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Guaranteed Cost Boundary Control of the Semilinear Heat Equation

Anton Selivanov1, Pengfei Wang2, and Emilia Fridman2

Abstract—We consider a 1D semilinear reaction-diffusion sys-
tem with controlled heat flux at one of the boundaries. We design
a finite-dimensional state-feedback controller guaranteeing that
a given quadratic cost does not exceed a prescribed value for
all nonlinearities with a predefined Lipschitz constant. To this
end, we perform modal decomposition and truncate the highly
damped (residue) modes. To deal with the nonlinearity that
couples the residue and dominating modes, we combine the
direct Lyapunov approach with the S-procedure and Parseval’s
identity. The truncation may lead to spillover: the ignored
modes can deteriorate the overall system performance. Our main
contribution is spillover avoidance via the L

2 separation of the
residue. Namely, we calculate the L

2 input-to-state gains for
the residue modes and add them to the control weight in the
quadratic cost used to design a controller for the dominating
modes. A numerical example demonstrates that the proposed
idea drastically improves both the admissible Lipschitz constants
and guaranteed cost bound compared to the recently introduced
direct Lyapunov method.

Index Terms—Distributed parameter systems; modal decom-
position; Lyapunov methods; heat equation

I. INTRODUCTION

Modal decomposition is a popular method of designing

finite-dimensional controllers for partial differential equations

(PDEs). Its idea is to design a controller for the dominating

modes ignoring the highly damped residue modes [1], [2],

[3], [4], [5]. A common problem with modal decomposition

is spillover: the ignored modes can deteriorate the overall

system performance [6], [7], [8]. Spillover can be studied

qualitatively, where stability is guaranteed for a large enough

number of considered modes, or quantitatively, where one

specifies the exact number of required modes and provides

performance guarantees. Qualitative results have been obtained

using residual mode filters [9], [10], [11], spectral properties of

linear operators [12], [13], [14], small-gain ideas [15], [16],

and Lyapunov functionals [17], [18], [19]. Though some of

these results can be used to estimate the required number of

modes, the decay rate, or input-to-state gains, the resulting

estimates may be quite conservative. Accurate quantitative re-

sults require a more careful residue analysis and were obtained

using Lyapunov functionals in [8], [20], [21], [22], [23], [24].

The key step in the quantitative Lyapunov-based analysis is

to use Young’s inequality to split the cross terms between the

control input and the residue modes (see Section V). This
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paper shows how to avoid restrictive Young’s inequality and

perform a more accurate analysis of the residue modes leading

to a drastic performance improvement.

Our results are inspired by [25], where a finite-dimensional

H∞ controller was designed for the Euler–Bernoulli beam.

The key idea is to consider the control signal as a disturbance

in the truncated modes with the corresponding L2 input-to-

state gains. These gains are added to the control weight in the

cost for the dominating modes and the optimal controller for

the modified cost is designed. Since the modified cost accounts

for the destabilizing effect of the control signal in the residue,

spillover is avoided. This approach is inherently more accurate

than those based on Young’s inequality [8], [20], [21], [22],

[23], [24]. To demonstrate this, we use it to design a finite-

dimensional state-feedback boundary controller guaranteeing

that a given quadratic cost does not exceed a prescribed value

for all nonlinearities with a predefined Lipschitz constant. The

proposed design method is simple: it only requires to solve

a modified algebraic Riccati equation. A numerical example

demonstrates that the L2 separation method increases the

admissible Lipschitz constant and reduces the upper bound on

the cost by 90% compared to [23], where Young’s inequality

was used.

Notations: N0 = N ∪ {0}, | · | is the Euclidean norm, ∥ · ∥
and ⟨·, ·⟩ are the norm and scalar product in L2. If P is a

symmetric matrix, P < 0 means that it is negative definite

with the symmetric elements sometimes denoted by “∗”.

