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General Article

The use of linear mixed models (LMMs; Bates, 2010; 
Gelman & Hill, 2006; Pinheiro & Bates, 2000; Stroup, 
2012) for data analysis rapidly increased in the last 
decade1 and has the potential to become the standard 
in neuroscience and psychology research (Brauer & Curtin, 
2018; DeBruine & Barr, 2021; Judd et al., 2012; Singmann 
& Kellen, 2020). However, LMM implementation is not 
always straightforward, and reviewers may not always 
have the necessary expertise to assess them.

In this article, we focus on the use of LMMs for 
hypothesis testing of fully crossed designs with cate-
gorical factors and introduce a clear approach for  
model selection when overparametrized models lead to 

convergence and singularity issues. Hence, in the first 
part of the article, we provide some background to the 
general reader about LMMs. Then, we introduce the use 
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Abstract
The use of linear mixed models (LMMs) is increasing in psychology and neuroscience research In this article, we focus on 
the implementation of LMMs in fully crossed experimental designs. A key aspect of LMMs is choosing a random-effects 
structure according to the experimental needs. To date, opposite suggestions are present in the literature, spanning from 
keeping all random effects (maximal models), which produces several singularity and convergence issues, to removing 
random effects until the best fit is found, with the risk of inflating Type I error (reduced models). However, defining 
the random structure to fit a nonsingular and convergent model is not straightforward. Moreover, the lack of a standard 
approach may lead the researcher to make decisions that potentially inflate Type I errors. After reviewing LMMs, we 
introduce a step-by-step approach to avoid convergence and singularity issues and control for Type I error inflation 
during model reduction of fully crossed experimental designs. Specifically, we propose the use of complex random 
intercepts (CRIs) when maximal models are overparametrized. CRIs are multiple random intercepts that represent the 
residual variance of categorical fixed effects within a given grouping factor. We validated CRIs and the proposed 
procedure by extensive simulations and a real-case application. We demonstrate that CRIs can produce reliable results 
and require less computational resources. Moreover, we outline a few criteria and recommendations on how and when 
scholars should reduce overparametrized models. Overall, the proposed procedure provides clear solutions to avoid 
overinflated results using LMMs in psychology and neuroscience.
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of complex random intercepts (CRIs; Baayen et al., 2008; 
Bates et  al., 2015, p. 9), and test their computational 
performance in three separate studies. Finally, we pro-
pose a step-by-step guide for model selection using 
CRIs, and we validate the approach in three additional 
studies. We adopted the lme4 (Bates et al., 2015) and 
afex (Singmann et al., 2020) packages’ syntax using the 
free R software (R Core Team, 2018).

LMMs in Psychology and Neuroscience: 
Benefits and Hurdles

A typical data set for an LMM includes all observations 
(e.g., all single trials). This increases the power of the 
statistical analysis compared with analyses on aggre-
gated data (Gelman & Hill, 2006). Another advantage of 
LMMs is the control of the data variability by including 
in the statistical model both the factors that may general-
ize to the whole statistical population (i.e., fixed effects; 
also called “population-level” effects) and the factors 
that may affect the generalization of the fixed effects 
(i.e., random effects; also called “group-level” effects; 
Brauer & Curtin, 2018).

Random effects are specified as “grouping terms” and 
usually arise from the collected sample or the experi-
mental design. For example, consider a data set obtained 
from a rating task in which a sample of 30 participants 
rated 20 images of cars and 20 images of animals under 
two different stressful conditions (stress factor: low 
stress, high stress). Results may be affected by each 
participant’s variability and may differ based on the 
experimental condition. Hence, researchers may like to 
reduce the influence such variability has on the results 
by including “participants” as a grouping term in the 
LMM random-effects structure. Moreover, researchers 
may also specify that the participants’ variability is 
affected by the experimental condition (e.g., a partici-
pant may be less variable in the high-stress condition 
compared with the no-stress condition). Researchers may 
also control for the correlations among the random 
slopes. However, this feature often leads to complex 
models,2 the fitting of which may not be reliable for data 
analysis. Therefore, it is clear that improving the gener-
alization of a result requires a careful specification of 
the fixed effects in the statistical model and of several 
aspects affecting the random-effects structure for each 
grouping term (Brauer & Curtin, 2018).

Scholars in the fields of neuroscience and experimen-
tal psychology mostly use categorical variables and may 
be interested in analyzing their data using LMMs to con-
trol for covariates that may affect their results (e.g., the 
trial number) and generalize their findings across stimuli 
(e.g., by having the “stimuli” used as grouping factor). 
Several scholars have detailed the bases of LMMs and 

have provided suggestions and tools to reduce model 
complexity (Brysbaert & Stevens, 2018; DeBruine & Barr, 
2021; Harrison et al., 2018; Luke, 2017; Matuschek et al., 
2017; Singmann & Kellen 2020) and achieve the best 
compromise between Type I and II errors (Barr, 2013; 
Barr et al., 2013; Brauer & Curtin, 2018; Matuschek et al., 
2017; Singmann & Kellen, 2020).

Across these proposals, we identified two main recom-
mendations. On one side, the random-effects structure 
should be “maximal,” containing all the slopes of the 
within-subjects factors, covariates,3 and correlations 
among them (Barr et al., 2013). On the other side, Bates 
and colleagues (2018) proposed to find the parsimonious 
model that best represents the data by selecting the num-
ber of random slopes following an iterative procedure 
that combines the removal of correlation parameters and 
nonsignificant variance components and a principal com-
ponent analysis to remove the smallest variance compo-
nents (Bates et al., 2018; Matuschek et al., 2017). However, 
model selection (i.e., the steps used to reduce the num-
ber of fixed and random effects of complex LMMs) is not 
a trivial process,4 and peer-reviewed articles rarely report 
the model-selection process (Meteyard & Davies, 2020). 
The controversy between maximal and parsimonious 
models is still unresolved (Barr et al., 2013; Bates et al., 
2018) and reveals two different approaches regarding the 
use of LMMs: One approach focuses on considering all 
the potential random effects that might bias the results 
(Barr et al., 2013), and the other focuses on obtaining 
the best estimates from the model given the data (Bates 
et al., 2018).

