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1 Introduction

A signiőcant fraction of proton-proton (𝑝𝑝) collisions at the LHC proceeds via processes where one
or both protons stay intact, i.e. 𝑝𝑝 → 𝑝𝑋 and 𝑝𝑝 → 𝑝𝑋𝑝, respectively. When an intact proton is
observed in the őnal state, it is typically accompanied by a large rapidity gap, a region devoid of
hadronic activity [1, 2] between the őnal system 𝑋 and the leading proton(s). This topology is usually
explained in terms of an absence of colour connection between the outgoing proton(s) and the őnal
state 𝑋 . Most of such processes are called diffractive and are described by Pomeron exchange [3, 4].

Diffractive processes include elastic scattering (𝑝𝑝 → 𝑝𝑝), central diffractive processes
(CD, 𝑝𝑝 → 𝑝𝑋𝑝), single diffractive dissociation (SD, 𝑝𝑝 → 𝑝𝑋), and double diffractive disso-
ciation (DD, 𝑝𝑝 → 𝑋𝑌 ). The intact protons produced in SD and CD processes emerge deŕected at
very small angles relative to the incoming proton beam, such that they escape detection in the ATLAS
inner detector and calorimeters. They can be detected and measured using dedicated proton detectors
positioned far from the interaction point (IP) and close to the beam. These are known as forward
proton detectors. In ATLAS [5], there are two forward proton detector systems, Absolute Luminosity
for ATLAS (ALFA) [6] and ATLAS Forward Proton detector system (AFP) [7]. The scope of ALFA is
to measure elastic processes and soft diffractive dissociation processes, requiring special beam optics
settings, while AFP is used to collect data with forward protons during the nominal operation of the
ATLAS detector to probe mainly hard-scale diffractive and photon-induced processes.

ś 1 ś
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Figure 1. Mechanisms of production of jet events with two forward protons: (a) central diffractive jets, (b) single
diffractive jets + single diffraction, (c) non-diffractive jets + two single diffraction processes, (d) non-diffractive
jets + central diffraction. Typical event vertices are indicated by dots. The primary processes detected by
ATLAS are marked by vertices and arrows pointing to the central detector. The remaining vertices represent the
pile-up processes.

At the LHC, measurements are greatly affected by the so-called pile-up effects. Pile-up refers
to independent proton-proton interactions that occur in the same bunch crossing and is quantiőed
by the average number of interactions per bunch crossing, 𝜇. For example, the presence of pile-up
effects constitutes the primary obstacle to the observation of a large rapidity gap because particles
produced in the additional interactions őll the gap.

In measuring diffractive processes with forward proton detection, the most important pile-up
effect is the formation of a combinatorial background, produced by a coincidence of independent
𝑝𝑝 interactions that together result in a signal-like event signature. For example, the signature of
CD jet production is a pair of jets measured by the ATLAS calorimeter and two forward protons,
one on each side of the IP, referred to here as a “double-tag”. However, the same signature can
be obtained when combining two independent events, one with a non-diffractive jet pair and the
other with a soft CD interaction, giving a forward proton on each side of the IP. Likewise, CD jet
production can be mimicked by non-diffractive jet production recorded together with two soft SD
processes, each giving an intact proton on one side, or by SD jet production together with a soft
SD process. The scenarios described here are depicted in őgure 1. These types of combinatorial
background can be substantial because the cross sections for CD processes are much smaller than
those for SD processes, which are in turn much smaller than for non-diffractive processes, when the
same őnal state and the same hard scale are considered.

The AFP system consists of two detector stations on each side of the interaction point. In each
station, the proton position is measured by a set of silicon tracking detectors, which are used to
reconstruct the trajectory of the intact proton. Proton arrival times are measured in Time-of-Flight
detectors (ToF) placed behind the farther of the two silicon tracking detectors. Each of these sets
of detectors is contained within a Roman Pot, as őrst used at the CERN ISR [8], whose horizontal
movement from outside the LHC ring allows the detectors to be positioned as close as 2 mm from
the nominal beam. More details are included in section 2.

ś 2 ś
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The purpose of the ToF detector system lies in its ability to suppress the combinatorial background
for processes with a double-tag by combining the time information from the two ToF detectors into
the value of the expected production point (vertex) along the 𝑧-axis, 𝑧vtx. A comparison of this
measurement with the precise 𝑧vtx measurement from the ATLAS tracker provides a test of whether
the protons were produced in the same place as the centrally detected charged particles. The level
of combinatorial background suppression achieved by this test depends primarily on the timing
resolution of the ToF detectors, see e.g. [9ś11]. The role of ToF detector granularity, 𝜇-dependence
and resolution is studied in ref. [12], see also ref. [13].

First ToF detector performance studies using data collected in 2017 can be found in ref. [14]. The
őnal results presented in this paper include further improvements on the reported methods. In the őrst
part, the measurement of efficiencies (section 3.3) and timing resolutions (section 3.5) of individual
ToF channels is described, while the second part (section 4) is devoted to tests of compatibility
of the ToF measurements with the information from the central ATLAS detector: speciőcally, the
𝑧-coordinate of the beam spot and of the primary vertex. These studies provide a direct proof of
concept of the ToF method for the selection of 𝑝𝑝 → 𝑝𝑋𝑝 processes in ATLAS.

2 Design of AFP and ToF detectors

The AFP detector [7] consists of four stations, two stations on each side of the IP at 205 and 217 m, which
are respectively denoted as NEAR and FAR. The sides of the ATLAS interaction region are denoted as
A and C,1 where side C corresponds to the side where the clockwise LHC beam leaves the interaction
region, and vice versa for side A, which also coincides with the positive direction along the 𝑧-axis.

All four stations are equipped with silicon trackers (SiT) consisting of four layers of 3D silicon
pixel detectors [15]. The active area covered by each SiT is approximately 20×20 mm2 with a pixel size
of 50 × 250 μm2, forming a 336 by 80 pixel grid on each SiT plane. To improve the spatial resolution,
all the SiT planes are tilted through an angle of 14◦ around the vertical. This leads to resolutions of
6 μm and 30 μm in the 𝑥- and 𝑦-coordinates, respectively, as measured in beam tests [16].

The ToF detectors are installed only in the FAR stations behind the trackers. The time-of-ŕight
measurement is performed with fused silica [17] Cherenkov detectors forming a 4 × 4 matrix of
L-shaped Quartz bars (LQ-bars) [18]. The geometry of the ToF detector is such that the light yield is
optimised within the space constraints of the Roman Pot stations. The LQ-bar consists of two arms: a
radiator arm and a light-guide arm, see őgure 2, where the two arms are glued together at 90 degrees
by a UV-transparent epoxy glue. The geometric features of all LQ bars are detailed in table 1. The
photons emitted along the proton trajectory inside the radiator arm propagate into the light-guide arm,
which is attached to a micro-channel-plate multi-anode photo-multiplier (MCP-PMT) with a 4 × 4

matrix of anode pads of similar performance as provided in [19]. The radiator arms are oriented under
the Cherenkov angle of 48◦ with respect to the beam axis. This minimises the number of photon
reŕections and the time needed for the light propagation through the bar. The elbow presents an
aluminium mirror and a taper cut to achieve better focusing of the Cherenkov photons. The open end

1ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the
detector and the 𝑧-axis along the beam pipe. The 𝑥-axis points from the IP to the centre of the LHC ring, and the 𝑦-axis
points upwards. Polar coordinates (𝑟, 𝜙) are used in the transverse plane, 𝜙 being the azimuthal angle around the 𝑧-axis. The

pseudorapidity is deőned in terms of the polar angle 𝜃 as 𝜂 = − ln tan(𝜃/2) and is equal to the rapidity 𝑦 = 1
2

ln
(
𝐸+𝑝𝑧𝑐
𝐸−𝑝𝑧𝑐

)
in

the relativistic limit. Angular distance is measured in units of Δ𝑅 ≡
√︁
(Δ𝑦)2 + (Δ𝜙)2.