II. THE SEMILINEAR HEAT EQUATION

We consider the semilinear heat equation

zt = zxx + qz + f(·, t, z(·, t)), (1a)

zx(0, t) = 0, zx(π, t) = u(t) (1b)

with state z : [0, π]× [0,∞) → R, control input u : [0,∞) →
R, and reaction coefficient q > 0. A continuous f : R3 → R

satisfies f(x, t, 0) ≡ 0 and the Lipschitz condition

∃σ > 0: |f(x, t, z1)− f(x, t, z2)| ≤ σ|z1 − z2|. (2)

Note that if the coefficient in front of zxx is not 1, or the spatial

domain is not [0, π], the equation can be transformed to the

form (1) using the change of variables z̃(x, t) = z(ax−x0, bt)
with suitable a, b, and x0. Furthermore, the reaction term, qz,

can be included in f increasing the Lipschitz constant σ. We

keep it separated to obtain more accurate conditions.

Our objective is to design a finite-dimensional state-

feedback control law that, for a given r > 0, guarantees

J =
∫∞
0

[

∥z(·, t)∥2 + ru2(t)
]

dt ≤ α∥z(·, 0)∥2 (3)

with some α > 0 (as small as possible) for system (1) with

any z(·, 0) ∈ L2(0, π) and any f satisfying (2). Note that (3)



implies the asymptotic stability of (1) in the L2 norm (see

Remark 3). The key step in designing and analysing such a

controller is the modal decomposition presented next.

III. MODAL DECOMPOSITION OF THE

SEMILINEAR HEAT EQUATION

The eigenvalues and eigenfunctions of the operator

Aϕ = −ϕ′′, D(A) = {ϕ ∈ H2(0, π) | ϕ′(0) = 0 = ϕ′(π)},
are

λn = n2, n ∈ N0,

ϕn(x) =

{

1/
√
π, n = 0,

√

2/π cosnx, n ∈ N.

The eigenfunctions form an orthonormal basis of L2(0, π).
Therefore, the state can be presented as the Fourier series

z(x, t)
L2

=
∑∞

n=0 zn(t)ϕn(x), zn(t) := ⟨z(·, t), ϕn⟩.
The Fourier coefficients, zn, satisfy

żn(t)=⟨zt(·, t), ϕn⟩
(1a)
= ⟨zxx(·, t), ϕn⟩+ q⟨z(·, t), ϕn⟩+ ⟨f(·, t, z(·, t)), ϕn⟩.

Since ϕn ∈ D(A) and ϕ′′
n = −λnϕn, integrating by parts

twice, we obtain

⟨zxx(·, t), ϕn⟩
= zx(·, t)ϕn|π0 − z(·, t)ϕ′

n|
π

0 +
∫ π

0
z(x, t)ϕ′′

n(x) dx
(1b)
= ϕn(π)u(t)− λnzn(t).

Therefore,

żn(t) = (q − λn)zn(t) + fn(t) + bnu(t), n ∈ N0,

where

fn(t) = ⟨f (·, t, z(·, t)) , ϕn⟩, n ∈ N0,

bn =

{

1/
√
π, n = 0,

(−1)n
√

2/π, n ∈ N.

For any νf ≥ 0, Parseval’s theorem and (2) imply

0 ≤ νf
[

σ2
∑∞

n=0 z
2
n −

∑∞
n=0 f

2
n

]

. (4)

We will design a finite-dimensional state-feedback controller

using the first N + 1 modes (n = 0, 1, . . . , N ). We take N
such that

λN+1 = (N + 1)2 > q + σ. (5)

This condition is very natural: we consider all the unstable

modes in the control design. It guarantees that all the ρn,

given in (14) below, are positive for some νf > 0.

Separating the first N + 1 modes, we obtain

żN (t) = AzN (t) +Bu(t) + F (t), (6a)

żn(t) = (q − λn) zn + fn(t) + bnu(t), n > N, (6b)

where

zN = [z0, . . . , zN ]⊤, F = [f0, . . . , fN ]⊤,

A = diag{q − λ0, . . . , q − λN},
B =

√

2/π[1/
√
2,−1, 1, . . . , (−1)N ]⊤.

