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Abstract

In this paper we argue that safety claims, when justified by a safety case, are descriptive fallible knowledge claims. Even 

if the aim of a safety case was to justify infallible knowledge about the safety of a system, such infallible safety knowledge 

is impossible to attain in the case of AI-enabled systems. By their nature AI-enabled systems preclude the possibility of 

obtaining infallible knowledge concerning their safety or lack thereof. We suggest that one can communicate knowledge of 

an AI-enabled system’s safety by structuring their exchange according to Paul Grice’s Cooperative Principle which can be 

achieved via adherence to the Gricean maxims of communication. Furthermore, these same maxims can be used to evaluate 

the calibre of the exchange, with the aim being to ensure that communicating knowledge about an AI-enabled system’s safety 

is of the highest calibre, in short, that the communication is relevant, of sufficient quantity and quality, and communicated 

perspicuously. The high calibre communication of safety claims to an epistemically diverse group of stakeholders is vitally 

important given the increasingly participatory nature of AI-enabled system design, development and assessment.

Keywords Safety assurance · Artificial intelligence · Epistemology · Gricean maxims · Safety communication

1 Introduction

A clinician, Clara, makes her way to see her last patient, 

Peter, before her shift ends. It has been a long day made 

even more difficult by the fact that most of her time is spent 

with patients whose cases are complicated and out of the 

ordinary. Routine but cognitively light tasks have been 

increasingly automated away through the use of autonomous 

AI-enabled technologies. Clara no longer conducts routine 

follow-up calls with patients, which were often pleasant and 

a welcome reprieve for her, and instead spends most of her 

day handling cases that an AI-enabled recommender sys-

tem has flagged as “urgent.” Peter’s is one such case. Peter 

is a type-2 diabetic and was admitted to the hospital after 

complaining about chest pain. While Clara would normally 

meet with Peter alone, her hospital has recently acquired a 

clinical diagnostic support system named HIPPOCRATES 

that is supposed to enhance human diagnostic ability. After 

examining Peter, Clara is worried that his chest pain is 

symptomatic of an impending myocardial infarction, i.e., 

heart attack. HIPPOCRATES, in contrast, does not predict 

that Peter will experience a myocardial infarction within the 

next three months. While treatment decisions ultimately rest 

with Clara (and Peter of course), she is frustrated by the 

system’s disagreement with her assessment. She is mind-

ful of many different considerations; Peter’s health, scarce 

hospital resources, her relatively new relationship with HIP-

POCRATES, and the consequences of acting on her own 

judgement versus deferring to the recommendation of HIP-

POCRATES. In her exhausted state, Clara recommends a 

standard treatment for Peter and sends him on his way.

This hypothetical scenario involving a clinician and a 

CDSS (clinical diagnostic support system) might seem far-

fetched, but AI-enabled systems already perform many of 

the tasks mentioned in the vignette above. AI-enabled sys-

tems can conduct routine follow up calls [29], can engage in 

triaging patients [9, 45], and can diagnose and treat illnesses 

like sepsis [25]. While there are numerous different issues 

that we might draw out and analyse from the above story, 

e.g., questions about the transparency of such an AI-enabled 

system, our focus is going to be on the issue of AI safety. 

When is it safe to deploy an AI-enabled system? Moreover, 

what does the claim that a given AI-enabled system is safe 

amount to? Is it a knowledge claim? Or just a claim about 

what one believes to be the case?
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In this paper we will argue that safety claims about AI-

enabled systems are claims of knowledge, i.e., about what 

one knows and not merely believes, if they are supported 

by an appropriately structured argument which is, in turn, 

justified by defeasible evidence. Indeed this is exactly the 

purpose of a safety case, to provide a clear, comprehensible, 

and defensible argument, supported by a body of evidence, 

that a system is acceptably safe to operate in a given con-

text [28, 42]. The purpose of the safety case methodology, 

i.e., the process of producing a safety case, and the resultant 

safety case1 is to supply justification for the knowledge claim 

that a given system is acceptably safe. This however is not 

infallible knowledge but rather fallible knowledge. This is 

because safety cases have their roots in the tradition of infor-

mal argumentation. The conclusions of or claims supported 

by informal arguments are rarely, if ever, established with 

certainty in the way that the conclusions of formal argu-

ments are established.

This is particularly evident when considering the safety 

of a system vis-à-vis a safety case and the claim that the 

system is acceptably safe to operate. But even if the aim 

of a safety case, or informal argument in general, was to 

produce infallible knowledge, the nature of AI-enabled sys-

tems would preclude this possibility. In other words, infal-

lible knowledge claims about AI-enabled systems, e.g., their 

behaviour, safety, etc., are unattainable in practice. These 

topics are taken up in sections two and three respectively. In 

section four, we attempt to answer the following question. 

Given claims about an AI-enabled system’s safety (justified 

by a safety case), how best to communicate this knowledge, 

especially to an epistemically diverse group of stakeholders? 

Our novel contribution is to suggest that the Gricean maxims 

of cooperative communication can be used to evaluate the 

calibre of the communication between affected stakeholders.

2  Safety–critical systems

There are many different technological systems whose fail-

ure could result in loss of life, loss or significant damage 

to equipment and/or property, or damage to the environ-

ment. These safety–critical systems are particularly common 

in certain domains like healthcare, defence, aviation, and 

the petrochemical sector to name a few, but they are by no 

means limited to these domains [30, 41].

Safety is commonly conceptualised as freedom from 

harm [19]. But given that absolute freedom is rarely, if ever, 

possible for complex systems, definitions of safety tend to 

focus on the notion of risk, i.e. the likelihood and severity of 

harm [39]. This triggers necessary questions of acceptability 

of risk, by whom and given what else. It is important to 

note that intent matters. Harm here is unintended. It is typi-

cally due to error or complexity. If harm is deliberate, and 

it involves malice, then conceptually, the risk of harm falls 

within the realm of security and not safety, though both 

safety and security need to be considered in an integrated 

manner [3].

Here, safety is conceptualised as a state, i.e. a condition of 

the system in which it is free from harm. Other approaches, 

though not mutually exclusive, are more action-oriented, 

describing safety as the prevention or control of unaccep-

table or intolerable risk of harm. Recent safety science lit-

erature, under the umbrella of Safety II [22] or Resilience 

Engineering [23], emphasises a different perspective: safety 

is achieved through the adaptive capacity of the sociotechni-

cal system to adjust its behaviour under both expected and 

unexpected conditions. It focuses on how “things go right, 

rather than by preventing them from going wrong” [22].

Regardless of the specific definition of, or perspective 

on, safety, AI-enabled functions are increasingly seen as 

standing in need of safety assurance either because their 

adoption raises questions about safety or because they are 

being integrated into safety–critical systems. But how is a 

system deemed “safe enough” to deploy? More importantly 

for our purposes, what kind of claim is one making when 

they state that a system is “safe enough” or, synonymously, 

“acceptably safe”?2

2.1  Safety assurance via safety cases

Before discussing what kind of claim a safety claim is, it is 

important to contextualise the practice of producing safety 

cases in order to assure the safety of a system. Safety prac-

tices have evolved significantly over the last fifty years [8]. 