ś 3 ś
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Figure 2. ToF LQ-bar design. The shaded volumes represent quartz. The aluminium mirror is indicated by a
blue surface in the LQ-bar elbow. The H, W and D (height, width and depth, respectively) directions refer to the
local coordinate system of the LQ-bar used for speciőcations of dimensions in table 1.

Table 1. Dimensions of the radiators and light guides of the ToF LQ bars. The sizes are speciőed in directions
H, W and D as shown in the coordinate frame in őgure 2. The absence of the taper in trains 2 and 3 is indicated
by zero taper dimensions.

LQ bar dimensions: 𝐻 ×𝑊 × 𝐷 [mm]
/
𝛼taper [◦]

/
Δtaper [mm]

Train Radiators A Radiators B Radiators C Radiators D Light-guides

0 2 × 62.41 × 6 2 × 56.78 × 6 2 × 51.15 × 6 2 × 45.52 × 6 71.3 × 5 × 6/18/3
1 4 × 58.16 × 6 4 × 52.53 × 6 4 × 46.9 × 6 4 × 41.27 × 6 67.2 × 5 × 6/18/1
2 5 × 52.91 × 6 5 × 47.28 × 6 5 × 41.65 × 6 5 × 36.02 × 6 62.1 × 5 × 6/0/0
3 5.5 × 46.6 × 6 5.5 × 43.03 × 6 5.5 × 35.4 × 6 5.5 × 29.77 × 6 56.6 × 5.5 × 6/0/0

of the radiator arm is cut parallel to the beam axis to reŕect the photons back to the LQ-bar volume.
This helps not only to increase the photon yield in each bar but also provides photon enrichment of
subsequent bars in the direction of proton motion, as Cherenkov photons are produced with variable
wavelengths, and their angles of total reŕection can differ from the slant of the LQ-bar.

Four bars, labelled AśD, are placed sequentially in the beam direction to form a train, bar A
being the őrst to be crossed by protons. There are four trains in each ToF detector, numbered from 0
to 3 as the distance from the beam increases. The optical path in all bars is equalised by employing
radiator arms of decreasing length along the direction of motion of the protons. Figure 3 shows a
photograph of the assembled ToF and SiT mounted on the Roman pot ŕange while őgure 4 presents
the schematic view of the leading proton detection in the FAR-C AFP station.

The number of Cherenkov photons emitted in a bar determines the number of photo-electrons
released in the corresponding PMT photo-cathode via its quantum efficiency and was estimated to
be in the range between 20 and 40 photo-electrons per channel. The high voltage (HV) applied
enables the photoelectrons that enter the pores of the MCP to initiate an electron avalanche that is
collected at the nearest read-out anode. The voltage pulse registered at the anode undergoes a further
two-stage ampliőcation and is processed by a constant-fraction discriminator (CFD [20]). The CFD

ś 4 ś
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Figure 3. Assembled AFP detector composed of the Silicon tracker and the Time-of-Flight detector. The
leading proton trajectory is indicated with an oriented red line. The Roman Pot ŕange is located below the region
depicted in the őgure. The indicated coordinate system coincides with the one in őgure 4. The segmentation of
the ToF into trains and channels is indicated and the channels of the train traversed by the proton are highlighted.

Figure 4. Schematic view of the AFP FAR-C station. For clarity, only the Roman pot ŕange without the cover
is shown. The set of LQ-bars attached to the MCP-PMT is őxed in a holder which (together with the holder
for the SiT) is mounted to the ŕange. The LQ bars traversed by the leading proton (shown as a red arrow) are
highlighted in blue colour. Also the proton passage through the SiT tracker is indicated. The position of the
nominal beam is shown by an orange arrow. The local right-handed reference frame is deőned such that the
positive 𝑥-axis is perpendicular to the ŕange and points to the LHC ring centre, the 𝑦-axis is perpendicular to
the LHC ring plane and points upwards, and the positive 𝑧-axis represents the anticlockwise direction tangential
to the LHC circumference pointing to the ATLAS IP.
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produces a square signal, whose start (also referred to as a timestamp) and duration are determined
by the moments when the pulse is above a predeőned fraction of its pulse height. The CFD output
is sent to a high-performance time-to-digital converter (HPTDC [21]). The HPTDC samples the
25 ns time intervals between consecutive bunch crossings into 1024 bins. All the stages of signal
formation and processing contribute to the őnal timing resolution.

3 Performance of single channels

3.1 Data and event selection

Analyses of the AFP data that do not require information from the central detector can proőt from the
data recorded in the so-called AFP calibration stream. These data sets are suitable for performance
studies because they contain only events with AFP information. The analysis of the performance of
single ToF channels is based on the following őve sets of ATLAS data recorded in 2017: 331020,
336505, 341419, 341534 and 341615 using the numbering of ATLAS runs. As documented in table 2,
these runs provide large data samples with low levels of pile-up. The majority of data in 2017 were
taken at higher 𝜇 and the AFP-event triggers were substantially prescaled. As a consequence, the
statistics available for each of these runs were limited, and are thereby not expected to improve the
single-channel performance results signiőcantly. No effort is made to consolidate the bulk of the
high 𝜇 2017 data into a uniőed dataset.

Table 2. List of AFP calibration stream runs recorded in 2017 and used for the efficiency and time resolution
studies. The HV column indicates the high voltage applied to the MCP-PMTs.

Run Date AFP trigger ToF HV [V] 𝑁evt 𝜇 𝐿int. [pb−1]

331020 July 29 SiT −2000 45M ∼ 1 14

336505 Sept 23 SiT −2000 143M ∼ 0.04 17

341419 Nov 22 SiT −1950 240M ∼ 2 31

341534 Nov 23 SiT −1950 430M ∼ 2 51

341615 Nov 25 SiT −1950 240M ∼ 2 31

The primary event selection relies on local AFP triggers, which can be based either on the SiT or
ToF information. For the data analysed here, the SiT-based trigger is used. The triggering decision is
based on the presence of a signal in at least two out of the őrst three layers of the SiT at the given AFP
station. This makes possible a measurement of the ToF efficiencies by using samples of events selected
by requiring local tracks in the SiT in the FAR stations in front of the active volumes of the LQ-bars.

The arrival times of protons emerging from 𝑝𝑝 collisions are anticipated to fall within well-
constrained time intervals of 2.5 ns at most, signiőcantly narrower than the period between the
consecutive bunch crossings of 25 ns. However, in certain ToF channels the measured distributions of
the arrival times were sometimes signiőcantly broader and higher in the entire range of 25 ns. Such
lumiblocks (LB) are removed from further analysis. Lumiblocks are conventional time intervals for
recording ATLAS data, and last typically one minute. The rejected data represent only a negligible
fraction of the dataset, well below one percent in the affected runs. The most likely reason for this
effect is a temporary increase of non-collision background levels.

ś 6 ś
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Examination of the detector hardware conducted after the 2017 data taking revealed that
malfunctioning őrst-stage preampliőers of channel A in train 0 on side A and channel D in train 0
on side C caused these two channels to appear as inactive during 2017.

3.2 ToF noise

The hits registered in the ToF channels not initiated by the passage of the leading proton emerging
from the 𝑝𝑝 collision will be referred to as ToF noise. Two types of sources of ToF noise (random and
beam-related) are discussed, and will be elaborated upon in the subsequent sections.

3.2.1 Random ToF noise

There are at least two sources of random noise in the ToF detectors. The őrst is caused by a thermal
liberation of electrons inside the PMT (either from a photo-cathode or from MCP layers) and is called
dark pulses. A conservative estimate based on PMT data-sheet values gives a small ∼ 0.1% dark pulse
occurrence probability inside the 2.5 ns range of expected proton arrival times per channel. Another
potential source of time-uniform noise may arise from PMT pulse ŕuctuations (e.g. from interference
with external electromagnetic őelds), accepted by the CFD. In general, any random signals measured
by the ToF detector are easily recognisable since they are expected to be distributed uniformly over the
25 ns measurement range. We do not observe such an additional uniform distribution, from which we
conclude that the probability of accidental ToF hits occurring without any incident particle is negligible.