In favor of the maximal model is the fact that having 
all factors’ levels as random slopes allows a good control 
of Type I and Type II errors. Furthermore, excluding 
from the random-effects structure a within-subjects fac-
tor, or an interaction, inflates the risk of Type I errors 
(Barr, 2013; Barr et al., 2013) by overestimating degrees 
of freedom (i.e., pseudoreplication). Note that pseudo-
replication is when dependent observations are treated 
as independent. This leads to an overestimation of 
degrees of freedom and violates the assumption of the 
“independence of errors” (Crawley, 2012, Chapter 19). 
For example, if one compares the same sample of 30 
participants in two different stressful conditions but does 
not include the factor “stress” in the random effects, the 
degrees of freedom will be computed as if there are 60 
independent participants, dramatically increasing the 
risk of Type I error. Pseudoreplication can be more 
harmful than expected, particularly if post hoc testing is 
computed on the estimated marginal means of the model 
with packages such as emmeans (Lenth et al., 2020) or 
multcomp (Hothorn et al., 2008). In addition, deflated 
errors of the estimates of the fitted models (Type M 
errors; Gelman & Carlin, 2014) may inflate Type I error.
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In favor of the parsimonious model structure is the fact 
that fitting a maximal model leads to frequent convergence 
and overparameterization issues and nonreliable models 
(Bates et al., 2018).5 The overparameterization issue that 
often arises with maximal models might affect generaliz-
ability. When data are not sufficient to robustly estimate 
the coefficients, estimation of variance among small num-
bers of groups can be numerically unstable (Harrison 
et al., 2018). Moreover, maximal random structures require 
high computational power (e.g., some models may exceed 
RAM memory limits during fitting), and in case of small 
numbers of data points, the number of random effects can 
be higher than the number of observations.

In addition, the lack of a standardized approach 
(Meteyard & Davies, 2020) to simplify the random struc-
ture of a model leads researchers to adopt solutions that 
vary considerably across articles and scholars. Crucially, 
whatever step is taken to simplify a model (e.g., by 
removing correlations for one or all grouping factors 
and checking for overparameterization with or without 
model comparison, removing higher-order interactions 
but keeping main effects or vice versa, applying a back-
ward elimination of nonsignificant effects, or removing 
lowest variance parameters), once a reduced model has 
been selected, it may be advisable to check if the results 
match with the maximal (overparametrized or not) 
model to ensure the results are robust.6

Introducing CRIs

A key aspect in the selection of an LMM random-effects 
structure is the possibility to have parameters repre-
sented as either random slopes (grouped by a grouping 
term, e.g., in lme4 syntax: 1 + Condition | Participants) 
or as random intercepts (i.e., in the context of model 
matrices, these are also labeled as “scalar” random 
effects; see Bates et al., 2015, p. 9). Random intercepts 
can be used to represent categorical factors by removing 
the correlation parameters and assuming homoskedastic-
ity for the participants with respect to the experimental 
conditions (Baayen et  al., 2008; e.g., in lme4 syntax:  
1 | Participants:Factor). Both random-slopes and ran-
dom-intercepts structures control for the within-subjects’ 
variability, limiting the risk of overestimating degrees of 
freedom.

In this article, we use the term “complex random 
intercepts” to refer to a categorical random slope con-
verted into a random intercept. Note that converting a 
random slope into a random intercept is possible only 
with categorical effects, whereas it is not possible with 
continuous covariates. In particular, we define a CRI 
model as a model that uses multiple random intercepts 
representing the complexity of the factors within a given 
grouping term (for a description of the LMM matrices, 
see e.g., Model i1 in Table 1, and Model SM1 in the 
Supplemental Material available online). In other words, 

the random-effects structure of a full CRI model uses 
different random intercepts for each grouping factor 
(e.g., the intercept of participants only plus the inter-
cepts of participants interacting with all nested effects). 
Note that although CRI covariances are assumed to be 
zero, the number of variances and random effects esti-
mates varies depending on the grouping terms used in 
each CRI model (for details on these differences for each 
model, see Table 1; for its mathematical representation, 
see also SM1 in the Supplemental Material). This 
approach is different from other ways that set the cor-
relations of the random effects to zero (i.e., zero correla-
tion between random effects [ZCR]; e.g., “0 + Condition |  
Participants,” “Condition || Participants”).

To further understand the differences between a  
random-slopes model, a ZCR model, and a CRI model, 
it is necessary to explain some features regarding ran-
dom-slopes models. Random-slopes models are invariant 
to shifts of continuous predictors. This means that if an 
arbitrary value is added to a continuous predictor, the 
estimated beta of the fixed effect and of the random 
effect of the model will not change (see Bates et  al., 
2015, p. 7). If one does not estimate the correlations 
between random effects (like in the case of ZCR and CRI 
models), the model will lose its invariance property. 
However, this noninvariance of the models has an impact 
only when predictors are continuous and included 
within the random effects (Bates et al., 2015).

The key difference between ZCR and CRI models is 
that although random effects in the uncorrelated ZCR 
models are estimated from the same multinormal dis-
tribution with mean zero and as variance-covariance 
matrix in a diagonal matrix, the random effects in CRI 
models are estimated from several independent normal 
distributions with mean zero and a nonzero positive 
variance, and no variance-covariance matrix among 
random effects is estimated. Moreover, although in ZCR 
models the number of parameters for each random 
categorical effect is equal to the number of levels 
minus 1, in CRI models, the number of parameters for 
each random categorical effect is equal to the number 
of levels.