Since all the eigenvalues, λn, are different, the pair (A,B) is

controllable, e.g., by the Hautus Lemma [26, Lemma 3.3.1].

Our objective is to find K ∈ R
1×(N+1) such that

u(t) = −KzN (t) (7)

guarantees (3) for any f subject to (2).

The well-posedness of (1) under (7) can be established in a

manner similar to [27, Section 2.2]: For z(·, 0) ∈ L2(0, π),
there is a mild solution z ∈ C([0,∞), L2) due to [28,

Theorem 6.1.2]. If z(·, 0) ∈ H1(0, π), this mild solution is

the unique classical solution by [28, Theorem 6.3.1]

z ∈ C([0,∞), L2) ∩ C1((0,∞), L2),

z(·, t) ∈ H2(0, π), ∀t > 0.

IV. GUARANTEED COST CONTROL

VIA THE L2 RESIDUE SEPARATION

Using Parseval’s identity, ∥z(·, t)∥2 =
∑∞

n=0 z
2
n(t), the ob-

jective (3) can be expressed in terms of the Fourier coefficients,

zn(t). Our main idea is to decompose it as

J =
∫∞
0

[

∑N
n=0 z

2
n(t) + (r + ρ̄N )u2(t)

]

dt

+
∫∞
0

∑∞
n=N+1

[

z2n(t)− ρnu
2(t)

]

dt ≤ α
∑∞

n=0 z
2
n(0),

where

ρ̄N =
∑∞

n=N+1 ρn. (8)

Given this decomposition, (3) holds if

∫ ∞

0

[

N
∑

n=0

z2n(t) + (r + ρ̄N )u2(t)

]

dt ≤ α

N
∑

n=0

z2n(0), (9a)

∫ ∞

0

[

z2n(t)− ρnu
2(t)

]

dt ≤ αz2n(0), n > N. (9b)

Our intuition is that, since the modes with n > N are ignored

in the controller design, u(t) should be viewed as a disturbance

in these modes. Condition (9b) means that the square of the

L2 gain from u(t) to zn(t) for systems (6b) is not greater than

ρn. Then ρ̄N , given in (8), reflects the combined L2 gain from

u(t) to the residue modes. By adding it in (9a), we guarantee

that the control designed for the dominating modes will not

lead to spillover.

The remainder of this section ensures (9). First, we assume

that α > 0 is fixed and find the minimum ρn guaranteeing

(9b). Then, we calculate their sum, ρ̄N , as in (8). Finally,

we find u(t) guaranteeing (9a). This idea is inspired by [25],

where the H∞ problem was solved for a linear beam PDE.

The main difference compared to [25] is that the conditions

in (9) cannot be fulfilled independently due to the nonlinearity

f in the heat equation (1). When calculating ρn guaranteeing

(9b), one needs to use the conditions on fn, which are given

in (4) and cannot be separated for each n. We overcome this

difficulty using the Lyapunov functional

V (z(·, t)) = (zN (t))⊤PzN (t) +
∑∞

n=N+1 z
2
n(t) (10)

with 0 < P ∈ R
(N+1)×(N+1). By Parseval’s theorem,

c1∥z(·, t)∥2 ≤ V (z(·, t)) ≤ c2∥z(·, t)∥2,



where c1 = min{1, λmin(P )} and c2 = max{1, λmax(P )}. In

what follows, we find the conditions guaranteeing

V̇ + η
[

∥z(·, t)∥2 + ru2(t)
]

≤ 0 (11)

for η > 0. Integrating the above from 0 to ∞ in t, we obtain

∫∞
0

[

∥z(·, t)∥2 + ru2(t)
]

dt ≤ η−1(V (z(·, 0))− V (z(·, t)))
≤ η−1V (z(·, 0)) ≤ η−1c2∥z(·, 0)∥2.