3.2.2 Non-collision background

The ToF detectors are sensitive to charged particles that are rapid enough to produce Cherenkov light
in the bars. There is a component that is neither noise nor caused by the detection of leading protons
from 𝑝𝑝 interactions; this is commonly referred to as non-collision background. It is mainly due to the
passage into the ToF detector of particles originating in interactions of beam protons with beam-pipe
collimators or residual gas, leading to the production of secondary particles which may further interact
with the beam pipe material Ð all this is commonly referred to as the beam halo. Also, secondaries
from showers generated by the interaction of leading protons with the Roman Pot walls or ŕoor in
the NEAR stations are expected to be present in the data. Since they arise directly or indirectly from
beam protons, these secondaries are synchronous with the LHC beam bunches.

Depending on the LHC őlling scheme, not all the bunches are őlled. The bunch crossings
(denoted by bunch crossing ID, BCID) are labelled as paired in the case when two populated bunches
from the two beams cross, empty if none of the physics bunches is őlled and unpaired if only one of
the bunches is őlled. These BCID scenarios give access to data samples between which the different
contents of non-collision background can be compared.

Figure 5 shows the raw-time distributions collected in channel C and train 1 of the FAR-A station
measured in run 341419. The distributions are obtained without any selections applied at the level
of the SiT apart from those imposed by the trigger. The left panel shows the raw-time distribution
in the particular channel irrespective of whether any other ToF channels contained hits (any-ToF).
The distributions are shown for the paired, empty and unpaired BCID cases. The range of arrival
times of diffractive protons originating in the paired BCID cases is clearly visible as an enhancement
centered around the HPTDC bin number 380. The exact position of this range is an artefact of time
delay settings of the ToF readout with respect to the LHC clock. The values outside the expected
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Figure 5. Raw-time distributions measured in paired, empty and unpaired BCID events in the FAR-A station in
channel C of train 1 for the any-ToF selection (left panel) and the single-ToF-train selection (right panel). The
displayed range corresponds to the entire time period of 25 ns. The numbers in brackets indicate the number of
contributing BCID cases to each particular BCID scenario.

time range correspond to halo activity initiated by satellite bunches. These are present due to the fact
that the radiofrequency (RF) accelerator cavities operate at 400 MHz which divides the LHC beam
longitudinally into so-called RF buckets of 2.5 ns length. Only one of the ten RF buckets is reserved to
contain the beam protons for collisions. The other RF buckets, may contain protons originating from
spill-over processes (so called satellite bunches). The raw-time distributions recorded in the cases of
empty BCID (left panel of őgure 5) show that the ToF detector is sensitive to the halo activity caused
by the satellite bunches. The structure of ten 2.5 ns RF buckets is well pronounced. Eventually, the
unpaired BCID raw-time distributions indicate that the mere passage of bunches rich in protons can lead
to time measurements consistent with the expected ones. This means that a certain fraction of the ToF
hits can be caused by non-collision events in the expected time range even in the paired BCID events.

The distributions in the right panel of őgure 5 are obtained under the condition that the ToF hits
are observed exclusively in a single train, which will be referred to as a single-ToF-train selection
throughout this document. The distributions illustrate that the single-ToF-train requirement leads to a
suppression of measured times outside the expected range. This is caused by the removal of events
where ToF hits are spread across the trains and channels, thus, preferring the (by design) expected
ToF hit topologies created by diffractive protons traversing LQ-bar radiators of one train only. Note
that the selection of single-ToF-train is effective not only in suppressing non-collision background
but also in rejecting high-multiplicity ToF hit events, particularly in cases when genuine diffractive
protons generate hadronic showers. At the same time the single-ToF-train requirement leads to a
reduction of the event yield in the expected time range by about a factor of two for the paired BCIDs
and a factor of ten otherwise, as can be seen from őgure 5. This can be explained by the fact that the
empty BCID events contain the halo activity more frequently and thus are more efficiently suppressed
by the requirement of single-ToF-train signal topology.
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Another handle to assess the non-collision background is provided by the SiT. A data-driven
technique was developed based on the properties of spatial distributions of tracks reconstructed
in the SiT in terms of local 𝑥 and 𝑦 positions. The data from the paired BCIDs (dominated by
diffractive protons) show a clear 𝑥ś𝑦 correlation, while those from the empty BCIDs (dominated
by background) are scattered over the whole (𝑥, 𝑦)-plane. This difference enables us to estimate
the magnitude of the background contribution in the analysed data, which is observed to decrease
with decreasing SiT track multiplicity. The effect of the track multiplicity cuts on the background
suppression is presented in section 4.

3.3 Measurement of the efficiency

The efficiencies of the ToF detectors are measured at the level of trains using a sample of events where
exactly one SiT track is reconstructed. The efficiency of a single ToF channel is calculated as

𝜀𝑖 𝑗𝑘 =
𝑁 (bar-ĳ ∩ track-k)

𝑁 (track-k) ,

where 𝑁 (bar-ĳ ∩ track-k) represents a number of events with a signal in the ToF bar-channel 𝑖 of the
train number 𝑗 in the sample of events with SiT tracks in geometrical acceptance of the train number
𝑘 , see őgure 3 for clarity. In this way, 𝑁 (track-k) is the total number of events with SiT tracks in the
geometrical acceptance of the train number 𝑘 . Note that the distinction between the indices 𝑗 and
𝑘 means that the efficiency can be evaluated also in cases where the SiT tracks do not point to the
geometrical acceptance of the train whose channels are being evaluated.

The geometrical overlap of the SiT tracks with the ToF trains is determined by looking at local
track 𝑥-coordinate distributions saved under the condition that channels of only a single train are hit,
see őgure 6. In this way, the ranges of 𝑥-positions of the tracks that correspond to the geometrical
acceptance of the individual trains are identiőed.

The detection efficiency of the ToF train can be evaluated as

𝜀 𝑗𝑘 =
𝑁 [(bar-Aj ∪ bar-Bj ∪ bar-Cj ∪ bar-Dj) ∩ track-k]

𝑁 (track-k) , (3.1)

where for each train 𝑗 the condition is a simple requirement of a hit observation in any channel
of this train.

In őgure 7 the train efficiencies are shown in run 331020 measured, using equation (3.1), under
the condition of a local SiT track reconstructed in only one of the four train acceptance regions. No
further requirement is applied on the position of the ToF hits (any-ToF). For the events with the track
pointing to a given train (corresponding to the bars with the same colour in őgure 7), the maximum
efficiency is always obtained for the train to which the SiT track is pointing. However, the maximum
is not very peaked and large efficiencies are also observed for the neighbouring trains. This can
be explained by the presence of secondary particles created in front of the ToF detector traversing
the ToF LQ-bars. The train efficiencies measured for the trains to which the tracks are pointing
(track-matched trains) vary between 10ś20% and 4ś12% in the FAR-A and C stations, respectively.
The train efficiencies in the non-track-matched trains are always lower and decrease with the distance
from the track-matched train. This decrease is weaker in the case of tracks reconstructed in train 3 of
both stations, indicating possibly a large inŕuence of secondaries from hadronic showers generated
at collimators located in front of the Roman Pots.
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Figure 6. Distributions of local track 𝑥-coordinates in the AFP-FAR station after applying the single-ToF-train
selection in the AFP calibration stream run 331020. The red vertical lines indicate the chosen cuts that are used
to deőne the acceptance of the trains. The left and right plots correspond to the A (a) and C (b) side, respectively.
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Figure 7. Efficiencies of ToF trains obtained from the AFP calibration stream data corresponding to ATLAS
run 331020 in the A-FAR (a) and C-FAR (b) AFP stations. The data are required to contain exactly one
reconstructed SiT track with no further constraints applied in the ToF (the so called any-ToF selection). The
relative statistical uncertainties are always by two or more orders of magnitude smaller than the actual efficiency
values and are not displayed.
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Figure 8. The detection probabilities of the ToF trains measured in the sample of events with one reconstructed
SiT track utilising an additional constraint of ToF channel hits being in the single-ToF-train topologies, presented
in the same manner as in őgure 7.