Considerations of safety were initially, and unfortunately, 

reactive. The petrochemical, nuclear and railway domains 

for example are replete with accidents, many of which were 

catastrophic, that precipitated changes to safety practices.3 It 

was largely only after accident investigations that changes to 

systems were made, if they were made at all, to ensure that 

similar accidents would not occur again in the future. Regu-

lation in these domains was similarly reactive in the sense 

that manufacturers and operators had to meet specific stand-

ards and technical requirements specified by regulators who 

were not able to keep pace with technological innovations. 

The result was, for two main reasons, safety management 

1 This can sometimes be referred to as a safety report.

2 For simplicity, our usage of the term ‘safe’ is also synonymous with 

the terms ‘safe enough’ and ‘acceptably safe’ unless otherwise speci-

fied.
3 See (Sujan et al., 2012) for a brief chronological summary of sig-

nificant events and their impact on safety regulation.
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that was not fit for purpose [41]. First, this approach led 

to a culture of “box ticking” where the focus was more on 

compliance with standards and less on actually understand-

ing and managing risks. Second, because the emphasis was 

on compliance with standards and regulations, this approach 

stifled innovation and hindered progress in industries driven 

by technological change.

In response to major accidents and changing economic 

environments (e.g., the privatisation of public industries) 

approaches to demonstrating the safety of a given system 

began to change. In addition to demonstrating compli-

ance with applicable standards and requirements, current 

approaches to safety “require manufacturers and operators to 

demonstrate that they have adopted a thorough and system-

atic process to proactively understand the risks associated 

with their systems and control these risks appropriately” 

[41]. These duties can be fulfilled through the use of safety 

cases, i.e., appropriately structured arguments justified by 

defeasible evidence. Importantly, this is not to say that safety 

cases alone have led to improving safety practices. In addi-

tion to the adoption of safety cases there has been, for exam-

ple, more proactive safety management in general as well as 

a more widespread safety culture that have also contributed 

to improving safety practices.

2.2  Safety claims

In its simplest form, a safety case is a clear, comprehensive 

and defensible argument that a system is acceptably safe to 

operate in a given context [28]. In what follows, our focus 

will be on the safety of AI-enabled systems unless other-

wise specified. Additionally, we will primarily be referring 

to safety cases and safety case production as a monolithic 

enterprise. This however obscures some of the variation 

between the different schools of thought when it comes to 

safety case production [16]. There are even some inconsist-

encies that can arise if one equivocates on the meaning of 

“safety case,” e.g., including voluminous technical details 

that interrupts or obscures the story of a system’s safety 

because one believes that the purpose of a safety case is to 

show how safety requirements are satisfied through different 

levels of design [16]. While we do not commit ourselves to 

any one safety case school (which are not mutually exclu-

sive, we do want to draw particular attention to two lines of 

thought that are pertinent for our upcoming discussion of AI 

safety, (1) that a safety case is used to document and com-

municate the story of a system’s safety to diverse stakehold-

ers (more on this in Sect. 4) including what it means for the 

system to be safe and how it achieves safety, and (2) that a 

safety case is used to establish confidence in safety claims, 

i.e., it is used to assure claims about safety [16]. There are 

also two major distinctions to note between a safety case and 

the safety case methodology. The former is an instantiated 

and compelling argument intended to support the claim that 

a given system is acceptably safe. The latter, appropriately, 

refers to the process by which one constructs or produces 

the safety case. There are different ways to present a safety 

case, e.g., images, text, bespoke notation, etc., and different 

methodologies one might use to produce the safety case. 

Caveats and clarifications aside, we turn now to consider 

what kind of claim is advanced in a safety case.

2.2.1  Safety as a descriptive claim

Claims advanced in a safety case about an AI-enabled sys-

tem’s safety, or any system’s safety, are descriptive claims. 

They are about states of affairs. Let us consider the example 

of an AI-enabled extubation system that we will refer back to 

throughout this paper. In intensive care units (ICUs) patients 

may require invasive mechanical ventilation if they cannot 

breathe unaided. Intubation is the term used for the insertion 

of a tube into the trachea for such patients and extubation 

is the term used for the removal of the tube. An AI-enabled 

system can be used to predict patient readiness for extuba-

tion, a safety–critical task given the harmful consequences 

associated with both early and late weaning from mechanical 

ventilation [25]. To claim that this AI-enabled extubation 

system is acceptably safe to operate is not to say anything 

about what ought to be the case, i.e., something norma-

tive (e.g., we ought to deploy the system), but rather to say 

something about what is or will be the case, i.e., something 

descriptive (e.g., the system falsely predicted X percent of 

patients as ready for extubation in the test dataset). Note 

that while claims about an AI-enabled system’s safety are 

descriptive, one might make certain normative claims about 

those descriptive claims. For example, we might claim that 

you should not believe the claim that the AI-enabled extuba-

tion system is acceptably safe.

It might however be objected that claims about an AI-ena-

bled system’s safety are inherently or implicitly normative. 

For example, it is relatively common to infer that one can or 

ought to do something because it is safe to do so. Utterances 

like, “Elevators are safe to ride in” or “It’s safer to fly on a 

plane than drive in a car”, seem to suggest that one ought 

to take the elevator or that one ought not be afraid of flying. 

Granting that interpretation of the above utterances, it is 

nevertheless possible to separate descriptive claims about 

safety from normative ones. That is, it is possible to separate 

the factual/descriptive dimension from the evaluative/nor-

mative dimension of safety. The former invariably revolves 

around physical, technical or measurable facts. For example 

one might claim that the elevator is safe enough because the 

steel cables supporting it have a certain tensile strength two 

orders of magnitude greater than the elevator and any load it 

might carry. It is in this descriptive dimension that factual or 

technical judgments dominate given their role in justifying 
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the claim that the system in question (e.g., the elevator) is 

safe enough. Normative claims in contrast revolve around 

the adequacy or evaluation of these physical facts. For exam-

ple one might claim that an elevator ought not be considered 

safe enough unless the steel cables supporting it have a mini-

mum tensile strength three orders of magnitude greater than 

the elevator and any load it might carry. Similarly, one might 

claim that different or additional tests ought to be used to re/

evaluate the tensile strength of the steel cables.

In short, normative claims pertain to the safety require-

ments, e.g., whether they are sufficient or whether the pro-

posed threshold that constitutes “safe enough” is appropri-

ate, whereas descriptive claims pertain to the fulfilment 

of those requirements, e.g., whether it is the case that the 

requirements have been satisfied or the threshold of “safe 

enough” met. Importantly, when one makes a safety claim, 

e.g., that the elevator is safe enough or the AI-enabled 

extubation system is safe enough, the normative work has 

already been done; the value judgments were made when 

the safety requirements and threshold of “safe enough” were 

set.4 It is, of course, always possible to revisit or question 

these requirements or threshold, which is the normative 

dimension of safety, but our point is that that kind of activity 

can be separated, at least conceptually, from the descriptive 

dimension of safety.