The use of CRIs in LMM specification has the potential 
to solve known issues around categorical random-
effects-structure specification and model convergence 
and to be an optimal trade-off between model reliability 
(i.e., fitting nonsingular and convergent models while 
keeping low Type I and II errors) and feasibility (i.e., 
low computational time and resources needed). How-
ever, this approach might hide some pitfalls when ran-
dom effects are highly correlated and when the variability 
of the fixed and random effects varies across levels. 
Moreover, which CRI structure better controls for Type 
I and Type II errors is not clear. To the best of our 
knowledge, a comparison between random-slopes mod-
els (correlated and ZCR) and CRI models is missing.
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Table 1.  Summary of the Fitted Models

Models for ANOVA-like testing (Simulation Studies 1 and 2)

ID Model syntax Description of random-effect structure
Estimates, variances, and 

covariances

s1 y ≈ Fact1 × Fact2 + (Fact1 × Fact2 
| ID)

Maximal model with random slopes Random-effects estimates = 135
Model parameters: variances = 9, 

covariances = 36
s2 y ≈ Fact1 × Fact2 + (Fact1 × Fact2 

|| ID)
Maximal model with random slopes and 

covariances among random effects 
constrained to 0

Random-effects estimates = 135
Model parameters: variances = 9, 

covariances = 0
s3 y ≈ Fact1 × Fact2 + (Fact1 + Fact2 

|| ID)
Model with random slopes without the 

interaction between the random effects 
and covariances among random effects 
constrained to 0

Random-effects estimates = 75
Model parameters: variances = 5, 

covariances = 0

s4 y ≈ Fact1 × Fact2 + (Fact1:Fact2 
|| ID)

Model with only the random slopes of 
the interaction as random effects and 
covariances among random effects 
constrained to 0

Random-effects estimates = 150
Model parameters: variances = 10, 

covariances = 0

i1 y ≈ Fact1 × Fact2 + (1|ID) + 
(1|ID:Fact1) + (1|ID:Fact2) + 
(1|ID:Fact1:Fact2)

Maximal model with random intercepts Random-effects estimates = 240
Model parameters: variances = 4, 

covariances = 0
i2 y ≈ Fact1 × Fact2 + (1|ID) + 

(1|ID:Fact1) + (1|ID:Fact2)
Model with random intercepts without 

the interaction between conditions and 
participant as random effects

Random-effects estimates = 105
Model parameters: variances = 3, 

covariances = 0
i3 y ≈ Fact1 × Fact2 + (1|ID) + 

(1|ID:Fact1:Fact2)
Model with the random intercept of the 

interaction between conditions and 
participant and the random intercept of 
the participant as random effects

Random-effects estimates = 150
Model parameters: variances = 2, 

covariances = 0

i4 y ≈ Fact1 × Fact2 + 
(1|ID:Fact1:Fact2)

Model with only the interaction between 
conditions and participant as random 
intercept

Random-effects estimates = 135
Model parameters: variances = 1, 

covariances = 0
o1 Variable Finding the maximal feasible model (i.e., 

no singularity or convergence errors)
Variable

o2 Variable Stepwise elimination from the maximal 
feasible model (i.e., from Model o1)

Variable

o3 Variable Stepwise elimination from the maximal 
model

Variable

Models for post hoc tests (Simulation Study 3)

ID Model syntax Description
Estimates, variances, and 

covariances

Ph_s1 y ≈ Fact1 × Fact2 + (Fact1 × Fact2 
| ID)

Same as in Model s1 Random-effects estimates = 135
Model parameters: variances = 9, 

covariances = 36
Ph_s2 y ≈ Fact1 × Fact2 + (Fact1 × Fact2 

|| ID)
Same as in Model s2 Random-effects estimates = 135

Model parameters: variances = 9, 
covariances = 0

Ph_s3 y ≈ Fact1 × Fact2 + (Fact1 + Fact2 
|| ID)

Same as in Model s3 Random-effects estimates = 75
Model parameters: variances = 5, 

covariances = 0
Ph_s4 y ≈ Fact1 × Fact2 + (Fact1:Fact2 

|| ID)
Same as in Model s4 Random-effects estimates = 150

Model parameters: variances = 10, 
covariances = 0

Ph_s5 y ≈ Fact1 × Fact2 + (Fact1 || ID) Model with only the random slopes of 
Fact1 as random effects and covariances 
among random effects constrained to 0

Random-effects estimates = 30
Model parameters: variances = 1, 

covariances = 0

(continued)
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Ph_s6 y ≈ Fact1 × Fact2 + (Fact2 || ID) Model with only the random slopes of 
Fact2 as random effects and covariances 
among random effects constrained to 0

Random-effects estimates = 30
Model parameters: variances = 1, 

covariances = 0
Ph_i1 y ≈ Fact1 × Fact2 + (1|ID) + 

(1|ID:Fact1) + (1|ID:Fact2) + 
(1|ID:Fact1:Fact2)

Same as in Model i1 Random-effects estimates = 240
Model parameters: variances = 4, 

covariances = 0
Ph_i2 y ≈ Fact1 × Fact2 + (1|ID) + 

(1|ID:Fact1) + (1|ID:Fact2)
Same as in Model i2 Random-effects estimates = 105

Model parameters: variances = 3, 
covariances = 0

Ph_i3 y ≈ Fact1 × Fact2 + (1|ID) + 
(1|ID:Fact1:Fact2)

Same as in Model i3 Random-effects estimates = 150
Model parameters: variances = 2, 

covariances = 0
Ph_i4 y ≈ Fact1 × Fact2 + (1|ID) + 

(1|ID:Fact1)
Model with the random intercept of 

the interaction between Fact1 and 
participant and the random intercept of 
the participant as random effects

Random-effects estimates = 60
Model parameters: variances = 2, 

covariances = 0

Ph_i5 y ≈ Fact1 × Fact2 + (1|ID) + 
(1|ID:Fact2)

Model with the random intercept of 
the interaction between Fact2 and 
participant and the random intercept of 
the participant as random effects

Random-effects estimates = 60
Model parameters: variances = 2, 

covariances = 0

Ph_i6 y ≈ Fact1 × Fact2 + (1|ID) Model with the random intercept of the 
participant

Random-effects estimates = 15
Model parameters: variances = 1, 

covariances = 0

Note: In the “id” column, we report the coded label used to refer to a model throughout the article. The second column specifies the model syntax. 
Models o1 through o3 are obtained using the buildmer package. For all models, y is the dependent variable, and Fact1 and Fact2 are the two within-
subjects factors. The third and fourth columns provide a description of the model and the computed estimates, variances, and covariances in relation 
to Stimulation Study 1 (15 participants with Fact1 and Fact2 being two three-level factors) according to the afex package. For the mathematical 
representations of these models, see SM1 in the Supplemental Material available online. ANOVA = analysis of variance.