Note that there is not much benefit in considering
∑∞

n=N+1 pnz
2
n(t) as the second term of V since pn has to

converge to a constant for V to be “sandwiched” between the

L2 norms of the state.

For (10) to be differentiable, we consider z(·, 0) ∈ H1 and

the corresponding classical solution. In this case, we derive

conditions guaranteeing (3). Since H1 is dense in L2, (3)

remains true (by continuous extension) for z(·, 0) ∈ L2.

To guarantee (11), we calculate the time derivative of V
along the trajectories of (6) and add (4) to compensate f (i.e.,

apply the S-procedure):

V̇ + η∥z(·, t)∥2 + ηru2(t)
(6)
= 2(zN )⊤P [AzN +Bu+ F ]

+ 2

∞
∑

n=N+1

zn[(q − λn)zn + fn + bnu]

+ η|zN |2 + η

∞
∑

n=N+1

z2n + ηru2

(4)

≤ (zN )⊤[PA+A⊤P + ηI + νfσ
2I]zN

+ 2(zN )⊤PBu+ 2(zN )⊤PF − νfF
⊤F

+ 2

∞
∑

n=N+1

zn[(q − λn)zn + fn + bnu] + η

∞
∑

n=N+1

z2n

+ νf

∞
∑

n=N+1

(σ2z2n − f2
n) +

(

ηr + ρ̄N−
∞
∑

n=N+1

ρn

)

u2.

(12)

The last term equals ηru2 in view of (8). We substitute u =
−KzN for the first N + 1 modes and keep it as u for the

remaining modes:

V̇ + η∥z(·, t)∥2 + ηru2(t) ≤
[

zN

F

]⊤[
Φ11 P
P −νfI

][

zN

F

]

+

∞
∑

n=N+1

[

zn
fn
u

]⊤
Φn

[

zn
fn
u

]

, (13)

where

Φ11 = P (A−BK) + (A−BK)⊤P

+ (ηr + ρ̄N )K⊤K + (η + νfσ
2)I,

Φn =





2(q − λn) + η + νfσ
2 1 bn

1 −νf 0
bn 0 −ρn



 .

In what follows, we find the minimum ρn > 0 guaranteeing

Φn ≤ 0 (Section IV-A) and design K ∈ R
1×(N+1) guarantee-

ing that the first term in the right-hand side of (13) is negative

(Section IV-B).

A. L2 gain calculation for the residue

By the Schur complement lemma, Φn ≤ 0 follows from

2(q − λn) + η + νfσ
2 + ν−1

f + b2nρ
−1
n = 0, n > N.

Solving this equation, we obtain

ρn =
b2n

2(λn − q)− η − νfσ2 − ν−1
f

=
π−1

λn − d
(14)

with d = q + η
2 +

νfσ
2

2 + 1
2νf

. Since λn = n2 increases

monotonically, ρn > 0 for any n > N if and only if

λN+1 − q − η

2
− νfσ

2

2
− 1

2νf
> 0

with fixed q and σ. This holds when νf ∈ (ν−, ν+) with

ν± =
λN+1 − q − η

2 ±
√

(λN+1 − q − η
2 )

2 − σ2

σ2
. (15)

For this set to be non-empty, we need

0 < η < 2(λN+1 − q − σ), (16)

which is feasible in view of (5).

For the ρn given in (14), the series in (8) can be calculated

explicitly, e.g., using the Mittag-Leffler expansion for the

cotangent [29, Section 7.10]:

π cotπz =
1

z
+ 2

∞
∑

n=1

z

z2 − n2
.

Substituting z =
√
d and reorganizing the terms, we obtain

ρ̄N =
∑∞

n=N+1 ρn = 1
π

∑∞
n=N+1

1
n2−d

= 1
π

[

∑N
n=0

1
d−n2 − 1+π

√
d cotπ

√
d

2d

]

.

The expression with the cotangent is not defined when d is a

square of an integer, but the limit will always exist. Since

the series converges, ρ̄N → 0 as N → ∞, meaning that

when more modes are considered in the control design, the

destabilizing effect of the control imposed by the residue is

reduced.