2.2.2  Safety as a knowledge claim

Claims advanced in a safety case about an AI-enabled sys-

tem’s safety, or again any system’s safety, are knowledge 

claims. That is, one is justified in believing the truth (assum-

ing the truth) of the claim that the system is acceptably safe 

to operate. But this can be developed further. For example, 

one might rightfully object that this rudimentary JTB (justi-

fied true belief) account of knowledge has serious flaws, one 

of which is its susceptibility to Gettier cases [12]. Gettier 

argued that it just might be by chance, for example, that one 

holds the justified true belief that the system described in the 

safety case is safe. Possessing a justified true belief there-

fore appears necessary but ultimately insufficient to secure a 

knowledge claim. Some additional requirement is required to 

ensure that the justification, the belief, or both is of the right 

sort to prevent cases of justified false beliefs from being 

counted as knowledge when epistemic luck is involved. But 

we are straying dangerously close to an analysis of episte-

mological issues stemming from Gettier cases that is well 

outside the scope of this paper. The only requirement that 

we will add here is that the justification be produced by a 

reliable process. This is the process reliabilist view accord-

ing to which justification is a function of the reliability of 

the process or processes that cause one to form beliefs5 that 

are true rather than false [14]. So one’s belief that a given 

AI-enabled system is acceptably safe is justified and counts 

as knowledge just in case the process that caused one to form 

that belief, e.g., reading and understanding the safety test 

results, reliably produces true beliefs.

Importantly, though we can mitigate concerns about epis-

temic luck via the reliabilist justification requirement, there 

is still the possibility that our justified belief turns out to 

be false. The knowledge claim advanced in a safety case is 

therefore fallible knowledge. It is not certain knowledge, 

where certainty here is understood as infallibility, i.e., it 

could not have been false. This is distinct from other kinds of 

subjective certainty, e.g., incorrigibility about what I believe 

or feel at a particular moment, and distinct from other kinds 

of epistemic certainties, e.g., indubitability or indefeasibil-

ity about what I know or am justified in believing [37]. Put 

simply, fallibilism is the view that conjoins two strongly 

held intuitions that, on the one hand, we can make mistakes 

and sometimes be mistaken about things but that, on the 

other hand, we also have quite a bit of knowledge and can 

know things in spite of the mistakes we might make [36]. 

So claims advanced in a safety case about an AI-enabled 

system’s safety are fallible knowledge claims because they 

can turn out, in unfortunate cases where a mistake has been 

made, to be false.6

2.3  Establishing safety claims

Claims about the safety of AI-enabled systems are descrip-

tive fallible knowledge claims. When justified by a safety 

case, claims about the safety of an AI-enabled extuba-

tion system, for example, are more than mere belief. This 

4 Indeed value-laden judgments are inescapable and affect both the 

context of discovery and the context of evaluation. Roughly speak-

ing, values can influence what domain or subject a person studies, can 

influence hypothesis formation, and the choice of evidence to be gath-

ered (which is most relevant for the current discussion), all of which 

are generally part of the context of discovery. But values can also 

influence how a person interprets the evidence that has been gathered 

(which is, again, most relevant for the current discussion), the method 

of analysis employed, and the evidence’s relation to the hypothesis 

and larger theoretical constructs, all of which are generally part of 

the context of evaluation [24]. So while in practice it may be diffi-

cult to separate the normative and descriptive dimensions of safety, 

e.g., because two individuals might interpret the same evidence as 

in/sufficient for meeting a given safety requirement or threshold, we 

can nonetheless conceptually separate the normative and descriptive 

dimensions.

5 This can be generalised to include information in general. That is, 

some have argued that AI-enabled machines can produce “knowl-

edge” because their outputs reliably lead to the formation of true 

“beliefs.”.
6 This can include mistakes arising from fallacious reasoning, some 

of which have already been documented in the context of safety cases 

[17].
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knowledge is fallible however because the justification pro-

vided vis-à-vis the safety case relies on a certain type of 

argument, namely informal argumentation as opposed to 

formal argumentation. We turn now to briefly describe the 

differences between formal and informal arguments as well 

as how and why informal arguments leave room for the fal-

libility of their conclusions.

2.3.1  Formal arguments

As the name suggests, the idea of formal arguments arises 

from an intuition that arguments, and reason more broadly, 

ought to be systematically formalized. Reasoning and argu-

ments, in short, ought to be thought of as a science whose 

object of study is logical relations and those laws and 

phenomena governed by logical relations [43]. The laws7 

include, for example, those concerning entailment and 

deduction, and the phenomena include, for example, the 

properties of validity and well-formedness.

2.3.1.1 Advantages and  disadvantages One immense 

advantage of formal arguments is their ability to demon-

strate the infallibility of a conclusion. Provided that the 

argument begins with premises or axioms that are true (or 

accepted as such), and provided that no mistakes were made 

in the ensuing inferences, the conclusion must be true. One 

stark example of this is Kurt Gödel’s famous incomplete-

ness theorem which demonstrated, beginning with accepted 

axioms, that there are certain true statements or conclusions 

that are impossible to state. Gödel’s conclusion, that given a 

sufficiently complex logic there are certain conclusions that 

cannot be written in the language of that logic, hence their 

incompleteness, is definitive and infallible, i.e., it could not 

have been false.

A related advantage of formal arguments is their speci-

ficity. Natural language is fraught with ambiguity that can 

render even relatively simple sentences, let alone arguments, 

difficult to understand. Consider the following sentence. 

“The battery is empty, and the robot is not moving, or the 

patient is hungry.” This sentence can be parsed in two dif-

ferent ways as the battery is empty and either the robot is 

not moving or the patient is hungry, or as either the battery 

is empty and the robot is not moving or the patient is hun-

gry. In a formal argument, such a sentence might be repre-

sented by the string (A&(BVC)) or ((A&B)VC) respectively, 

resolving any ambiguities in interpretation.

In spite of their advantages, formal arguments also suf-

fer from significant disadvantages. Perhaps the most serious 

of which is that formal arguments are largely disconnected 

from the way in which people normally argue and reason. 

The average person is often less concerned with the valid-

ity of a mathematical proof and more often concerned with 

assessing the reasons and arguments a colleague provides for 

using an AI-enabled extubation system, for example. Moreo-

ver, the average person is often less interested in reason-

ing about what is certainly the case (or not) and more often 

interested in reasoning about what is probably or likely to be 

the case (or not), as one might be when conversing with their 

physician about back pain they are experiencing. Conversa-

tions like these can certainly be instantiated using formal 

arguments, but the usefulness of doing so is dubious at best.

