to Peak 
Voltage 

5.0 4.5 4.0 3.5 3.0 2.5 

 

Fig. 4 Output Vdo waveform from sensing circuit at 0.59kHz and 5V. 

B. Procedure and Experimental Setup of Conducted Emission 

 The conducted emission measurement setup used in this 
study is illustrated in Fig. 6; like the work in [12], [13]. It utilizes 
a 5uH LISN (Model: NNBM 8124) from SCHWARZBECK, an 
EMI Test Receiver (ESPI-7), and a Time Domain Oscilloscope 
(RTO 1024) from Rohde & Schwarz. The Equipment Under 
Test (EUT), i.e., the capacitive sensing circuit, is positioned on 
a non-conductive bench above the ground plane. The LISN and 
the power supply are placed alongside the ground plane. The 
measurement instruments are placed outside the semi-anechoic 
chamber. 

 

Fig. 5 Fabricated PCB of Capacitive touch sensing circuit. 



 
Fig. 7 Conducted Emission Frequency Domain Results.

 

Fig. 6 Conducted EMI test setup. 

III. RESULTS AND ANALYSIS 

A.  Conducted Emission in the Frequency Domain 

 The EMI test receiver is configured with: 

• the frequency range between 9kHz to 150MHz, 

• a resolution Bandwidth (RBW) of 9kHz, 

• and the average detector is used. 

Fig.  shows the emissions data for the EuT at its maximum 
and minimum operating frequencies and voltages. Fig. 6 
demonstrates how the peak of the average emissions varies when 
the EuT's operational frequency changes, with the peak-peak 
operating voltage maintained constant at 5 V, and also shows the 
corresponding changes in emission frequency. 

Likewise, Fig. 7 illustrates the changes in peak average 

emissions when the operating voltage of the EuT is varied while 

keeping the operating frequency constant at 34.1kHz. It also 

shows the subsequent changes in emission frequency. 

 

Fig. 6 EuT Operating Frequency versus Emission amplitude and frequency. 

 
Fig. 7 EuT Operating Voltage versus Emission amplitude and frequency. 



B. Conducted Emission in the Time Domain 

The analysis presented includes the assessment of the output 

voltage Vdo, integrator output Vi, zero-crossing detector output 

Xb, and oscillator output Xa. Fig. 8 showcases the waveforms of 

these signals from the EuT, and Fig. 9 shows corresponding 

waveform outputs from the LISNs. 

In the experimental arrangement, the time-domain voltages 

across the 50Ω load from the LISNs are captured, with the 

parameters in Table 3. Furthermore, signals from the two 

different LISNs are recorded concurrently to minimize 

measurement errors or inconsistencies while maintaining the 

same setup environment used for frequency domain 

measurements.  

Table 3 Time-domain acquisition specifications 

Total recorded length 8ms 

Acquisition Speed 5GSamples/s 

Time Resolution 200ps 

Total Samples 40e6 

Input Impedance 50Ω 

 
Fig. 8 Time-domain waveforms from EuT operating at F = 0.59 and V = 5.0. 

 
Fig. 9 Time-domain waveforms from LISNs when EuT operates at F = 0.59 and 

V = 5.0. 

Fig. 10 represents the time-frequency behavior of the common 

mode voltage calculated from the results of the time-domain 

signals from the LISN networks. For determining time-

frequency domain results, a short-time Fourier transform is 

used with the parameters shown in Table 4 [14], [15]. 

Table 4 Time-Frequency domain analysis parameters 

Parameters Values 

Window Blackman-Harris 

Resolution Bandwidth 𝑅𝐵𝑊 9kHz 

Nyquist Samplinga 𝑆𝑁𝐹  300MHz 

Window Length 𝑊𝐿 𝑊𝐿 =  𝑅𝐵𝑊−1/𝑆𝑁𝐹 −1 

Overlapping 90% 
a 

For faster calculation, recorded signals are down-sampled to 300MHz. 

 
Fig. 10 Short-time Fourier Transform of common mode emission. 

The time-domain results indicate that the transitions 

occurring during the charging and discharging of the integrating 

and sensing capacitor are major contributors to conducted 

emissions. Therefore, modifications in the design that decrease 

the total charge time, or the capacitance could reduce emissions 

while allowing for a higher frequency to maintain improved 

touch sensing speed. 

IV. CONCLUSION 

This research analyzes the conducted emission behavior of 

a self-oscillating capacitive touch-sensing circuit, revealing that 

an increase in the circuit's operating frequency leads to higher 

emission amplitudes. Similarly, an increase in the operating 

voltage of the sensing circuit results in amplified emissions. 

Traditional capacitive touch sensing circuits, such as sigma-

delta capacitive sensing, require higher operating frequencies 

for enhanced sensing speed and accuracy, potentially 

generating more emissions. In contrast, the proposed sensing 

methodology employs changes in the time shift or phase of 

oscillation to detect capacitance variations. The effectiveness of 

this method in terms of speed, accuracy, and resolution centers 

on the acquisition or processing system's capability to discern 

minor variations in the phase or time shift of the output signal. 

 



The study indicates that the minimization of conducted 

emissions is achievable through the efficient use of operating 

frequency and voltage at lower levels. Although, there is 

potential for enhancement in the discussed circuit design, 

particularly in reducing operating frequency and voltage. 

Transitioning from printed circuit-based self-oscillating 

capacitive sensing or analogous designs to very large-scale 

integration or integrated circuit platforms could facilitate a 

more effective sensing interface while maintaining reduced 

voltage and frequency requirements. 

 

Ongoing research explores this methodology for multi-

touch applications, including investigating the circuit's radiated 

emissions and susceptibility. These aspects are being carefully 

examined because lower operating voltages and frequencies 

might reduce radiated emissions. 
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