B. Controller design for the first N + 1 modes

By the Schur complement lemma,
[

Φ11 P
P −νfI

]

≤ 0 (17)

follows from the algebraic Riccati equation (ARE)

P (A−BK) + (A−BK)⊤P + (ηr + ρ̄N )K⊤K

+ (η + νfσ
2)I + ν−1

f P 2 = 0.

Following the H∞ conventions, we are looking for the con-

troller gain in the form

K = µB⊤P, µ > 0.

Substituting and reorganizing the terms, we obtain

PA+A⊤P + P (ν−1
f I − (2µ− ηrµ2 − ρ̄Nµ2)BB⊤)P

+ (η + νfσ
2)I = 0.



The maximum of 2µ−ηrµ2− ρ̄Nµ2 is (ηr+ ρ̄N )−1 achieved

at µ = (ηr + ρ̄N )−1. Substituting this µ, we obtain

PA+A⊤P + P (ν−1
f I − (ηr + ρ̄N )−1BB⊤)P

+ (η + νfσ
2)I = 0. (18)

This algebraic Riccati equation solves the H∞ full-information

control problem for (6a) with the disturbance F (t) and objec-

tive (see, e.g., [30])

∫∞
0

[

(η + νfσ
2)|zN (t)|2 + (ηr + ρ̄N )u2(t)

− νf |F (t)|2
]

dt ≤ 0. (19)

The resulting control law is

u = −(ηr + ρ̄N )−1B⊤PzN . (20)

In Section IV-A, we selected ρn that guarantees Φn ≤ 0
in the second term of (13). In this section, we found P
that guarantees (17), i.e., the first term in (13) is negative.

Therefore, (11) is true, which implies the following result.

Theorem 1 (Guaranteed cost): Consider the semilinear heat

equation (1) subject to (2). Let N ∈ N satisfy (5), η > 0
satisfy (16), and νf ∈ (ν−, ν+) with ν± defined in (15). If

there exists 0 < P ∈ R
(N+1)×(N+1) solving (18), then the

state-feedback control law (20) guarantees that (3) holds with

α = η−1c2 = η−1 max{1, λmax(P )}.

Remark 1 (Number of modes and the Lipschitz bound):

When N grows, the maximum admissible Lipschitz constant,

σ, cannot decrease. Indeed, ΦN+1 ≤ 0 guarantees that

VN+1 = z2N+1 satisfies

V̇N+1 + (η + νfσ
2)z2N+1 − ρN+1u

2 − νff
2
n ≤ 0.

Integrating this from 0 to ∞ and taking zN+1 = 0, we obtain
∫∞
0

[

(η + νfσ
2)z2N+1 − ρN+1u

2 − νff
2
n

]

dt ≤ 0.

By adding this to (19), we find that (19) holds when N is

replaced with N + 1. By [30, Theorem 6.3.6], (18) must be

feasible for N + 1.

Remark 2 (LMI formulation): By the Schur complement

lemma, (17) is equivalent to








Φ̃11 P (ηr + ρ̄N )K⊤ (η + νfσ
2)I

∗ −νfI 0 0
∗ ∗ −(ηr + ρ̄N ) 0
∗ ∗ ∗ −(η + νfσ

2)I









≤ 0

with Φ̃11 = P (A − BK) + (A − BK)⊤P . Multiplying by

diag{P−1, I, 1, I} from left and right, and denoting P̄ =
P−1, Y = KP−1, we obtain








Φ̄11 I (r + ρ̄N )Y ⊤ (1 + νfσ
2)P̄

∗ −νfI 0 0
∗ ∗ −(r + ρ̄N ) 0
∗ ∗ ∗ −(1 + νfσ

2)I









≤ 0 (21)

with Φ̄11 = AP̄ + P̄A−BY − (BY )⊤. Therefore, instead of

solving (18), one can solve (21) and take K = Y P̄−1. LMIs

(21) take more time to solve compared to (18) because the

number of decision variables is higher and the solvers tailored

for solving (18) are more efficient than the universal LMI

solvers. However, the LMIs (21) are useful if the results of

this paper are extended to the delayed input case.