Models for post hoc tests (Simulation Study 3)

ID Model syntax Description
Estimates, variances, and 

covariances

Table 1.  (continued)

Henceforth, the goals of this article are (a) to provide 
a simulation-based comparison between the different 
random-effects structures by taking into account Type 
I and Type II errors, convergence problems, singularity 
issues, and the time and memory necessary for fitting 
the model and obtaining p values according to the  
Kenward-Roger degrees of freedom and (b) to propose 
a step-by-step approach using CRI to choose a reliable 
and efficient random-effects structure to be used when 
other solutions do not work or when there is the sus-
picion that pseudoreplication may increase the risk of 
Type I errors.

We conducted six separate studies using a limited set 
of well-known and supported R packages (afex, Singmann 
et al., 2020; lme4, Bates et al., 2015; car, Fox & Weisberg, 
2019; performance, Lüdecke et  al., 2020; emmeans, 
Lenth, 2023). In Simulation Study 1, we simulated data 
of a 3 × 3 repeated-measures (RM) design and compared 
analysis of variance (ANOVA)-like tables obtained from 
CRI models, random-slopes models, and models fitted 
with a package that automatically applies the most 

common random-effects reduction strategies (buildmer, 
Voeten, 2022). In Simulation Study 2, we then ensured 
that CRIs were not affected by the number of participants 
and the degrees-of-freedom calculation. In Simulation 
Study 3, we then tested their reliability for post hoc 
analyses.

In Simulation Study 4, we report the application of the 
proposed approach to data simulated using our scripts. 
In Simulation Study 5 and in Study 6, we tested our 
approach using scripts from Matuschek et  al., 2017 
(http://read.psych.uni-potsdam.de) and real data, respec-
tively. Finally, we provide clear recommendations for 
when and how model reduction may be performed.

Simulation Study 1: CRI-Model Evaluations

We simulated data of a 3 × 3 RM design. In particular, the 
fixed effects were characterized by two within-subjects 
factors (Factor 1 and Factor 2) with three levels each. We 
simulated 15 participants, and the random-effects struc-
ture included “participant” as grouping factor.

http://read.psych.uni-potsdam.de
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Moreover, data were simulated using a factorial 
design with three binary factors, yielding eight different 
scenarios:

•• variance within the levels of the fixed effects, 
which could be homogeneous (the standard devia-
tion was identical for each level of Factor 1 and 
Factor 2, set to 20 for the nine coefficients) or 
heterogeneous (the standard deviation was differ-
ent for each level of Factor 1 and Factor 2, set to 
[16, 24, 21, 26, 25, 20, 19, 15, 14]);

•• variance of the random effects, which could be 
homogeneous (all standard deviations set to 10) 
or heterogeneous (standard deviations set to [15, 
10, 5, 4, 9, 14, 16, 11, 6]);

•• correlation of the random effects, which could be 
highly correlated (ρ = .8) or lowly correlated (ρ = .2).

For each scenario, the simulated dependent variables 
y null and y alt

� were based on random sampling from simu-
lations under the null hypothesis (β = [100, 0, 0, 0, 0, 0, 
0, 0, 0], meaning that with the exception of the intercept, 
there are no differences among the fixed effects) and 
under the alternative hypothesis (β = [100, 0, 0, 0, 0, 4, 
–4, –4, 4], meaning that there are differences among the 
levels of the interaction; i.e., a significant interaction but 
no significant main effects; for more details, see the 
Supplemental Material).

We compared the performance of different model-
fitting approaches (random slopes: Models s1–s4; CRI: 
Models i1–i4; models obtained from the buildmer pack-
age: Models o1–o3; see Table 1) using several indexes: 
(a) Type I and II errors, (b) convergence and singularity 
issues, (c) Type I and II errors of post hoc tests com-
puted on the estimated marginal means, and (d) com-
putational time and maximal memory used during the 
fitting procedure. Below, we provide a discussion for 
each index. For the errors of the estimates of each coef-
ficient for the fixed effects of each model (Type M 
errors; Gelman & Carlin, 2014), see Table SM2 in the 
Supplemental Material.

Type I and Type II errors

Type I and Type II errors were obtained from the pro-
portion of significant results excluding the intercept. In 
particular, we used the proportion of p values computed 
from y alt

� simulations for the Fact1:Fact2 interaction that 
were below .05 as power. For each of the remaining 
conditions (main effects and interaction from y null simu-
lations; main effects from y alt

� simulations), we report the 
p values below .05 as Type I error (see Table 2).

The model with the greatest resilience to Type I error 
is the full-slope maximal model (Model s1; see Table 2). 

This model also shows more conservative results in 
terms of power. We also observe a higher power, at the 
cost of a slightly higher rate of Type I errors, for Models 
i1, i2, s2, and s3. Contrary, those models that uniquely 
control for the interaction (Models s4 and i4) show the 
worst combination of Type I and Type II errors. Finally, 
the models automatically generated by the buildmer 
package (Models o1–o3) show a very good power but 
an excessive Type I error.