Figure 8 presents the probabilities of observing a single-train ToF signature provided a single
SiT track is reconstructed. A decrease in probabilities of signal detection in the ToF trains by a
factor between two and three on both sides is observed. The most efficient trains are those pointed
by the track, while only a small fraction of events is registered in the neighboring trains. This
observation indicates that the single-ToF-train condition represents a selection cut that mitigates the
effects of secondaries from particle showers.

Quantitatively similar efficiencies to run 331020 are measured in run 336505, whereas for the
late 2017 runs 341419, 341534 and 341615 a substantial drop of efficiencies in every ToF train is
observed. The typical values measured on the FAR-A side are around 2ś4%, while the FAR-C side
ones decrease by another factor of ten to a 0.2ś0.4% level, where the efficiency decrease is partially
caused also by the fact that the MCP-PMTs were operated at lower HV. The asymmetry between the
efficiencies measured on the A and C sides persists for all analysed data. It can be related to different
levels of the beam-halo background present on the two sides.

The overall low detection efficiencies are attributed to MCP-PMTs exceeding expected lifetimes,
which were known to be of the order of 0.5 C/cm2 of integrated charge. The calculations based on
using conditions from the 2017 data taking indicate that the actual exposure of the PMTs was at least
10 C/cm2. The MCP-PMT types that are designed for longer lifetimes, making use of the Atomic
Layer Deposition (ALD) technique, were not available for the Run 2 data taking. Their integrated
charge tolerance is two orders of magnitude higher [22] and, among other improvements documented
in [23], they were chosen for the operation of the ToF detector in Run 3.

3.4 In situ timing calibration of HPTDC

The HPTDC performs the time measurement by dividing the time window of 25 ns between the
consecutive bunch crossings at the LHC into 1024 bins. In the case of an ideally calibrated HPTDC,
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the width of raw-time bins would be equal to 25/1024 ns (∼ 24.4 ps). While in principle possible,
the intrinsic calibration of HPTDCs was not performed for the studied data period. The actual
raw-time bin widths of this uncalibrated device are therefore non-trivial and they need to be detemined.
The circuitry behind the HPTDC introduces repeating patterns (nearly regular modulations) in the
raw-time distribution which can be suppressed later, during the offline analysis of the data, using
the Fast Fourier Transform (FFT).

The oscillations of the raw-time distributions are removed by using a simple cut on the maximum
allowed frequency (or minimum length of oscillations) in the distribution of moduli of the FFT
coefficients of the original raw-time distributions, as illustrated in őgure 9 for channel B of train 2 in
station FAR-C. Oscillation periods shorter than 26 raw bins (corresponding to about 635 ps or roughly
to 1.6 GHz) are őltered away, and the ratio of the original raw-time distribution to the inverse FFT is
used to evaluate the actual HPTDC bin width. The bin widths are compared between runs 341419,
341534 and 341615, see őgure 10, and are found to be consistent at the level of single ps in regions
with sufficient statistics. The bin widths from low statistics bins are determined with sizeable statistical
uncertainty and are assigned the nominal bin width. Once the bin widths are known, the calibration
of the raw-times is done by calculating the shift of the measured bin position due to the non-trivial
widths of the preceding bins. The run-to-run differences between the extracted widths observed in the
tails of the raw-time distributions, lead unavoidably to artiőcial shifts of the bin positions. Such shifts
are, however, of no concern since they are later absorbed into a constant time delay of each channel in
every run individually. This means that the HPTDC bin centre corrections are unique for each run.

With the knowledge of the bin widths, a uniform smearing around the given bin centre can be
applied. This procedure provides the possibility to smooth the measured channel times as well as
their differences, which helps to mitigate the artefacts related to the HPTDC binning. The time
differences are quantities central to analysis of single-channel timing resolutions and also to the use
of the ToF method for vertex reconstruction.

3.5 Measurement of single-channel time resolutions

This section describes the procedure used to extract the time resolutions of individual ToF channels.
The time measured in an 𝑖-th ToF channel consists of the following contributions:

𝑡𝑖 = 𝑡proton + 𝑡𝑖,delay + 𝑡𝑖,smear − 𝑡clock, (3.2)

where 𝑡clock represents the signal of the LHC reference clock that opens the window of 25 ns in the
HPTDC inside which the leading protons from a single bunch crossing arrive at the ToF detector and
is thus common to all channels on both sides. The 𝑡proton represents the proton arrival time, whose
event-by-event variations with respect to 𝑡clock are determined by the properties of the luminous region
(the so-called beam-spot), spanning usually over few hundreds of ps. The 𝑡𝑖,delay is a constant channel
time offset caused by a signal delay (for instance signal cable lengths, a global offset of HPTDC
with respect to the LHC clock and the HPTDC bin centre corrections discussed in the previous
section). The 𝑡𝑖,smear represents all random aspects of the signal processing such as a variation in
Cherenkov photon (photo-electron) statistics and effects of electronics, and whose width is used
to address the timing resolution.

Similarly as in the efficiency studies, in order to suppress secondary activities in the ToF sensitive
volume, the single-ToF-train selection is used as the nominal selection throughout the resolution
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Figure 9. HPTDC calibration plots for channel B of train 2 in station FAR-C obtained from the AFP calibration
run 341419. (a) The raw-time distribution (őlled histogram), the inverse Fourier transform (line histogram) with
suppressed oscillations above 1.6 GHz. (b) Distribution of the moduli of the FFT coefficients. The distribution
is symmetric around the maximum displayed index value of 512 extending up to index 1023. The vertical line
in the plot denotes the suppressed oscillation frequencies for indices between 40 and 984, a consequence of the
plot symmetry. This symmetry arises from the chosen convention for the complex phase range, which spans
from 0 to 2𝜋.
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Figure 10. Comparison of bin widths extracted in channel B of train 2 in the FAR-C station for runs 341419,
341534 and 341615.

studies. In őgure 11 examples of the time-difference distributions measured for two selected channel
combinations from different trains and stations in run 331020 are shown. The choice of these channels
is made to exemplify different possible shapes of calibrated Δ𝑡 distributions as well as to demonstrate
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Figure 11. Time-difference distributions measured in selected channel combinations in run 331020. Plots
(a) and (b) show the calibrated-time distributions including the bin position correction and uniform smearing
within the corresponding HPTDC bins. Plots (c) and (d) show the uncalibrated Δ𝑡 distributions obtained from
the raw-time information for the same choice of channels. The data are shown by open circles; the solid line
shows a triple Gaussian őt; the dashed line shows the őt component with maximum integral normalised to the
maximum value of the triple Gaussian and is denoted as the principal Gaussian. The data-to-őt ratios are shown
in the bottom panels with markers carrying the colour of the above presented őts. The standard deviation of the
data is quoted as SD in the legend.

the possible HPTDC binning artefacts in case of using the uncalibrated times. The distributions in
the top row correspond to the raw times corrected for the bin centre position and uniformly smeared
within the HPTDC bin width (as explained in the previous section and denoted as “calib”), while in
the bottom row plots, raw HPTDC channel times are shown. The calibrated results are free of large bin
variations introduced by the HPTDC and facilitate the discussion of the Δ𝑡 shapes. Triple Gaussian
őts are used to describe the shapes of the calibrated Δ𝑡 distributions satisfactorily. Deviations from a
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single Gaussian shape are clearly manifested as the extra tails on one or both sides of the distributions.
Here, the single Gaussian shape is represented by the component with the highest normalisation of the
triple Gaussian model, and is denoted as the principal one. These tails may be attributed to time-walk
effects introduced by the variable amplitudes of the input signals not fully compensated by the CFD.
The information about the amplitudes, usually approximated by the time over a threshold value, is not
available in the data and the time walk effects cannot be directly parameterised and included in the őts.