C. Exponential stability

The above L2-separation idea can be extended to guarantee

the exponential stability of (1) under (7) with a given decay

rate δ > 0. To this end, one needs (cf. (11))

V̇ + 2δV ≤ 0.

Then, the calculations (12) are modified in a straightforward

way: η = 0 and q should be replaced by q + δ. The

corresponding L2 gain for the residue is given by (14) with

d = q + δ +
νfσ

2

2
+

1

2νf
. (22)

Furthermore, the ARE (18) becomes

PAδ +A⊤
δ P + P (ν−1

f I − ρ̄−1
N BB⊤)P + νfσ

2I = 0

with Aδ = A+δI . Dividing by νf and defining Pν = P/νf >
0, we obtain

PνAδ +A⊤
δ Pν + Pν(I − κ−1

N BB⊤)Pν + σ2I = 0 (23)

with κN = (ρ̄Nνf )
−1. Clearly, κN should be minimized to

improve feasibility. Similarly to the previous section, ρn > 0
if and only if νf ∈ (ν−, ν+) with ν± given by (15) with η/2
replaced by δ. Therefore, we take

κN = min
νf∈(ν

−
,ν+)

ρ̄N (νf )

νf
. (24)

Summarizing, we have the following result.

Theorem 2 (Exponential stability): Consider the semilinear

heat equation (1) subject to (2). Let δ > 0 be a desired decay

rate. For any given N ∈ N satisfying (cf. (5))

λN+1 = (N + 1)2 > q + σ + δ, (25)

take d as in (22) and κN as in (24). Let 0 < Pν ∈
R

(N+1)×(N+1) be the solution of (23). Then the state-feedback

control law

u = −κ−1
N B⊤Pνz

N

makes (1) globally exponentially stable in the L2 norm with

the decay rate δ.

Remark 3: Note that (11) implies that V̇ ≤ −2δV with

δ = η
2c2

> 0, which guarantees the exponential stability of

(1), (7) in the L2 norm.

V. GUARANTEED COST CONTROL

VIA YOUNG’S INEQUALITY

To compare our results with the approach in [23], we extend

it to system (1). Recall that for V defined in (10),

V̇ + η[∥z(·, t)∥2+ ru2(t)]
(6),(7)
= 2(zN )⊤P [(A−BK)zN+F ]

+ 2

∞
∑

n=N+1

zn[(q − λn)zn + fn − bnKzN ]

+ η|zN |2 + η

∞
∑

n=N+1

z2n + ηr|KzN |2. (26)



Young’s inequality gives

∞
∑

n=N+1

2znfn ≤
∞
∑

n=N+1

ν−1
f z2n + νf

∞
∑

n=0

f2
n − νf |F |2

(4)

≤ (ν−1
f + νfσ

2)
∞
∑

n=N+1

z2n + νfσ
2|zN |2 − νf |F |2

and

−∑∞
n=N+1 2znbnKzN ≤∑∞

n=N+1 ν2λnz
2
n+

∑∞
n=N+1

|bnKzN |2
ν2λn

=
∑∞

n=N+1 ν2λnz
2
n + χN

ν2
|KzN |2,

(27)

where νf > 0, ν2 > 0, and

χN :=
∑∞

n=N+1
2

πλn
= 2

π

[

π2

6 −∑N
n=1

1
n2

]

.

Using these in (26), we obtain

V̇ + η[∥z(·, t)∥2 + ru2(t)] ≤
[

z
N

F

]⊤ [
Ψ11 P

P −νfI

] [

z
N

F

]

+
∑∞

n=N+1(−2λn + 2q + η + ν−1
f + νfσ

2 + ν2λn)z
2
n,

where

Ψ11 =P (A−BK) + (A−BK)⊤P

+ (ηr + χNν−1
2 )K⊤K + (νfσ

2 + η)I.