Convergence and singularity

The percentage of singularity and convergence issues 
are reported in Table 3. Random-slopes models (Models 
s1–s4) in almost all cases showed high convergence or 
singularity issues (singularity averages: 90.18%, 15.62%, 
0.00%, 31.58%; nonconvergence averages: 49.60%, 6.01%, 
3.30%, 6.45%, respectively). Contrary, CRI Models i1 
through i4 showed convergence and singularity issues 
with an average below 2% (except Model i3, which had 
an average of convergence issues of 2.03%). Overall, the 
random-slopes models had a worse performance than 
CRI models in relation to convergence and singularity 
issues.

Computational time and maximum 
memory usage

Table 3 reports the time and maximal memory used to 
fit the model and compute the ANOVA table. Computing 
the slope models (Models s1–s4) rather than CRI models 
took more time and required greater RAM memory 
usage. Note that the times shown in Table e are specific 
to the high-performance facility VIPER (28 separate 
cores) Broadwell E5-2680v4 processors (2.4–3.3 GHz, 
each core with 128 GB DDR4 RAM).

Simulation Study 2: Increasing Sample Size

So far, we observed that CRI models have low Type I 
error and greater power compared with other models. 
However, a greater sample might favor random-slopes 
models. We simulated new data sets with 50 participants, 
homogeneous variability of the standard deviations of 
fixed effects, and lowly correlated random effects. We 
compared a maximal model with correlation (Model s1), 
a maximal model without correlation (Model s2), and a 
full CRI model (Model i1) using the Satterthwaite 
degrees-of-freedom approximation to reduce the time 
to perform the ANOVA with the lmerTest package (Ver-
sion 3.1-3; Kuznetsova et al., 2017).

Table 4 shows that all models were comparable in 
terms of Type I error and power (given that an increased 
sample size increases the chance to find a difference). 
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Table 4.  Type I Error, Power, and Statistics for Each Model in Simulation Study 2

Model Effect
Type I 
error

Mean 
per 

model Power

Power/
Type I 

error ratio Singularity
Convergence 

issues
Model 
time

ANOVA 
time

Memory 
RAM 
used

s1 Fact1 5.38% 5.67% 17.62 42.38% 94.93% 1,904.00 4.20 186.07
Fact2 5.43%  
Fact1:Fact2 6.20% 99.90%

s2 Fact1 6.13% 6.70% 14.88 0.05% 14.53% 97.00 4.29 118.72
Fact2 6.08%  
Fact1:Fact2 7.90% 99.75%

i1 Fact1 5.20% 5.42% 18.46 0.00% 2.38% 28.00 4.00 111.23
Fact2 5.05%  
Fact1:Fact2 6.00% 100.00%

Note: We report the results for the maximum full random-slopes model (Model s1), the full random-slopes model with the correlation matrix 
between random effects constrained to zero (Model s2), and the full CRI model (Model i1). For each model, we report the Type I error for 
each fixed effect, the power for the interaction, the power/Type I error ratio as a qualitative index, and the percentages of singularity and 
nonconvergence issues. We also report the time to fit the model in seconds, the time to fit the ANOVA-like table in minutes, and the megabytes of 
the maximum RAM memory used during model computation. Fact1 and Fact2 are the two within-subjects factors. ANOVA = analysis of variance; 
CRI = complex random intercept.

However, correlated maximal models had a greater num-
ber of singularities and convergence issues compared 
with uncorrelated maximal models and CRI models. 
Uncorrelated models reduced the number of singularity 
issues but presented a greater number of convergence 
problems compared with CRI models. We also confirmed 
a previous report (Kuznetsova et al., 2017) that the Sat-
terthwaite method successfully reduced the processing 
time and memory usage.

Overall, CRI models were affected by neither sample 
size nor the method used to compute the degrees of 
freedom (i.e., Type I error was comparable across Simu-
lation Studies 1 and 2 with 15 and 50 participants, 
respectively).

Simulation Study 3: Post Hoc Testing

We tested whether reduced models inflate Type I errors 
also in post hoc tests based on estimated marginal means 
(for details about these differences for each model, see 
Table 1). Therefore, we simulated new data. The formula 
used to obtain the ynull

 data set was the same as in Simu-
lation Study 2. To ensure that only one condition differed 
from the others, the yalt

 data set was obtained using the 
same formula used to obtain the ynull

 data set, but we 
subtracted the value of 10 from the regressor of the 
interaction representing the difference between Factor1-
Level1 and Factor2-Level2, regardless of the main effects. 
In this way, any comparison against the Factor1-Level1 
and Factor2-Level2 subsets should be statistically differ-
ent, whereas all other comparisons should not. Post hoc 
tests were computed specifying “pairwise ≈ Factor 1 | 
Factor 2,” meaning that we required pairwise compari-
sons among all levels of Factor 1, grouped by Factor 2.

Type I and Type II errors of post hoc tests

Post hoc comparisons through estimated marginal means 
(i.e., using emmeans or similar packages) depends on the 
degrees of freedom that are estimated by the model struc-
ture. Removing factors from the random effects causes 
pseudoreplication and overestimation of degrees of free-
dom. All pairwise comparisons between all levels of Fac-
tor 1 within each level of Factor 2 were computed by 
using the emmeans syntax “emmeans(model, pairwise ~ 
Fact1 | Fact2)” and applying the Tukey honestly signifi-
cant difference correction for multiple comparisons. It is 
expected that under yalt

 simulations and when Factor 2 
is in Level 2, the comparisons between Levels 1 and 2 and 
Levels 1 and 3 of Factor 1 should be significant.

Results in Table 5 show that the models with all 
within-subjects factors and interactions (or at least their 
interaction only; Models Ph_s1, Ph_s2, Ph_i1, and Ph_i3) 
specified as random effects had the lowest risk of com-
mitting Type I error (for the lme4 syntax for each model, 
see the bottom part of Table 1). Hence, computing post 
hoc analysis when the effect of interest is missing in the 
random structure may increase the Type I error (e.g., 
Model Ph_i2 performed worse than Models Ph_i1 and 
Ph_i3).