By measuring time differences between individual channels of a single train in one event,
dependencies on 𝑡proton and 𝑡clock are eliminated and the following relation is obtained:

Δ𝑡𝑖 𝑗 = 𝑡𝑖 − 𝑡 𝑗 = 𝑡𝑖,delay − 𝑡 𝑗 ,delay + 𝑡𝑖,smear − 𝑡 𝑗 ,smear. (3.3)

Because the time-delay values are constant for each channel, the variance of the time difference
distribution follows directly from the variances of the 𝑡smear distributions for the two contributing
channels.

In the case of four ToF channels per train, six different Δ𝑡𝑖 𝑗 channel combinations can be
considered: (AB, AC, AD, BC, BD, CD). In general, the 𝑡delay terms cause the Δ𝑡𝑖 𝑗 distributions to
peak at non-zero values and are treated as nuisance parameters. The widths of the Δ𝑡𝑖 𝑗 distributions,
𝜎𝑖 𝑗 , enter the extraction procedure of individual channel resolutions, 𝜎𝑖. It has been found that the
second central moments of the triple Gaussian őts coincide well with the standard deviations of the
data. The standard deviations are thus used as an input to the extraction of the resolutions. Since the
standard deviations depend on the calibration choice only weakly, both the calibrated and raw values
are used to extract the resolutions, and their differences are treated as a systematic uncertainty. The
𝜎𝑖 𝑗 values are related to the resolutions of the corresponding channels as follows:

𝜎2
𝑖 𝑗 = 𝜎2

𝑖 + 𝜎2
𝑗 − 2𝜌𝑖 𝑗𝜎𝑖𝜎𝑗 , (3.4)

where 𝜌𝑖 𝑗 indicates that the 𝑡𝑖,smear and 𝑡 𝑗 ,smear measured in the same train may not be statistically
independent. Such correlations can be caused by charge sharing on the adjacent anode pads of the
MCP-PMT leading to modiőcations of pulse shapes and of the timestamp determination. Another
cause of correlated time measurements can be the fact that the MCP-PMT readout electronics share
a common ground.

To estimate the inŕuence of the correlation factors the data from test beam campaigns were
analysed. The MCP-PMTs tested in the 2016 test beam measurements [16] were of the same type as
those installed for the actual 2017 data taking. The correlation values fall consistently within the range
of 0 to 0.2. As a result, selecting 𝜌𝑖 𝑗 = 0 for all channels is considered the standard choice, while the
introduction of an alternative 𝜌𝑖 𝑗 = 0.2 is taken as generating a systematic uncertainty.

The six equations 𝜎𝑖 𝑗 =
√︃
𝜎2
𝑖
+ 𝜎2

𝑗
− 2𝜌𝑖 𝑗𝜎𝑖𝜎𝑗 represent an over-determined system, and the

extracted resolution values are those that minimise the following 𝜒2-like expression

𝜒2 = Σ𝑖 𝑗

(
𝜎𝑖 𝑗 −

√︃
𝜎2
𝑖
+ 𝜎2

𝑗
− 2𝜌𝑖 𝑗𝜎𝑖𝜎𝑗

)2

(
𝛿stat(𝜎𝑖 𝑗)

)2 , (3.5)

where 𝛿stat(𝜎𝑖 𝑗) is the statistical uncertainty of 𝜎𝑖 𝑗 .
Single-channel resolutions measured for the single-ToF-train hit topologies are presented in

őgure 12 for all the studied 2017 runs. The statistical uncertainties obtained from the minimisation
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Figure 12. Time resolutions measured for individual ToF channels of the AFP station FAR-A (upper row) and
FAR-C (lower row) in runs 331020 (full circles), 336505 (full squares), 341419 (up triangles), 341534 (down
triangles) and 341615 (open circles). The total error bars indicate the statistical and systematic uncertainties
added in quadrature, where the systematic uncertainties dominate. A separate visualisation of the statistical
uncertainties is not possible as the sizes for all channels are smaller than the marker sizes. The two malfunctioning
channels in train 0 of both stations could not be evaluated and their resolutions are not shown.

procedure using the formula in equation (3.5) against the measured Δ𝑡 standard deviations are below
1 ps. The inactive channels A and D in trains 0 on the A and C sides, respectively, did not contribute
to the resolution extraction procedure.

A general observation is that channel resolutions in the late 2017 runs are better than those from
the earlier runs. The resolutions vary between 20 and 40 ps for the late runs in all channels, except
for the A-channels of train 1 and 3 for the FAR-C station. The earlier runs show, on average, worse
resolutions, especially for side A, exceptionally reaching values of 70 or 80 ps. These worse resolutions
in runs 331020 and 336505 may be caused by a too high voltage applied in the MCP-PMT which
led to large output pulses saturating the ampliőers hence giving distorted pulses on the CFD inputs
and consequently affecting the precision of the timestamp determination.

It is useful to note that there is a systematic dependence of the resolutions on the channel
number. A photon leakage occurs between the LQ-bars downstream of the proton motion, leading
to a gradual photon enrichment of the latter bars. This explains the least favourable resolutions
observed in the A channels, improving down to the C channels while the last D channels perform
similarly to the B channels. The worsening in the D-channels is presumably present due to a lesser
charge sharing from neighbouring channels.

Systematic uncertainties. The following sources of systematic uncertainties are considered in the
measurement of the single-channel resolutions:

• Correlation: the correlation parameter 𝜌𝑖 𝑗 is changed from 0 to 0.2. The resulting alteration in
the extracted single-channel resolutions is employed as a measure of systematic uncertainty, and
this uncertainty is treated as symmetric.
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• Calibration: 𝜎𝑖 𝑗 are evaluated separately with and without the HPTDC calibration described in
section 3.4.

• Event selection: as an alternative event selection, an additional requirement of a single track
reconstructed in the SiT is used, leading to an overall improvement of the resolutions in all
channels. The absolute value of the difference of resolutions for the modiőed and the nominal
event selection is conservatively considered as a symmetric systematic uncertainty.

On average, all three sources of systematic uncertainties contribute at a similar level and are more
signiőcant than the statistical uncertainties. In detail, similar systematic uncertainties between 3ś5 ps
are observed due to correlation and calibration. The uncertainties due to event selection range between
1 and 7 ps with the exception of a few channels, where they reach 10 or 20 ps which corresponds to one
third of the actual resolution value. The systematic uncertainties are őnally added in quadrature together
with the statistical ones to form the total uncertainties represented with total error bars in őgure 12.

4 Vertex matching analysis

In this section the capability of the ToF system to measure the 𝑧-coordinate of the primary vertex
of the 𝑝𝑝 → 𝑝𝑋𝑝 interactions is investigated.

The reconstruction of the production-vertex position using the ToF detector relies on the
measurement of the proton arrival times on the A and C sides (double-tag). The proton arrival time
depends on the time when the interaction happened, which is not known. It also depends on the
position of the interaction. One of the measured arrival times is advanced while the other one retarded
proportionally to the vertex position. The difference between the arrival times on both sides does not
depend on the interaction time but only on the vertex position, 𝑧ToF, relative to the nominal IP, i.e.

𝑧ToF =
𝑐

2
(𝑡FAR-C − 𝑡FAR-A), (4.1)

where it is assumed that the ToF stations are located at equal distances from the origin of the coordinate
system and 𝑐 refers to the speed of light in vacuum.