Clearly, V̇ + η[∥z(·, t)∥2 + ru2(t)] < 0 follows from

Ψ :=

[

Ψ11 P
P −νfI

]

< 0, (28a)

− 2λN+1 + 2q + η + ν−1
f + νfσ

2 + ν2λN+1 < 0. (28b)

By the Schur complement lemma, (28a) is equivalent to

















Ξ P K⊤ rK⊤ σI I
∗ −νfI 0 0 0 0
∗ ∗ − ν2

χN
0 0 0

∗ ∗ ∗ − r
η

0 0

∗ ∗ ∗ ∗ −ν−1
f I 0

∗ ∗ ∗ ∗ ∗ − 1
η
I

















< 0,

where Ξ = P (A−BK)+ (A−BK)⊤P . Multiplying this by

diag{P−1, ν−1
f I, 1, I, I} from left and right, and introducing

P̄ = P−1, Y = KP−1, ν1 = ν−1
f , η1 = η−1,

we obtain
















Ξ̃ ν1 Y ⊤ rY ⊤ σP̄ P̄
∗ −ν1I 0 0 0 0
∗ ∗ − ν2

χN
0 0 0

∗ ∗ ∗ −η1r 0 0
∗ ∗ ∗ ∗ −ν1I 0
∗ ∗ ∗ ∗ ∗ −η1I

















< 0 (29)

with Ξ̃ = AP̄ + P̄A⊤ − BY − Y ⊤B⊤. By the Schur

complement lemma, (28b) is equivalent to




−2λN+1 + 2q + ν1 + ν2λN+1 σ 1
∗ −ν1 0
∗ ∗ −η1



 < 0. (30)

Note that (29) and (30) are LMIs that depend on P̄ , Y , ν1,

ν2, and η1. If (29) and (30) hold, the controller gain is K =
Y P̄−1. Summarizing, we have the following result.

Theorem 3 (Guaranteed cost): Consider the semilinear heat

equation (1) subject to (2). Let N ∈ N satisfy (5). If there

exist 0 < P̄ ∈ R
(N+1)×(N+1), Y ∈ R

1×(N+1), and scalars

ν1 > 0, ν2 > 0, and η1 > 0 such that (29) and (30) hold, then

the state-feedback control law (7) with K = Y P̄−1 guarantees

(3) with α = η−1c2 = η1 max{1, λmax(P̄
−1)} (equivalently,

minimum α > 0 such that α ≥ η1 and P̄ ≥ η1α
−1I).

Similarly to Section IV-C, for a given decay rate δ > 0, we

let N ∈ N satisfy (25) and arrive at V̇ + 2δV ≤ 0 provided






AδP̄ + P̄A
⊤

δ −BY − Y
⊤
B

⊤
ν1 Y

⊤
σP̄

∗ −ν1I 0 0

∗ ∗ −
ν2
χN

0

∗ ∗ ∗ −ν1I






< 0,

[

−2λN+1 + 2q + 2δ + ν1 + ν2λN+1 σ
∗ −ν1

]

< 0.

(31)

Summarizing, we have the following conditions for the expo-

nential stability.

Theorem 4 (Exponential stability): Consider the semilinear

heat equation (1) subject to (2). Let δ > 0 be a desired decay

rate. For a given N ∈ N satisfying (25), let there exist 0 <
P̄ ∈ R

(N+1)×(N+1), Y ∈ R
1×(N+1), and scalars ν1 > 0 and

ν2 > 0 satisfying (31). Then, the state-feedback control law

(7) with K = Y P̄−1 makes (1) globally exponentially stable

in the L2 norm with the decay rate δ.

Remark 4: The proofs of Theorems 3 and 4 use Young’s in-

equality in (27) to separate the control input from the residue.