A Step-by-Step Procedure for Efficient 
and Reliable Random-Effects Structures

Preliminary considerations

In the previous simulations, we showed that full CRI 
models can lead to the presence of nonidentifiable ran-
dom intercepts (i.e., a random intercept with zero 
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Table 5.  Type I and II Errors of Post Hoc Tests in Simulation Study 3

Factor 2: Level 1 Factor 2: Level 2 Factor 2: Level 3

 
Fact1:  
1 – 2

Fact1:  
1 – 3

Fact1:  
2 – 3

Fact1:  
1 – 2

Fact1:  
1 – 3

Fact1:  
2 – 3

Fact1:  
1 – 2

Fact1:  
1 – 3

Fact1:  
2 – 3

Ph_s1 ynull 1.55% 1.80% 2.15% 2.00% 2.55% 2.55% 2.20% 2.10% 1.80%

yalt 1.65% 1.35% 2.10% 43.30% 44.15% 2.30% 1.90% 2.45% 2.45%

Ph_s2 ynull 1.50% 0.05% 0.45% 7.05% 1.65% 1.90% 6.20% 1.00% 1.20%

yalt 1.80% 0.15% 0.35% 69.15% 40.40% 1.75% 6.55% 1.15% 0.80%

Ph_s3 ynull 2.00% 0.15% 0.60% 10.05% 2.55% 3.75% 9.90% 2.35% 2.85%

yalt 2.30% 0.15% 0.50% 74.30% 48.80% 3.55% 10.00% 2.40% 3.35%

Ph_s4 ynull 1.50% 1.60% 2.90% 0.70% 0.85% 0.45% 0.90% 0.90% 0.50%

yalt 1.20% 1.30% 2.75% 31.95% 31.10% 0.35% 0.95% 0.90% 0.45%

Ph_s5 ynull 2.00% 0.15% 0.55% 9.65% 2.55% 3.75% 9.75% 2.35% 2.85%

yalt 2.20% 0.15% 0.50% 73.90% 48.60% 3.55% 9.85% 2.40% 3.35%

Ph_s6 ynull 24.10% 22.95% 34.50% 44.45% 42.45% 51.90% 43.15% 43.90% 49.65%

yalt 23.80% 25.45% 35.50% 94.20% 93.90% 50.75% 41.65% 42.85% 50.95%

Ph_i1 ynull 0.05% 0.15% 1.00% 2.50% 3.15% 6.00% 2.50% 2.70% 4.65%

yalt 0.25% 0.25% 1.10% 52.80% 54.30% 5.70% 2.75% 3.25% 5.70%

Ph_i2 ynull 0.60% 0.65% 1.85% 4.55% 5.05% 9.80% 4.95% 5.15% 8.35%

yalt 0.55% 0.65% 2.00% 59.90% 62.00% 8.60% 4.90% 5.65% 8.80%

Ph_i3 ynull 0.00% 0.00% 0.55% 0.85% 1.55% 3.60% 1.20% 1.30% 2.50%

yalt 0.05% 0.05% 0.60% 42.70% 43.10% 3.65% 1.20% 1.20% 2.45%

Ph_i4 ynull 0.55% 0.65% 1.80% 4.35% 4.95% 9.50% 4.75% 5.10% 8.20%

yalt 0.50% 0.60% 1.95% 59.65% 61.75% 8.55% 4.75% 5.40% 8.65%

Ph_i5 ynull 24.10% 22.95% 34.50% 44.45% 42.45% 51.90% 43.15% 43.90% 49.70%

yalt 23.80% 25.45% 35.50% 94.20% 93.90% 50.75% 41.65% 42.85% 51.00%

Ph_i6 ynull 22.35% 20.80% 32.10% 41.70% 40.50% 49.40% 40.90% 41.40% 47.65%

yalt 21.75% 22.65% 33.10% 93.70% 93.40% 48.90% 39.50% 40.60% 48.10%

Note: We report the percentages of significant results. Comparisons that should lead to a statistically significant result are in bold. In all the 
other cases, the comparisons should not be significant. Percentages higher than 5% for comparisons that should not be significant are italicized. 
The lme4 syntax for the fitted models is in Table 1. Fact1 and Fact2 are the two within-subjects factors.

variance). Nonetheless, the presence of nonidentifiable 
random intercepts did not affect (a) the estimation of 
fixed effects (see Supplementary Table in SM2 in the 
Supplemental Material, in which the range of the stan-
dard deviation in the estimation error is between 5.68E-
15 and 3.32E-10), (b) the power of the model (see Table 
2, in which the full CRI and full random-slopes models 
have a mean power of 88% and 66%, respectively), (c) 
the Type I error (see Table 2, in which the full CRI and 
the full random-slopes models have a Type I error mean 
of 6.26% and 3.58%, respectively), or (d) the Type I error 
on post hoc tests based on estimated marginal means 
(the full CRI model has only three comparisons in which 
the error is greater than 5% and the magnitude is equal 
or lower than 6%). Moreover, full CRI models showed 
lower singularity or convergence issues, reduced time 
to fit and estimate the ANOVA-like tables with Kenward-

Roger degrees of freedom, and lower RAM usage  
than either the full random-slopes models or full  
random-slopes models with the correlation matrix of 
random effects constrained to zero (see Table 3).

Nonetheless, starting with a maximal random-slopes 
structure is recommended because it has the best trade-off 
between Type I and Type II errors. Main effects and inter-
actions of interest varying within subjects and stimuli 
should be considered as fixed and random effects (Brauer 
& Curtin, 2018). LMM users should start with a maximal 
random-slopes model (Barr et al., 2013), following the best 
practice guidelines of these approaches, avoiding pseudo-
replication and overestimation of degrees of freedom (Barr 
et al., 2013; Brown, 2021; Matuschek et al., 2017).