Formal arguments are similarly disconnected from the 

real world. By that we mean that formal arguments are 

largely disconnected from the messy, uncertain and dynamic 

realities that overwhelmingly dominate our human exist-

ence. Rarely, for instance, are there widely agreed upon 

axioms or starting points from which one can uncontrover-

sially begin their natural argument. Such is the case with 

safety assurance generally, and for AI-enabled systems more 

specifically, where one can always, as we saw above, raise 

legitimate normative concerns/questions. Likewise, natural 

arguments are rarely presented using the (mostly) unambigu-

ous language of symbolic logic but instead using natural 

language with all of its accompanying ambiguities, vague-

ness and complexities. Natural arguments between two (or 

more) persons are more of a dialectical reasoning process 

than a sterile evaluation of logical relations between differ-

ent variables.

This brings us to a third disadvantage of formal argu-

ments, and one that follows from the first two described, 

namely that formal arguments are ideal abstractions. From 

a safety perspective, this is a critical defect. While the ideal-

ized and abstract nature of formal arguments confers certain 

advantages, this is at the cost of neglecting potential crucial 

context-dependent information. Safety is not merely a tech-

nical property but increasingly a socio-technical property 

that depends not just on the system itself but on how people 

interact with the system. An AI-enabled extubation system 

could be acceptably safe to operate in an ideal world, but be 

unsafe to operate when one considers how such a system will 

be integrated into the relevant healthcare pathways and how 

expert users will interact with the system. Formal arguments 

are disconnected from the kinds of reasoning and arguments 

the average person engages in (whether that be an average 

expert user or average member of the public) as well as from 

the real world precisely because they are abstractions of both 

the reasoning process and the world. The result is that formal 

arguments are largely concerned with the theory of reason-

ing and arguments and less concerned with the actual prac-

tice of reasoning and arguing.

7 Or more accurately we might call these the rules of inference.
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2.3.2  Informal arguments

While there are slightly different positions that the proponent 

of informal arguments may take up, we submit that there are 

certain shared attitudes that are characteristic of the informal 

argument advocate. These are chiefly a “focus on the natu-

ral language arguments used in public discourse, clothed in 

their native ambiguity, vagueness and incompleteness,” a 

“commitment to the study of argumentation as a dialectical 

process” and a “conviction that there are standards, norms, 

or advice for argument evaluation that is at once logical—

not purely rhetorical or domain-specific—and at the same 

time not captured by the categories of deductive validity, 

soundness and inductive strength” [26]. So let us examine 

the advantages and disadvantages of informal arguments in 

turn and how they bear on supporting claims about safety. 

2.3.2.1 Advantages and  disadvantages Informal argu-

ments, written as they are in natural language, are often 

accessible to a wide audience. Consider the differences 

between Gödel’s proof of his incompleteness theorem and 

the argument that a clinician might give to convince their 

patient that an AI-enabled extubation system is safe to use. 

The former is nigh on incomprehensible to all but the most 

studied logicians and mathematicians whereas the latter is 

(or should be) readily comprehensible by the patient the 

clinician is treating. Moreover, because of their accessibil-

ity, informal arguments are often easier to both understand 

and evaluate. Commenting on or critiquing something like 

Gödel’s proof is difficult not only because of the special-

ized knowledge of logic and mathematics required, but also 

because it is essentially written in an entirely different lan-

guage. Informal arguments in contrast can engage a much 

wider audience because they are written out in natural lan-

guage and tend to presume a general, not specialist, level of 

knowledge.

Another advantage of informal arguments is their close 

connection to reasoning in practice. By that we mean that 

informal arguments mirror the ways in which people reason 

and argue in their normal everyday lives. This is because 

the prevailing attitude amongst proponents of informal argu-

ments, and informal logic in general, is that we must theorise 

about and understand actual (i.e., real-life, ordinary, every-

day) arguments in their native habitat of public discourse and 

persuasion. The result has been the articulation of “methods 

of identifying, analysing and evaluating reasoning, which 

do not primarily rely on the instruments or nomenclature of 

formal logic” [26]. One such method articulated by Stephen 

Toulmin draws on judicial practices. For Toulmin, and for 

safety engineers inspired by his views, it is not enough to 

merely distinguish between premises and conclusions. When 

engaging in practical reasoning and argument there are “a 

good half-dozen functions to be performed by different sorts 

of proposition” some of which can be identified as “claims, 

data, warrants, modal qualifiers, conditions of rebuttal, state-

ments about the applicability or inapplicability of warrants, 

and others” [43].

Informal arguments however also suffer from certain dis-

advantages, one of which concerns their evaluability. In con-

trast to formal arguments of which the evaluation is largely 

context-independent and field invariant, the evaluation of 

informal arguments requires an appreciation of the context 

and field in which the argument is presented. As Toulmin 

highlights, the “standards for judging the soundness, valid-

ity, cogency or strength of arguments are in practice field-

dependent” [43]. To use Toulmin’s terminology, the kind of 

data that one might produce to support a claim in one con-

text, e.g., to a colleague working in a specialized discipline, 

may require no further justification or legitimization. Con-

sider the following utterance. “The CNN is safe to deploy 

because its accuracy for extubation decisions was quite 

high at an AUC-ROC value of 0.94.” When uttered from 

one developer to another, both of whom are working on the 

same project of producing an AI-enabled extubation-deci-

sion system, such a claim may require no further elabora-

tion. In another context however, e.g., when the developer is 

speaking with a clinician who will be the expert user of the 

system, one might need to produce, in addition to the data 

and the claim, a warrant, i.e., an explicit proposition regis-

tering the legitimacy of the step from the data to the claim 

[43]. In our example, the developer may have to explicitly 

state what a CNN is (convolutional neural network), what an 

AUC-ROC (area under the receiving operating characteristic 

curve) value is, why it is a measure of system accuracy, and 

how that relates to the system’s safe operation. In short, the 

evaluation of informal arguments becomes more difficult 

the larger the difference there is between the interlocutors’ 

epistemic backgrounds.

A related disadvantage is that informal arguments cannot 

establish the certainty of their conclusions. Toulmin again 

nicely describes how, when judged against ideal “deductive” 

standards, informal arguments “are irreparably loose and 

lacking in rigour; the necessities and compulsions which 

they can claim—physical, moral and the rest—are never 

entirely compulsive or ineluctable in the way logical neces-

sity can be; while their impossibilities are never as utterly 

adamantine as good, solid, logical impossibility” [43]. Infor-

mal arguments, tied as they are to reasoning in practice, are 

as often, if not more so, about establishing the likelihood 

of a conclusion as they are about establishing the necessity 

of a conclusion. This is often through looser inductive or 

abductive reasoning processes. Certain warrants may permit 

us to argue unequivocally to a conclusion, but this is an ideal 

exception, not the norm. More often than not, warrants enti-

tle us to draw conclusions only tentatively subject to possible 
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exceptions or conditions [43]. Such is the case when arguing 

about the safety of an AI-enabled system.