Our approach circumvents conservative Young’s inequality

by leveraging the L2-gain ideas: the cross-terms znbnu in

(13) are compensated by −ρnu
2 with ρn later added to the

control weight in the cost. This leads to a drastic improvement

compared to [23], which is demonstrated by an example in the

next section.

VI. EXAMPLE

As an example, we consider (1) with q = 1 or q = 5, and

the nonlinearity that makes the open-loop system unstable.

First, let δ = 10−2 be the desired decay rate. To compare

Theorems 2 and 4, we perform linear search over σ > 0 to find

the maximum Lipschitz constant preserving the feasibility of

(23) with κN from (24) and the LMIs (29), (30), respectively.

The maximum σ for N ∈ {1, . . . , 6} are given in Table I. The

residue separation method developed in this paper always leads

to a larger Lipschitz constant compared to the approach based

on Young’s inequality. In particular, for q = 5 and N = 2, the

Lipschitz constant increases by 26%.

TABLE I
THE MAXIMUM ADMISSIBLE σ.

N = 1 2 3 4 5 6
Thm 2 q = 1 0.3763 0.4099 0.4195 0.4235 0.4256 0.4268
Thm 4 q = 1 0.3564 0.4003 0.4137 0.4196 0.4228 0.4247

Thm 2 q = 5 – 0.0841 0.1119 0.1217 0.1263 0.1289
Thm 4 q = 5 – 0.0667 0.1006 0.1142 0.1209 0.1248

Next, we consider the guaranteed cost control (3) and try

to minimize α > 0. We consider q = 1 with σ = 0.35 and



q = 5 with σ = 0.06, and take r = 0.1. For Theorem 1,

we perform linear search over α > 0 and make a grid of

η ∈ (0, 2(λN+1 − q − σ)) and νf ∈ (ν−, ν+) with ν−, ν+
defined in (15) to find minimum α ≥ η−1 max{1, λmax(P )}
preserving the feasibility of (18) with P > 0. For comparison

of the results with Theorem 3, we solve LMIs (29) and (30)

with the constraints α ≥ η1 and P̄ ≥ η1α
−1I to find the

minimum value of α > 0 that preserves the feasibility. The

minimum α for N ∈ {1, . . . , 6} are given in Table II. For the

same Lipschitz constant, the residue separation method always

leads to a smaller α > 0 compared to the approach based on

Young’s inequality. In particular, for q = 5 and N = 2, the

value of α is reduced by 90%.

TABLE II
THE MINIMUM VALUE OF α.

(q, σ)\N 1 2 3 4 5 6
Thm 1 (1, 0.35) 2261.4 521.6 425.9 402.4 393.8 390.1
Thm 3 (1, 0.35) 25419.2 699.9 480.8 428.2 408.4 399.1

Thm 1 (5, 0.06) – 27408 9634 8371 8061 7945
Thm 3 (5, 0.06) – 266031 12824 9340 8511 8198

In simulations, we consider q = 1, f(z) = 0.35 sin(z), and

N = 6. Using the grid search, we find η = 8.8 and νf = 496.

Solving (18), we obtain the control gain

K = (ηr + ρ̄N )−1B⊤P

= [153.96, 80.19,−2.60,−0.05, 0.50,−0.52, 0.46].

Fig. 1 shows J(t) =
∫ t

0

[

∥z(·, s)∥2 + ru2(s)
]

ds for the initial

condition z(x, 0) =
∑N

n=0 φn(x)zn(0) with

zN (0) = [z0(0), . . . , zN (0)]⊤

= [−86.13,−50.73, 2.69,−0.83, 0.33,−0.16, 0.08]⊤ × 102,

which was chosen to satisfy PzN (0) = λmax(P )zN (0) and

|zN (0)| = 1. The theoretical upper bound on J from Table

II is α∥z(·, 0)∥2 = 390.1. Simulations confirm our theoretical

results.

Fig. 1. Evolution of J(t) =
∫ t

0

[

∥z(·, s)∥2 + ru2(s)
]

ds.
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