In order to test the 𝑧ToF reconstruction, it can be compared to the reconstructed primary vertex
𝑧-position measured precisely by the ATLAS central detector, 𝑧ATLAS. The primary vertex denotes the
vertex with the highest sum of 𝑝𝑇 of tracks associated with it and it is expected to be the production
point of the hardest 𝑝𝑝 interaction in the given bunch-crossing. The events where the 𝑝𝑝 → 𝑝𝑋𝑝

processes are produced in the primary vertex represent the signal combination of 𝑧ToF and 𝑧ATLAS.
The width of the 𝑧ATLAS − 𝑧ToF distribution reŕects a combined resolution of the 𝑧ToF and 𝑧ATLAS

measurements. The inŕuence of 𝑧ATLAS resolution (at the level of ∼ 30ś100 μm) can be neglected
in the following analysis. If pile-up interactions are present the distribution of 𝑧ATLAS − 𝑧ToF is
affected by the combinatorial background, see őgure 1. In such events, the width of the 𝑧ATLAS − 𝑧ToF

distribution is driven mainly by the longitudinal length of the beam spot [12]. As discussed earlier,
the non-collision background and the genuine leading protons (including the pile-up ones) give the
same distributions of arrival times measured by the ToF detectors, leading to the same shapes of the
𝑧ATLAS − 𝑧ToF distributions for the pile-up combinatorial and the non-collision backgrounds.
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4.1 Data and event selection

Additional requirements are needed for the vertex-matching analysis. The value of 𝜇 must be as low as
practically possible, to minimise the large combinatorial background. The datasets should be of high
statistics since the efficiencies of single ToF channels are rather low as reported in section 3.5. For a part
of the following analysis, information about the 𝑧ATLAS must be available on an event-by-event basis,
which precludes the use of the AFP calibration stream. Three ATLAS runs with average 𝜇 ∼ 2, labelled
as 341419, 341534 and 341615, recorded in November 2017 (see table 2) fulőlled these requirements.
These datasets were recorded with very relaxed trigger conditions denoted commonly as minimum bias.

To maximise the usable statistics, no SiT-related selections are applied. The őnal event selections
were applied to the ToF systems on sides A and C independently, and the ToF signal is required to
be in each case in a single train only, with at least one channel hit in the train. The events passing
these conditions on one side are called single-tag whereas the double-tag events pass the selection
conditions on both sides. The information from two channels with inferior resolution in the side-C
station (channels A in trains 1 and 3, see őgure 12) is excluded.

4.2 Determination of channel time delays

The time measured by a single ToF train is obtained as an average of the times measured in its
individual channels. To do this, the time delays of the channels have to be taken into account. The
𝑡delay values (see equation (3.2)) can be in principle constrained by studying the mean values of
Δ𝑡𝑖 𝑗 distributions between channels of a given train as can be seen from equation (3.3). In this
analysis another approach has been adopted.

The changes of mean 𝑧-position of the ATLAS beamspot, 𝑧BS, translate linearly to changes in the
arrival times measured in the ToF detectors, where the 𝑧BS information is updated for each lumiblock.
Any combination of two hit channels, one in the FAR-A, the other in the FAR-C station provides a
prediction for the 𝑧ToF observable given by equation (4.1) (see e.g. őgure 3 in ref. [12]). The 𝑧ToF

value can also be obtained using two unrelated single-tag events (mixed events, ME) according to
equation (4.1) and will be referred to as 𝑧ME

ToF. The random pairs of single-tag events form a multitude
of quasi-double-tag combinations whose mean value of 𝑧ME

ToF carries the information about the 𝑧BS.
For each lumiblock, the event mixing is performed using only events from this particular lumiblock.

The event mixing procedure described above leads to a numerically improved distribution of
statistically equivalent values of 𝑧ME

ToF. For example using ten values of time measured in the FAR-A
side and ten in the FAR-C side, recorded in separate events in a given lumiblock can ideally lead
to 100 𝑧ME

ToF hypotheses. Note that no genuine double-tag measurement is explicitly required. The
actual mixing is done randomly with the maximum number of created combinations limited, such
that the probability of re-using any combination more than once is kept below 0.001. The sizes of
the mixed-event samples are typically a few hundreds up to thousand of mixed events per lumiblock
for each single choice of A- and C-side channels.

To address the inŕuence of channel delays the following relation is used:

⟨𝑧ToF
(𝑖 𝑗 ) ME⟩ + 𝑠𝑖𝐴 − 𝑠

𝑗

𝐶
= 𝑧BS,

where the 𝑖 and 𝑗 indices refer to the chosen channel in the FAR-A and FAR-C station, respectively,
the ME superscript refers to the event-mixing method, the 𝑠𝑖

𝐴
and 𝑠

𝑗

𝐶
terms denote corrections of the

𝑡delay values of the channels which are treated as constants and expressed in millimetres. The delays
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are channel-speciőc constants which for each 𝑖 𝑗-pair are known up to an additive constant. Only their
differences matter, which means that one of the delay values in the pair can be chosen arbitrarily.
Because there are 16 × 16 pair combinations, each channel participates multiple times. In the end,
only one channel is then left whose delay can be őxed arbitrarily. Without loss of generality, such a
condition is applied to channel C of train 1 of the FAR-A station, i.e. 𝑠train1,C

𝐴
= 0 mm. All the channel

delays are then determined by obtaining their optimum values based on őnding a minimum value of

𝜒2 =
∑︁

𝑖 𝑗



〈∑
LB

(
𝑧LB

BS − 𝑧
(𝑖 𝑗 ) ME,LB
ToF

)〉

őt
− 𝑠𝑖

𝐴
+ 𝑠

𝑗

𝐶

𝛿
(𝑖 𝑗 )
őt



2

, (4.2)

where the outer sum runs over all channel pairs 𝑖 𝑗 and the őtted mean value for each 𝑖 𝑗 pair is
obtained from a Gaussian őt to a distribution constructed as a sum of mixed-event distributions from
all considered lumiblocks. The statistical uncertainties on the mean values őtted in each channel
combination are denoted as 𝛿őt.

The extracted corrections make the numerators in the sum in equation (4.2) as small as 0.1−0.2 mm
for each őxed combination of (𝑖 𝑗). Only in runs 341534 and 341615 the uncertainty grows signiőcantly
in the channel combinations where FAR-A train 3 channel A participates, and it was decided to
mask this channel in the subsequent analysis.

4.3 Closure test of channel delays and comparison with beam-spot

Figure 13 represents a closure test of the delay corrections extracted by the procedure described above
for all three considered runs. The plots in the top row compare the mean values of Gaussian őts to the
𝑧ToF distributions from mixed-event samples, ⟨𝑧ME

BS ⟩, with the 𝑧-coordinate of the beam-spots measured
by the central ATLAS detector, 𝑧ATLAS

BS , for each lumiblock considered. Although the lumiblock
evolution of the 𝑧BS quantity is strongly run-speciőc, it is well reproduced by the ToF, apart from two
short periods, one in run 341419 and one in run 341615. The reason for these small non-closures
was not identiőed. A more detailed consistency check, i.e. the distribution of 𝑧ATLAS

BS − ⟨𝑧ME
BS ⟩ from

all lumiblocks, is shown in the bottom panels of őgure 13. The distributions are well described
with Gaussian őts centred around zero with widths of about 2.4, 2.2 and 2.6 mm. These widths
are constituted primarily by the statistical uncertainty of the 𝑧ToF measurement originating from the
őnite size of data in a single luminosity block.