2.3.3  Fallible safety claims

Safety claims are ultimately fallible knowledge claims given 

that their justification provided vis-à-vis the safety case is 

grounded in informal argumentation.8 Indeed the disad-

vantages of informal arguments mentioned above turn out 

to be desirable features when arguing about the safety of a 

system and, as we shall see, communicating the content of 

a safety case to an epistemically diverse audience. Let us 

consider once again the AI-enabled extubation-decision sys-

tem already introduced. The claim that this system is accept-

ably safe to deploy in a given context (i.e., within a certain 

healthcare pathway in a particular hospital) is one that can 

be undermined by defeaters or, in Toulmin’s terminology, 

conditions of rebuttal [43]. It is vitally important that claims 

about a system’s safety be subject to scrutiny and re-evalu-

ation. The AI-enabled extubation system for example may 

only be acceptably safe to operate in a particular hospital by 

expert users that have received training on how to use the 

system. Taking the system to a different hospital or having 

untrained expert users utilise the system may undermine the 

claim that it is acceptably safe to operate.

Safety cases are also produced for someone, typically 

to persuade them to accept the claim that, for example, an 

AI-enabled extubation-decision system is acceptably safe 

to operate, on the basis of the arguments and evidence 

advanced in the safety case. As such they are part of a larger 

dialogue traditionally between developers, regulators and 

assessors. This dialectical spirit is another legacy of infor-

mal arguments that is desirable when discussing a system’s 

safety. Though the evaluation of a safety case may be diffi-

cult for the layperson, designers and developers need not be 

restricted by the syntax and semantics of formal arguments 

when communicating safety claims which, ideally, should be 

closely examined, discussed and, if necessary, challenged. 

As mentioned above, designers and developers can, through 

the informal arguments in their safety case, tell a story about 

a system’s safety, including what it means for the particular 

system to be safe, how it achieves this, and why one should 

be confident that the risks have been appropriately managed. 

For an AI-enabled extubation-decision system, the develop-

ers might emphasise to deployers (i.e., hospitals) and expert 

users (i.e., the clinicians working with the system) that the 

system is safe because it has reached a certain minimum 

threshold of accuracy, does not overwhelm the expert users 

with notifications and can be integrated into the existing 

healthcare pathway in such a way that it avoids unduly dis-

rupting existing practices. In short, the developers will com-

municate their knowledge that the AI system is safe to the 

deployers and expert users, but more will be said about the 

form of this communication in Sect. 4.

3  AI system safety

While we have argued in the previous section that safety 

claims are descriptive fallible knowledge claims, one might 

object to this characterization. But this brings us to safety 

claims about AI-enabled systems in particular. Even if safety 

claims were not fallible knowledge claims, even if the aim of 

a safety case was to produce infallible knowledge, the nature 

of AI-enabled systems themselves precludes the possibility 

of obtaining infallible knowledge about their safety (or lack 

thereof). So in this section we look specifically at some of 

the features of AI-enabled systems that prevent one from 

making infallible knowledge claims about their safety. But 

first some terminological and clarificatory preliminaries.

Artificial intelligence (AI) is a widely used term with no 

clear boundaries, but it will suffice for our purposes to think 

of AI according to the definition given by the National Insti-

tute of Standards and Technology (NIST). AI, or an AI-ena-

bled system, refers to the “capability of a device to perform 

functions that are normally associated with human intelli-

gence such as reasoning, learning and self-improvement” 

[7].9 There are roughly three components that together drive 

most current AI-enabled systems (including the AI-enabled 

extubation system that we have been using as an example 

throughout), and those are the deep neural network (DNN) 

(i.e., an artificial neural network with many layers of neurons 

between the input and output layers), the learning algorithm 

(which adjusts the weights between the neurons in the neural 

network) and the data (the largest portion of which serves 

as training data).

Additionally, it must be noted that AI is not a field, 

domain or industry but rather a technology that can be uti-

lised in different fields, domains or industries. As such, AI 

is not, as one might be led to believe, some magical tool 

through which the world is objectively captured in a view 

from nowhere and revealed to us [1, 34]. On the contrary, 

AI-enabled systems do not necessarily learn anything 

“objective” about the world nor are they more “objec-

tive” in their decision making and behaviour than humans. 

8 Although it must be noted that there have been attempts to both 

formalise safety case arguments and incorporate features of formal 

arguments to complement features of informal reasoning employed in 

safety case arguments [15, 20, 38].

9 Marvin Minsky similarly defined the study of artificial intelligence 

as “the science of making machines do things that would require 

intelligence if done by men [sic]” [33].
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Moreover, AI-enabled systems, like any technology, are not 

created value free (i.e., normatively neutral). AI-enabled 

systems are conceived, designed and developed in a socio-

political milieu and often by people or groups of people in 

positions of power [27]. Put simply, research in science and 

engineering is not value free, and this extends to the crea-

tion of AI-enabled systems. Though there is the potential for 

AI-enabled systems to benefit humanity we must be wary 

of the promises to this effect because they can just as easily 

perpetuate systemic biases and discriminate against those 

who are already marginalised and underrepresented [10, 11]. 

While it is important to recognise that there is a dominant 

narrative for AI that deserves scrutiny and criticism, such an 

analysis is outside the scope of this paper. So let us return to 

the peculiarities of AI-enabled systems. What exactly is it 

about AI-enabled systems that precludes the possibility of 

attaining infallible knowledge about their safety?

3.1  Uncertain behaviour, open contexts, black 
boxes and complicated consequences

It is impossible to know infallibly that an AI-enabled sys-

tem is safe because of their uncertain behaviour, the varied 

open contexts in which they can operate and their opaque, 

often uninterpretable, inner workings. While the operating 

context can sometimes be spelled out in detail, this does 

relatively little to secure infallible knowledge about an AI 

system’s safety. For example, one could be quite precise and 

detailed in outlining how an AI-enabled extubation system is 

supposed to be integrated into the relevant healthcare path-

way, how expert users are supposed to interact with it and 

the limits of its capabilities. But while one can infer from 

this information that certain risks have been mitigated or 

addressed, it does little to justify infallible knowledge claims 

that a system will behave in a certain safe way, which is an 

issue that arises from the under-specificity of function of AI-

enabled systems. Briefly, under-specificity of function refers 

to the gap that exists between the developer’s intended goals 

for the system and the system’s actual behaviour, sometimes 

known as “the semantic gap” [6]. This largely concerns the 

learning algorithm component of AI mentioned above. Such 

algorithms are often chosen not because they are the best or 

well understood, but because they work well enough.

So knowledge of the system’s behaviour, let alone higher 

level properties like safety, is far from infallible, and this 

is only compounded by the opacity of AI-enabled systems. 