However, scholars who may obtain singularity or con-
vergence issues after fitting an uncorrelated maximal model 
may be tempted to remove the highest-order random effect 
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with the lowest estimated variance. We showed that such 
models dramatically increase Type I error. In other words, 
removing within-subjects random slopes increases the risk 
of overestimating the degrees of freedom and the risk of 
deflated errors of the fixed-effects estimates.

Here, we make a step forward to avoid the inflation 
of Type I errors when singularity and convergence issues 
may arise and propose a step-by-step rationale to select 
the LMM random-effects structure using CRI (Fig. 1).

Model reduction from full CRI models 

This pipeline can be applied when full random-slopes 
models are not feasible or when the access to adequate 
computational resources is not possible. Other elements 
of great importance, such as controlling for the normality 
of both model residuals and random-effects distribu-
tions, are not among the present work’s purposes. How-
ever, the scripts available online (https://osf.io/zbkdv/) 
provide the necessary functions to check the selected 
model’s appropriateness successfully.

Step 1: defining full CRI models.  When random-
slopes techniques fail in fitting a maximal model, a full 
CRI model should be considered and defined. CRIs should 
cover all main effects and interaction, varying within sub-
jects and stimuli. Note that relevant covariates that may 
not be equally distributed among groups or participants 
(e.g., the scaled trial number for each observed case) may 
be considered as fixed effects. Although we did not simu-
late models with continuous covariates that change across 
the data, researchers may consider including covariates as 
random slopes of the CRI that they find the most appropri-
ate. For example, scaled trial number may affect any 
experimental condition; in our examples, “1 + Trial_ 
Number | Participants:Fact1:Fact2” if the number of the 
trials restarts each level of Factor 1 and Factor 2 or “1 + 
Trial_Number | Participant” if the number of the trials 
does not restart along the experiment. Obviously, it is not 
possible to use a continuous covariate as random inter-
cept or grouping variable. The model should then be 
checked for singularity (Step 2) and convergence (Step 3).

Step 2: model singularity.  The model can now be run 
to test for singularity. In case the model is not singular, no 
action is required, and you can move to Step 3. Otherwise, 
CRIs with the lowest variance can be removed. We suggest 
removing one CRI at a time. This step is executed itera-
tively until a nonsingular model is fitted (for further details, 
see the Recommendations section).

Step 3: model convergence.  At this stage, you should 
check model convergence. If the model converges, no 
action is required, and you can move to Step 4. If it does 
not converge, an appropriate optimization algorithm 
should be added to the model specification (for a list  
of other remedies for convergence issues, see Brauer &  

Curtin, 2018), and the optimized model should be checked 
again for singularity (i.e., go back to Step 2). If conver-
gence is not reached after the optimization procedures, a 
simplification of the random structure of the model may 
be required as outlined in Step 2, and the reduced model 
should be checked again for singularity (i.e., go back to 
Step 2).

Step 4: checking the final model.  At this stage, with a 
nonsingular and convergent model, you need to check the 
distribution of the residuals of the random effects and of 
the final model. If residuals appear normally distributed, 
no action is required, and you can move to Step 5. If 
residuals are not normally distributed, scholars can trans-
form their data and start the pipeline again (i.e., go back 
to Step 1) or achieve a normal distribution of the residuals 
by removing influential cases before moving to Step 5.

Step 5: computing ANOVA tables for LMMs.  Now that 
you have the final model, you can compute the F and  
p values using the Kenward-Roger degrees-of-freedom 
approximation (especially for small sample sizes). Assum-
ing that you had to simplify the model and given that 
simplifications may increase Type I error, if an effect is 
found to be significant but its CRI is not specified in the 
random structure, the scholar discussing such result 
should support the analyses by fitting a new LMM with 
the observed significant effect as CRI in the random struc-
ture. In the rare event the new LMM presents some singu-
larity or convergence issues, we advise scholars to report 
both analyses and discuss discordant results. This should 
control for the risk of pseudoreplication because CRIs of 
main effects do not correct for Type I error inflation of 
interactions (see Models s3 and i2, in which only main 
effects were part of the random structure and had higher 
Type I error than Models s1, i1, and i3 models in Simula-
tion Study 1).

Step 6: final model fit and post hoc analyses.  After 
computing p values, you should compute the marginal 
and conditional coefficients of determination (R2) of the 
final model ( Johnson, 2014; Nakagawa et  al., 2017;  
Nakagawa & Schielzeth, 2013). Marginal and conditional 
R2 values range between 0 and 1 and represent a measure 
of the proportion of variance accounted by the final 
model. Whereas the marginal R2 values are associated 
with fixed effects, the conditional R2 is associated with 
fixed and random effects. R2 values can be computed via 
the MuMIn (Barton, 2020) or the performance (Lüdecke 
et al., 2020) packages, among others. Having a model rep-
resenting the data, without exceeding in overfitting, is 
always important, and it becomes critical if the researcher 
plans to compute post hoc analysis on the model’s esti-
mated marginal means. In other words, if the goodness of 
fitness is poor, then the mathematical model fitted by the 
LMM cannot be a good representation of the actual data. 

https://osf.io/zbkdv/


14	 Scandola, Tidoni

Support Estimated Marginal
Means with Pairwise Comparisons

on Aggregated Data.

Optimization
Algorithms

OR
Model

Simplification

STEP 1:
Definition of the Full-CRIs Model
With Fixed and Random Effects

STEP 2:
Is the Model

Singular?
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Distributed?
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Are Significant
Effects Missing
in the Random

Structure?

STEP 6:
Compute Model Variance.

Is Conditional
R 2 < 0.6?