4.4 Expected time resolution

The expected time resolution of the ToF detector can be calculated with the use of the single-channel
resolutions measured in section 3.5. In general, the best time resolution is achievable with all four
channels of a given train őred. In practice, the hit multiplicity distributions in different trains vary
signiőcantly, which is taken into account by an averaging procedure. The correlations between
contributing channels are handled in a manner akin to equation (3.4), but this time, with a positive
sign applied to the cross-terms of the channel pairs. The standard choice of 𝜌𝑖 𝑗 = 0 for all pairs
of channels reŕects the scenario of uncorrelated time measurements within the ToF channels. A
global variation by 0.2 is taken as a systematic uncertainty whose impact is then taken symmetrically
in both directions. The remaining uncertainties of the single-channel resolutions are propagated
independently, without correlation.
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Figure 13. Panels (a)ś(c) show the mean values of Gaussian őts to the mixed-event distributions of 𝑧ME
ToF in each

lumiblock (open circles with no uncertainty indicated) compared with beam-spot 𝑧-coordinates 𝑧BS measured
by the ATLAS central detector shown by the histogram where the band indicates its uncertainty. Panels (d)ś(f)
show the distribution of the difference ⟨𝑧ME

ToF⟩ − 𝑧BS from all lumiblocks (points) compared with a Gaussian őt
(őlled area). The vertical axis label ‘entries’ represents the number of lumiblocks. The plots from left to right
column correspond to runs 341419, 341534 and 341615.

In őgure 14 the expected resolutions are shown by black points for all train multiplicity
combinations (denoted as ToF hit pattern) observed in the minimum bias data sample measured
by ATLAS in run 341419 under the condition of single-ToF-train topologies in single-tag events.
These timing resolutions are calculated as quadratic sums of the single-channel resolutions divided
by the actual train hit multiplicities. Some of the multiplicity combinations are not shown or are not
considered in the averaging due to the channel malfunctioning or its exclusion from the analysis (in
other words, the channel time information is not used, but the event is kept) discussed in previous
sections. As the number of contributing channels increases the resolutions improve. The dominant
contribution to the systematic uncertainty is coming from the correlation between channels, and
it naturally plays a larger role for events with larger hit multiplicities. However, due to the use of
𝜌𝑖 𝑗 = 0.2 to account for the systematic uncertainty on the correlations between the channels, the
resulting uncertainty may become substantial, as can be observed in the highest multiplicity cases.
The train resolutions (shown with shaded bands) are calculated from weighted quadratic sums of
resolutions of each multiplicity combination within the train, where the weights are calculated from
the actual distributions of multiplicity combinations in the given run. Finally, the train resolutions
are combined into the expected station resolutions in the same weighted manner (shown with the
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Figure 14. The expected time resolutions from single-ToF-train events tagged independently in the FAR-A
station in the minimum bias data of run 341419: for the individual hit combinations (points), for all hit
combinations measured in single trains (őlled bands) and for all single-ToF-train events measured in the stations
(hatched band). The bands indicate the uncertainties obtained by propagating quadratic sums of the statistical
and systematic uncertainties of single channel resolutions as well as of the statistical uncertainty of the number
of each of the hit combinations. The channels that contribute to each given combination are marked by black
letters, those which do not by gray letters and őnally the inactive channels by red letters.

hatched band). The uncertainties associated with the resolutions of each multiplicity combination
are propagated. Additionally, the statistical uncertainties of the multiplicity distributions are also
taken into account for both train and station resolutions.

In table 3 the expected timing resolutions are presented for the selected runs. The individual A-
and C-side ToF timing resolutions are obtained from the respective single-tag data sets as described
above. The sufficiently large statistics of these single-tag samples make the statistical uncertainty
negligible and the dominant uncertainty comes from propagating the total resolution uncertainty
of individual channels. In the last column of the table the single-side resolutions are combined to
the expected resolution according to equation (4.1).

Table 3. The expected individual-side (second and third column) and combined (last column) ToF resolutions
measured in single-tag samples of the minimum bias data in the selected ATLAS runs.

Run FAR-A resolution [ps] FAR-C resolution [ps] Combined resolution [mm]

341419 21 ± 3 (stat ⊕ syst) 28 ± 4 (stat ⊕ syst) 5.3 ± 0.6 (stat ⊕ syst)
341534 20 ± 3 (stat ⊕ syst) 28 ± 4 (stat ⊕ syst) 5.2 ± 0.6 (stat ⊕ syst)
341615 22 ± 3 (stat ⊕ syst) 28 ± 4 (stat ⊕ syst) 5.3 ± 0.6 (stat ⊕ syst)

4.5 Comparison with the primary vertex position

In section 4.3, a good consistency of the ToF detector measurements was demonstrated at the level
of lumiblock and the 𝑧BS observable. In this section it is investigated if a similar consistency is
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observed when making a direct comparison of the 𝑧vtx measurements on an event-by event-basis by
analysing the shape of the 𝑧ATLAS − 𝑧ToF distribution. For this purpose, events with the single-ToF-train
signature, observed simultaneously on both the A and C sides are selected. The proton arrival time
for a given station and a given event is obtained by averaging over the number of hits, all corrected
for the HPTDC bin centres and for the channel delays.

The 𝑧ATLAS − 𝑧ToF distribution for double-tag events has two components: the signal component
corresponding to genuine 𝑝𝑝 → 𝑝𝑋𝑝 processes which is expected to manifest itself as a narrow peak
above a broad hump-type distribution corresponding to the second component, the combinatorial
background. The latter is expected to follow a double-Gaussian distribution with a special constraint
that the width of the secondary component is őxed to the width of the main component divided
by

√
2, which stems from different conőgurations contributing to the combinatorial background, as

indicated in őgure 1 or see [12]. The shape parameters of the background component are obtained
from a őt to the mixed-event sample prepared from combinations of unrelated values of the FAR-A,
FAR-C side times and the 𝑧ATLAS values from all the lumiblocks now (using the similar reasoning as
in section 4.2). The values that are combined correspond to average train times obtained under the
single-ToF-train condition on the given side. The mixing of single-tag events gives more statistics for
a better background shape estimation while remaining independent of the double-tag events which are
the primary focus of this vertex-matching analysis. Figure 15 shows the 𝑧ATLAS − 𝑧ToF distribution
from the mixed-event sample together with a double-Gaussian őt and the extracted parameter values in
run 341419. The őtted mean value is again reasonably close to zero given the widths obtained in the
closure tests documented in őgure 13 bottom plots. These parameters are then used in the subsequent
vertex-matching analysis. In this run the secondary Gaussian component is found negligible.

The 𝑧ATLAS − 𝑧ToF distribution is now analysed to extract information about the 𝑧vtx resolution
for the signal events. The results presented here are taken from double-tagged events recorded in the
large-statistics low-𝜇 run 341419 with ToF channel times calibrated for HPTDC bin centers and fully
determined delays. The left panel of őgure 16 shows the actual 𝑧ATLAS − 𝑧ToF distribution while the
right panel shows the 𝑧shifted

ATLAS − 𝑧ToF, where 𝑧shifted
ATLAS is taken from the next event, thus, by deőnition

unrelated to 𝑧ToF from the signal, for clarity denoted also as ‘shifted data’ in the legend or ‘shifted’ in
the following paragraphs. The parameters of the signal and background mean and the background
shape are őxed from the previous őt to the ME data (see őgure 15). The remaining free parameters are
thus the numbers of signal and background events and the signal width, 𝑛sig, 𝑛bgd and 𝜎sig, respectively.
Unbinned őts are performed, using the extended likelihood method as implemented in RooFit [24].

The 𝑝-value for the background-only hypothesis, 𝑝0, equal to 0.014 for the nominal data, which
corresponds to a signiőcance of 2.2 𝜎, suggests that the distribution is consistent with the presence of
a signal, as shown in őgure 16 (a). This is also supported by the őt itself yielding a signiőcant fraction
of signal events in the total studied sample and the width, 𝜎sig, of 6.0± 2.0 mm, consistent with the
expected value (5.3± 0.6 mm) obtained from the single-channel resolution values in the double-tagged
event sample. The right panel then shows that the shifted data where the signal 𝑧ATLAS − 𝑧ToF

combinations cannot be present are indeed compatible with the background-only hypothesis, as seen
from a high 𝑝0 value of 0.951. This observation indicates that the ToF detector operates as intended
and allows for the measurement of the vertex position in double-tag events.