Transparency, as the term suggests, refers to the “visibility” 

of the system, in particular its inner workings, and the sup-

posed logic or reasoning that the system employs to reach 

particular outputs. This largely concerns the DNN compo-

nent of AI. While the inputs and outputs of the AI-enabled 

system are transparent, the same cannot be said for the many 

so-called hidden layers in the DNN. For example, though the 

expert user clinician might see that the AI-enabled extuba-

tion system takes as inputs features like the level of patient 

sedation and mode of ventilation and produces therefrom 

the output recommendation that the patient is ready for extu-

bation, the clinician may have little understanding of why 

that particular output was produced and whether it is safe to 

proceed with extubation without any further investigation 

[25].10 And even assuming that one has access to the DNN 

and can see all of the connections between the neurons and 

their weights, such transparency does not necessarily confer 

knowledge, let alone infallible knowledge, of the system’s 

logic, even to those who designed it. Infallible knowledge 

about an AI-enabled system’s safety is simply out of the 

question.

The different kinds of consequences arising from the 

use of AI-enabled systems also precludes the possibility 

of attaining infallible knowledge about their safety. On a 

strong interpretation, the consequences of using AI-enabled 

systems are different in kind, not merely by degree, from 

the consequences of using other technologies. This strong 

view is often adopted because AI-enabled systems, many 

argue, can lead via numerous paths to catastrophic or exis-

tential consequences [21]. Even on a weaker interpretation 

however, that the consequences of using AI-enabled systems 

are different merely in degree from other technologies, the 

consequences of utilising AI-enabled systems are such that 

they prevent one from obtaining infallible knowledge about 

their safety.

Claims about safety are, as we have seen, inherently 

context-dependent claims. But AI-enabled systems are 

increasingly general-purpose systems that are created with 

no specific use-context or operational environment in mind. 

The same AI-enabled system could be procured by many 

different deployers and adapted for different downstream 

uses [4]. The same AI-enabled system could just as eas-

ily be used to conduct post-cataract surgery follow-up calls 

with patients as it could conduct almost any other routine 

clinical conversation [29]. Similarly, the same AI-enabled 

system could just as easily generate predictions about when 

patients are ready for extubation as it could generate predic-

tions about another critical and time-sensitive procedure. 

While it is in principle possible for some responsible party, 

e.g., the deployer, to outline the use-context or operational 

environment in detail and thereby identify and manage risks, 

this does little to justify an infallible knowledge claim that 

the system is acceptably safe. As mentioned above, these 

important contextual details at best only permit one to infer, 

10 Though it must be noted that there is a whole field of inquiry 

known as XAI (explainable AI) dedicated to investigating how AI-

enabled systems can be rendered more transparent vis-à-vis explain-

ability [2, 13, 25, 32].
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in proportion to the detail given, that certain risks have been 

mitigated or addressed.

Even if the use-context or operational environment is 

specified in full detail, the sheer scale of the consequences of 

using AI-enabled systems precludes the possibility of attain-

ing infallible knowledge about their safety. Consider that 

AI-enabled systems can have a large, even global, sphere of 

influence. AI-enabled systems can be copied and deployed 

en masse such that idiosyncrasies arising from design deci-

sions made early in development influence the life chances 

and well-being of entire demographics. For example, an 

AI-enabled extubation system trained on data from patients 

seen at King’s College Hospital in London, UK might be 

deployed for use in the University of Tokyo Hospital in 

Tokyo, Japan. In the best case scenario the AI-enabled 

extubation system is just as accurate in the former location 

as it is in the latter, but in the worse-case scenario patients 

are systematically misclassified in one or both locations as 

being ready for extubation when they are not because the 

training data was not representative of the demographics in 

the use-context.

So the sheer numbers of people that can be affected by 

the same AI-system makes even fallible knowledge claims 

about their safety difficult to establish. And the rising popu-

larity and increased use of so-called “foundation models” 

only exacerbates this problem.11 In short, foundation models 

are any models trained on a broad dataset that can then be 

adapted to perform a variety of downstream tasks. While not 

new per se, the scale and complexity of foundation models 

has increased to a point where they have begun to exhibit 

behaviours wholly unanticipated by their creators, an issue 

we have already touched on above [4]. More importantly, 

because foundation models require sophisticated hardware, 

immense processing power and gargantuan training datasets, 

this means that only a select few organisations are able to 

develop their own foundation models. This, coupled with 

the fact that many smaller organisations use these founda-

tion models, albeit fine-tuning them for a particular task, 

means that there is a single point of failure for many differ-

ent systems deeply rooted in the original foundation model. 

Once again, the nature of AI-enabled systems precludes the 

attainment of infallible knowledge about safety in practice.

The crux of the issue is that, for a number of reasons 

including some of which just discussed, it is impossible in 

practice to justify an infallible knowledge claim pertaining to 

the risk an AI-enabled system poses. Risk is often conceived 

of as the product of the likelihood and severity of a particular 

outcome. There is no reason why one could not, in principle, 

assess the likelihood and severity of an AI-enabled system’s 

effects on a person’s physical or psychological well-being 

for example. In practice however one is only more or less 

justified in fallibly knowing the risk of using an AI-enabled 

system given the inferences made from the available evi-

dence to general claims about the likelihood and severity of 

specific outcomes obtaining. Note, however, that one might 

reason that we can possess infallible knowledge about the 

safety of AI-enabled systems. And indeed we can, but this 

is a triviality. If one assigns an all but certain likelihood or 

a high enough severity to the outcome, then it is trivial to 

say that one possesses infallible knowledge about the safety 

of an AI-enabled system, to wit, utilising the system will 

certainly lead to harm. Those who insist that we ought to 

worry about the existential consequences of AI-enabled sys-

tems fall into the latter camp, i.e., they assign an astronomi-

cal severity to the outcome of using AI-enabled systems. 

Their argument runs something like this. Even though the 

likelihood of developing paperclip-maximising superintel-

ligent AI is infinitesimally small at the present, the severity 

of the consequences (namely human extinction) of doing 

so is such that we need to worry about preventing this out-

come from obtaining now. Failure to address this problem 

through increased work on the value alignment problem, for 

example, will certainly lead to human extinction. So while 

it is possible to produce infallible knowledge claims about 

AI-enabled system safety, they are trivial claims that inherit 

their infallibility from some questionable premise.

4  Cooperative communication

Thus far we have argued that safety claims, when justi-

fied by a safety case, are descriptive fallible knowledge 

claims. This is in virtue of both the informal argumentation 

used in safety cases and the nature of AI-enabled systems 

themselves. Given that, the question with which we con-

cern ourselves in this final section is how best to commu-

nicate this knowledge? The design and development of AI 

is increasingly participatory in nature as are assessments 

of their safety and ethical acceptability [5, 35]. This means 

that claims about AI-enabled system safety and their sup-

porting arguments ought to be accessible to a wide range of 

affected stakeholders with different epistemic backgrounds. 

More specifically then, the question is how best to com-

municate this knowledge to an epistemically diverse group 

of stakeholders? How could one evaluate the calibre of the 

communication between different affected stakeholders? In 

what follows we suggest that the Gricean maxims of coop-

erative communication can be used to structure the form 

of the dialogue between stakeholders and also evaluate the 

calibre of the exchange.

11 Explainer: What is a foundation model? https:// www. adalo velac 

einst itute. org/ resou rce/ found ation- models- expla iner/

https://www.adalovelaceinstitute.org/resource/foundation-models-explainer/
https://www.adalovelaceinstitute.org/resource/foundation-models-explainer/
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4.1  Inference and the cooperative principle

In his investigations of conversational implicature, Paul 

Grice famously outlined certain general features of dis-

course that are readily applicable to discourse of a specific 

kind, namely discourse surrounding the safety of AI-enabled 

systems [18]. Grice begins by noting that, for the kinds of 

conversations he is interested in analysing, the discourse is 

not random, i.e., communication does not consist of a series 

of disconnected remarks. There is, in general, some amount 

of cooperation between conversational partners given that 

each participant recognizes that in a given conversation, say 

a conversation about the safety of an AI-enabled system, 

there is, to some extent, “a common purpose or set of pur-

poses, or at least a mutually accepted direction” in which the 

conversation moves [18]. There are therefore, at any given 

moment in a conversation, certain unsuitable “moves”, i.e., 

conversational contributions. This leads Grice to formulate 

his Cooperative Principle: “Make your conversational con-

tribution such as is required, at the stage at which it occurs, 

by the accepted purpose or direction of the talk exchange in 

which you are engaged” [18]. Though we shall refine this 

principle later given the specific direction of facilitating 

the effective exchange of knowledge about safety of an AI-

enabled system, it is sufficient to note at the present that this 

Cooperative Principle can supply the essential structure for 

the exchange.

4.1.1  The Gricean maxims

Under the assumption of the Cooperative Principle, Grice 

draws out some additional maxims and submaxims that are 

worth describing given the role they will play in evaluating 

the calibre of the exchange. These maxims fall under four 

categories: quantity, quality, relation and manner. Under the 

category of quantity are the maxims to (1) communicate as 

much information as is required and (2) to refrain from dis-

closing any more information than is required [18]. Under 

the category of quality is the supermaxim to communicate 

truthfully, which can be achieved by adhering to the submax-

ims to (1) refrain from disclosing what one believes to be 

false and (2) refrain from disclosing what one lacks adequate 

evidence for [18]. Under the category of relation is the sin-

gle and deceptively simple maxim, be relevant [18]. We say 

deceptively simple because, out of all of Grice’s maxims, 

this is perhaps the most important for evaluating the calibre 

of the exchange of knowledge about an AI-enabled system’s 

safety. More will be said about this below. Finally, under the 

category of manner is the supermaxim to be perspicuous 

which can be achieved by adhering to four submaxims: (1) 

avoid obscure expressions, (2) avoid ambiguity, (3) be brief 

and (4) be orderly [18].

4.1.2  Purposive communication

As alluded to above, the exchange that we are interested 

in analysing and evaluating is not random. The exchange 

between the communicator, e.g., the developer, and the com-

municatee, e.g., the expert user, is purposive. That is, the 

exchange is directed towards some end which, in our case, 

is to persuade the communicatee to believe in the justified 

claim (that we are assuming is true) that the AI-enabled 

system is safe to operate in a given context. The Gricean 

maxims are therefore ideal for thinking about the structure 

of the dialogue between communicator and communicatee 

given their intimate connection to purposive exchanges. 

Grice writes, “I have stated my maxims as if this purpose 

[of the conversation] were a maximally effective exchange 

of information,” and while this is certainly not true of all 

conversations, it is undoubtedly the case when consider-

ing the disclosure of safety claims to affected stakehold-

ers [18]. In short, communicators can ensure the effective 

exchange of safety knowledge claims by structuring their 

exchanges according to the Cooperative Principle which can 

be achieved via adherence to the Gricean maxims related 

to the categories of quantity, quality, relation and manner.

4.2  Evaluating knowledge exchanges

The Cooperative Principle and the Gricean maxims can pro-

vide the structure for the dialogue between communicator 

and communicatee, but the maxims in particular can also 

serve as criteria to evaluate the calibre of the knowledge 

exchange. While there is not much that can be said at an 

abstract or general level about the content of the knowledge 

exchange beyond what has already been mentioned, here we 

will draw on the example of the AI-enabled extubation-deci-

sion system to illustrate what an exchange between differ-

ent affected stakeholders might look like. More importantly, 

we will highlight how the Gricean maxims can be used to 

evaluate the calibre of the exchange, particularly between 

stakeholders with different epistemic backgrounds.

4.2.1  Safety knowledge claims and AI‑enabled extubation

Consider four different stakeholders: a developer, an 

expert user (i.e., a clinician), a prediction-recipient (i.e., 

a patient who will be affected by the use of the system by 

the clinician) and a representative of a regulatory agency. 

In the following imagined exchanges, one stakeholder will 

engage in a dialogue with another and attempt to persuade 

them to form the justified true belief that the AI-enabled 

extubation system is safe. So while the structure of the 

exchange will largely be consistent, i.e., adhering to the 

Cooperative Principle via the Gricean maxims, the con-

tent of the communication will differ given the different 
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epistemic backgrounds of the communicatees. The expert 

user for example may wish to know why the AI-enabled 

extubation system is safe and will not harm patients. 

We can imagine the following exchange (E1) between 

a clinician (the communicatee) and the developer (the 

communicator).

(E1)   Clinician: What features of the patient does the 

machine use to determine readiness for extubation?

  Developer: Primarily ones that align with clinical 

expectations, such as level of patient sedation and 

mode of ventilation.

Note first the structure of this exchange. The quality and 

quantity of information disclosed by the developer are, at 

minimum, sufficient to facilitate the effective exchange of 

the information requested by the clinician. More might be 

said about the AI-enabled extubation system, i.e., the quan-

tity of information could be increased (e.g., the developer 

could disclose that features like age, gender and ethnicity 

are features that the system does not use to determine patient 

readiness for extubation), but there is the risk that what is 

disclosed is increasingly irrelevant and would therefore 

degrade the calibre of the exchange. A similar risk exists 

if the quality of information is modified, i.e., what is dis-

closed is increasingly irrelevant. If, for example, the thresh-

old that constitutes “truthful” communication is significantly 

changed then this might result in a different and less relevant 

exchange (e.g., the developer might add that the features that 

the system uses to determine readiness for extubation are in 

fact not locally important features specific to a particular 

decision, but globally important features given that they are 

averages derived from the whole training dataset) [25].

Contrast the exchange above between the clinician and 

developer with another example. Certain affected stakehold-

ers may not have the opportunities to open a dialogue and 

speak with one another. Developers for example may not 

be able to communicate their knowledge of the system’s 

safety to patients, and so communicating this knowledge 

may fall on the clinician as the expert user. Imagine the fol-

lowing exchange (E2) between a patient and/or their health-

care proxy (the communicatee) and their clinician (the 

communicator).