As explained above, the background stems from coincident double-tag detections of protons from
pile-up interactions (dominantly from soft SD processes) or from the non-collision background. It
should be noted that no explicit cuts have been applied on the SiT signals. As mentioned in section 3.2.2
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Figure 16. The 𝑧ATLAS − 𝑧ToF distributions for the nominal data in (a) and 𝑧shifted
ATLAS − 𝑧ToF for the shifted data in

(b) measured in run 341419 (dots) using double-tagged events with the single-ToF-train condition. The őts of
the sum of signal and background components are represented by solid lines. The background component is
indicated by the őlled area. The background-only model őts are shown by the dashed lines. In the legends the
values of őtted parameters, 𝑛sig, 𝑛bgd and 𝜎sig are quoted together with the p-values (𝑝0) corresponding to the
background-only hypothesis.
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Figure 17. From (a) to (d) the 𝑧ATLAS− 𝑧ToF distribution and the őt results obtained in run 341419 corresponding
to tightening the cut on a maximum number of reconstructed AFP SiT tracks pointing to the relevant station.

the non-collision background contributes less in the events with low SiT track multiplicities. It is
therefore useful to check the dependence of the background fraction on such a criterion. Figure 17
shows results of such a study, varying the number of SiT tracks and repeating the whole procedure
leading to őgure 16. It can be seen that tightening the track multiplicity cut to 5, 3, 2 and 1 on both
AFP sides does not decrease the signal contribution appreciably, while the background component falls
faster. With slightly increasing statistical uncertainty, the extracted resolution is still well compatible
with the expected one for all track multiplicity choices.

The analysis of runs 341534 and 341615 proceeds in the same manner as for run 341419. However
here, the presence of the signal indicated by the difference of 𝑝0 values for the nominal and shifted
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𝑧ATLAS − 𝑧ToF data is not fully supported by values of 𝜎sig and 𝑛sig obtained from the őt as documented
in table 4. The őts tend to converge to narrow signal widths, caused probably by data ŕuctuations in
the expected signal region. Various tests including the use of HPTDC and delay corrections from run
341419 or tighter SiT track-multiplicity cuts with the aim to suppress the background have not helped
to promote the signal in runs 341354 and 341615. In the single-channel analysis using data with the
single-tag condition, efficiencies and resolutions were found to be compatible within uncertainties
for these runs (see sections 3.3, 3.5). Also the delay corrections were found to provide an identical
level of precision in describing the 𝑧BS position as documented in őgure 13. No reason for a different
behaviour in these runs has been identiőed. One possible hypothesis is a worsening of synchronisation
between the two ToF detectors on the A and C sides.

Table 4. Summary table of values of signal parameters 𝜎sig and 𝑛sig obtained from őts to the nominal
𝑧ATLAS − 𝑧ToF data (second and third column) and the background only hypothesis p-values, 𝑝0, for the nominal
and shifted data (last two columns). The values are shown for all the minimum bias data in the selected
ATLAS runs.

Run 𝜎sig [mm] 𝑛sig Nominal data 𝑝0 Shifted data 𝑝0

341419 6.0 ± 2.0 57 ± 22 0.014 0.951

341534 4.0 ± 1.2 41 ± 16 0.013 0.702

341615 3.0 ± 6.9 32 ± 14 0.044 0.373

The effects associated with őnite HPTDC widths and the precision of determining channel delays
were evaluated using randomly smeared data replicas. Two smearing procedures were performed
simultaneously. For each replica, the Δ𝑧 distributions were subjected to őts, as in the nominal case.
The measured channel times were uniformly smeared across the actual HPTDC bin width for every
event in each replica. Channel delay corrections were modiőed using a Gaussian distribution centred
around the nominal delay value, with a conservative width corresponding to 2.5 mm/𝑐. This choice
is inspired by the values from őgure 13, where the individual delay alterations remained őxed for
each data replica. The őts, applied repeatedly to each of the unique data replicas, result in model
parameter values and associated statistical uncertainties that are no longer őxed. The mean value
of the 𝜎sig and its statistical error yield 𝜎sig = 6.0 ± 2.1 mm. This implies a negligible difference
compared to values obtained from the őt to the original data. Consequently, it can be concluded that
the impact of these two sources of ambiguity can be disregarded.

5 Conclusions

The performance of the AFP Time-of-Flight detector system in ATLAS has been measured using
data collected in 2017 at the LHC. Efficiencies of ToF trains and timing resolutions of individual ToF
channels are obtained from single-tag events in high-statistics AFP calibration-stream runs, while
double-tag events in the minimum-bias runs are used to study the compatibility of the measurement of
the 𝑧-coordinate of the primary vertex by the ToF detector with that of the central ATLAS tracker.
The methods and approaches used in this performance study are largely universal, and are hence
applicable regardless of the speciőc detection techniques employed for measuring arrival times in
the forward region. This makes them potentially useful as guidelines for the effective utilisation of
future data from the Time-of-Flight detector system.
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The efficiencies of individual trains are measured for two scenarios which are sensitive to possible
contributions of secondary particles. The baseline requirement for both is exactly one local track
reconstructed in the Silicon tracker in a given AFP FAR station. For the early data used in this study,
the train efficiencies are measured at percent levels reaching up to 20%, degrading with time in 2017
to sub-percent levels for the last studied runs. The rapid decrease of the efficiencies is consistent
with an exceeded MCP-PMT lifetime. A clearly visible fraction of events containing secondaries
from particle showers is well suppressed by requiring in addition that only a single train is seen in the
whole sensitive ToF area. This selection reduces event yields by about a factor of two, but provides
favourable conditions for the timing resolution measurements.

The resolutions of individual ToF channels were extracted from the analysis of time differences
between the channels of a single train where the events were required to contain hits in just the studied
train. Typical single-channel resolutions vary between 23 and 40 ps for three late 2017 runs, and
between 30 and 80 ps for the two earlier ones, where the worse resolutions can be explained by a
saturation of preampliőers caused by too high a gain of the MCP-PMTs. The measured single-channel
resolutions propagated to the resolutions of the individual ToF stations lead to expected values of
21 ± 3 ps for side A and 28 ± 4 ps for side C, and to the combined 𝑧vtx resolution of 5.3 ± 0.6 mm.

The ToF detector is found to provide a good description of the time dependence of the beam-spot
𝑧-position in three studied (late) 2017 runs. At a more detailed level, particularly when comparing
the 𝑧-coordinate of the primary vertex measured by the ATLAS tracker and the ToF detector on an
event-by-event basis, an excess over the background level is observed in the 𝑧ATLAS − 𝑧ToF distribution
in one of these runs. This excess is present due to a contribution of central diffraction processes treated
as a signal component in the subsequent statistical analysis. The width of the signal component of
6.0 ± 2.0 mm is in agreement, within uncertainties, with the resolution expected from single channels.
By testing the persistence of the signal against AFP track multiplicity cuts, it is concluded that the
beam-induced halo activity seen by the ToF detectors constitutes a large part of the background. While
the ToF detectors performed well in the other two late 2017 runs in all analyses based on single-tag
events, extracting signal parameters from double-tag events with an acceptable level of conődence
proved difficult. Despite the observed challenges and the low detection efficiency in 2017, it can be
concluded that the ToF detector demonstrated promising precision in measuring the vertex position.

To preserve a good level of generality but also for the reason of available statistics, a limited set
of cuts was used in the vertex-matching study. When more data are available, and also in physical
analyses with speciőc őnal states of interest, more stringent cuts can be used, especially the matching
between measurements in AFP and the central detector, which can be expected to lead to a more
effective suppression of backgrounds.

It is worth mentioning that a measurement of 𝑧vtx alone does not in itself provide a measurement
of the time of an interaction in the ATLAS tracker. It would be interesting to measure the precise
interaction time and use this to evaluate the time of arrival of a single diffractively emitted proton
in one of the ToF detectors so as to accept only those events where there is agreement. Such a time
measurement in the central detector is planned for a future upgrade to the ATLAS detector, see ref. [25].
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