(E2)  Patient: How can you be sure that this system will 

correctly predict when I am ready for extubation?

  Clinician: While there are always risks with these 

types of procedures, this machine only assists me 

and makes predictions consistent with my clinical 

judgement. I am confident it will correctly predict 

when you will be ready for extubation.

As with the first exchange, the form of this second 

exchange remains the same. That is, the quality, quantity, 

relevance and manner in which the information is disclosed 

by the communicator, in this case the clinician, are sufficient 

to facilitate the effective exchange of information requested 

by the communicatee, which in this case is the patient. 

Importantly, from the point of view of evaluating the cali-

bre of this communicative exchange, what the clinician has 

disclosed in this exchange is relevant assuming the patient’s 

non-medical and non-technical background. As mentioned 

above, relevance is crucial for ensuring optimal communica-

tion. If we assume that the patient has a different epistemic 

background, e.g., they are themselves a clinician or a soft-

ware engineer working with artificial neural networks, then 

this imagined exchange may not satisfy the patient because 

it fails to be relevant. The justification provided by the cli-

nician may fail in various ways to persuade the patient to 

believe in the truth of the safety claim. A patient with a 

background in medicine or computer science may, we might 

assume, be seeking a more technical response from the clini-

cian. That is, they might be seeking an increased quantity of 

relevant information.

To see how exchanges like these might evolve into rich 

dialogues consider one more example. Imagine the follow-

ing exchange (E3) between a representative of a regulatory 

agency and the developer.

(E3)  Regulatory agent: Why are patient features like eth-

nicity, gender and age included as inputs? Won’t they 

bias the predictions your AI-enabled extubation sys-

tem makes?

  Developer: These features were part of the train-

ing dataset and we simply left them as inputs. 

However our analysis of the system shows that 

these features have an importance near zero 

and so they likely have a negligible effect on the 

predictions.

Again, the structure of this exchange is dictated first 

and foremost by relevance, i.e., what information is most 

relevant for the communicatee given their question but 

primarily epistemic background. The developer’s answer 

is directly related to the regulatory agent’s question. Simi-

larly, the quality and quantity of information is such that an 

effective exchange of information is facilitated, and indeed 

may prompt follow up questions. The regulatory agent may, 

for example, be concerned about the possibility of systemic 
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discrimination by the AI-enabled extubation system and pur-

sue this line of inquiry.

(E3*)  Regulatory agent: Is there any evidence that a 

machine formally “blind” to protected charac-

teristics like ethnicity, gender and age performs 

differently?

  Developer: At present we have not trained a 

machine formally “blind” to these features, how-

ever we have reason to believe that excluding 

these features would not mitigate the risk of bias 

in the predictions.

In addition to relevance, there is always a burden on com-

municators, the developer in this example, to communicate 

honestly, i.e., abide by the Gricean maxims that fall under 

the category of quality. In this follow up exchange (E3*) the 

developer is speaking truthfully by both admitting that they 

have not created a machine that excludes the inputs of eth-

nicity, gender and age, and by warning the regulatory agent 

that there is no guarantee that such a machine will be less 

biassed in its predictions. Indeed there is ample evidence, 

some of which may appear in a safety case prepared by the 

developer to justify claims about their AI-enabled extubation 

system’s safety, to suggest that protected characteristics can 

be implicit in other unprotected characteristics and thereby 

render any exclusion of protected characteristics from the 

system’s inputs meaningless at best [31].

Of course the quality of the communication must be bal-

anced against the quantity, and that balance is evident in this 

and the above examples. While the developer could go on 

in conversation (E3*) about how and why they believe that 

excluding protected features would not mitigate the risk of 

bias and harm to certain groups of people, such additional 

information is not necessarily relevant given the context 

and would lower the calibre of the exchange were it to be 

included. Moreover, the regulatory agent could simply direct 

the exchange in that direction should they desire to under-

stand more of the justification underpinning claims about 

how and why excluding protected characteristics might 

not mitigate the risk of bias. Indeed, communication about 

safety knowledge claims between different affected stake-

holders ought to continuously occur in much the same way 

that the design, development and deployment of AI-enabled 

systems continuously occurs.

To sum up this section, the Gricean maxims can be used 

to evaluate the calibre of the exchange between different 

affected stakeholders when one is communicating knowl-

edge about an AI-enabled system’s safety to the other. High 

calibre exchanges are ones that, from the communicatee’s 

point of view, are maximally efficient in persuading them 

to accept the justified true belief held by the communica-

tor that the AI-enabled system is safe in whatever respect 

concerns the communicatee. From an outside perspective, 

we can evaluate the calibre of the exchange between com-

municator and communicatee using the Gricean maxims. 

High calibre exchanges are ones that are first and foremost 

relevant, i.e., the communicator tailors their communica-

tion to the particular communicatee they are engaging with 

given the communicatee’s particular epistemic background. 

Second, high calibre exchanges appropriately balance the 

quantity and quality of information shared. Lastly, and this 

was largely implicit in the example exchanges given above 

(i.e., maxims connected to the category of manner were not 

violated), high calibre exchanges are communicated in an 

appropriate manner, i.e., the exchange is orderly, involves 

jargon that is appropriate and is just generally lucid.

5  Conclusion

AI-enabled systems are beginning to permeate our lives and 

society. They are used in virtually every sector and increas-

ingly in safety–critical contexts [40, 44]. Assuring the safety 

of systems used in critical contexts is not a new activity. But 

what is new is the safety assurance of AI-enabled systems 

and, moreover, the communication of claims about the safety 

of AI-enabled systems to an epistemically diverse group 

of stakeholders. In this paper we have argued that safety 

claims, when justified by a safety case, are descriptive fal-

lible knowledge claims. Even if the aim of a safety case was 

to justify infallible knowledge about the safety of a system, 

such infallible safety knowledge is impossible to attain in 

the case of AI-enabled systems. By their nature AI-enabled 

systems preclude the possibility of obtaining infallible 

knowledge concerning their safety or lack thereof. Finally, 

we have suggested that one can communicate knowledge of 

an AI-enabled system’s safety by structuring their exchange 

according to Paul Grice’s Cooperative Principle which can 

be achieved via adherence to the Gricean maxims of com-

munication. Furthermore, these same maxims can be used 

to evaluate the calibre of the exchange, with the aim being to 

ensure that communicating knowledge about an AI-enabled 

system’s safety is always of the highest calibre. In short, 

that the communication is relevant, of sufficient quantity and 

quality, and communicated perspicuously. Ultimately, the 

participatory nature of AI-enabled system design, develop-

ment and assessment will require confronting the problem of 

how best to communicate safety claims to an epistemically 

diverse group of stakeholders. We hope that this paper rep-

resents one step towards addressing that problem.
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