Compute Estimated
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Fig. 1.  The procedure to use linear mixed models and complex random intercepts. Process and decision boxes are 
for explanatory purposes. See the main text for full details on how to implement model reduction.
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This might cause misleading results in the post hoc analy-
sis based on estimated marginal means. Therefore, having 
a conditional R2 greater than .6 (Faraway, 2002) might 
indicate a model representative of the dependent variable 
without overfitting and be viable for post hoc analyses on 
estimated model effects. If the conditional R2 is low (e.g., 
< .6; Faraway, 2002), we advise the scholar to support fur-
ther the results by performing pairwise comparisons on 
aggregated data and not to rely exclusively on estimated-
marginal-means techniques. In both cases, multiple com-
parisons should be adequately corrected to reduce the 
risk of Type I error inflation because of multiple compari-
sons. Note that although we propose a range of R2 values 
to assess model goodness, this range needs to be taken 
with caution. The same R2 value can be interpreted as 
adequate or inadequate depending on the nature of the 
experiment, the variability of the dependent variable, and 
the purposes of the analysis. For example, if the depen-
dent variable is very noisy and the number of observa-
tions is high, a low R2 might be considered adequate.

Simulation Study 4: Testing the 
Proposed Pipeline

To test the efficacy of our proposed pipeline, we simu-
lated data of a 3 × 3 RM design with 30 participants, a 
homogeneous residual standard deviation of the fixed 
and random effects (SDs = 60 and 7, respectively), and 
lowly correlated random effects (r = .2). This was neces-
sary to increase the number of singularity or conver-
gency issues for full CRI models (for further details about 
model specification, see the Supplemental Material). 
Each simulated data set was analyzed with a full CRI 
model, a minimal model with participant-only random 
intercept, and the reduced full CRI model following Step 
2 and Step 3 of the proposed pipeline.

Table 6 shows that our setting created singularity 
issues (> 15%) in the full CRI model, although in both 
the minimal and the reduced CRI models, there were no 

convergence or singularity issues. Crucially, although the 
minimal model showed extremely large Type I error, the 
reduced and the full CRI models did not show Type I 
error inflation for main effects or the interaction.

Simulation Study 5: Simulations From 
Matuschek et al. (2017) Scripts

To ensure that the low Type I error observed above was 
not a specific case of our simulated data sets, we used 
the scripts from Matuschek et al. (2017) and specified a 
two-level categorical fixed effect C with S and I as par-
ticipants and items grouping factors, respectively (50 
participants, 20 items). Further details concerning the 
simulations are available in Matuschek et al.

We simulated 2,000 data sets with the beta for the 
null-hypothesis and the alternative-hypothesis popula-
tions identical to the original article (ynull

 with β = [2,000, 
0], yalt
 with β = [2,000, 25]). For each simulation, we fitted 

all five models as detailed in the original article, a full 
CRI model, and a model obtained from automatically 
reducing the full CRI model following our pipeline (see 
Table 7).

Results in Table 7 show that full-slope, full-slope with 
uncorrelated random effects, and full CRI models had 
the highest number of singularities and the lowest Type 
I error. In this case, the minimal models showed a good 
Type I error and power, as already shown in Matuschek 
et al. (2017). This is probably caused by the fact that the 
simulated experimental design is relatively simple (only 
one independent variable with two levels: a situation 
that barely occurs in experimental psychology and neu-
roscience) and that this minimal model also contains the 
intercept for each stimulus, an aspect that might limit 
the pseudoreplication effect by explaining more vari-
ability of the data.

Note that the reduced CRI model performed very well 
and had Type I error and power comparable with the 
other models and lower converge and singularity issues.

Table 6.  Type I Error, Power, and Statistics for Each Model in Simulation Study 4

Model Effect Type I error Power Singularity Convergence Issues

Full CRI
y ≈ Fact1 × Fact2 + (1|ID) + (1|ID:Fact1) + 

(1|ID:Fact2) + (1|ID:Fact1:Fact2)

Fact1   5.10%  
Fact2   5.78% 16.98% 0.18%
Fact1: Fact2   3.55% 82.15%  

Reduced CRI
y ≈ Fact1 × Fact2 + variable random structure

Fact1   5.10%  
Fact2   5.78%   0.00% 0.00%
Fact1: Fact2   3.65% 82.15%  

Minimal model
y ≈ Fact1 × Fact2 + (1|ID)

Fact1 21.95%  
Fact2 22.25%   0.00% 0.00%
Fact1: Fact2   6.65% 88.85%  

Note: We report the statistics for the maximum full CRI model (Model i1), the reduced full CRI model using the proposed pipeline, and the minimal 
model (Model Ph_i6). For each model, we report the Type I error for each fixed effect, the power for the interaction, and the percentages of 
singular and nonconvergent models. Fact1 and Fact2 are the two within-subjects factors. CRI = complex random intercept.
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Table 7.  Type I Error, Power, Statistics for Each Model in Simulation Study 5

Model syntax Description Type I error Power Singularity Convergence Issues

y ≈ 1 + C + (C|S) + (C|I) Full-slopes model 2.10% 32.30% 79.93% 5.83%
y ≈ 1 + C + (C||S) + (C||I) Full-slopes model with 

uncorrelated random 
slopes

2.35% 33.30% 75.23% 5.15%

y ≈ 1 + C + (C||S) + (1|I) Uncorrelated random 
slopes for the S and only 
the random intercept 
of I

3.00% 42.10% 49.10% 4.73%

y ≈ 1 + C + (1|S) + (C||I) Uncorrelated random 
slopes for the I and only 
the random intercept 
of S

2.75% 37.10% 52.88% 2.73%

y ≈ 1 + C + (1|S) + (1|I) Only the random 
intercepts

of S and I

3.85% 47.10%   0.00% 0.13%

y ≈ 1 + C + (1|S) + (1|S:C) + 
(1|I) + (1|I:C)

Full CRI model 2.35% 33.30% 77.50% 1.48%

y ≈ 1 + C + Variable random 
structure

Reduced full CRI model 2.55% 36.45%   0.00% 0.03%

Note: In the first column, we report the fitted model description and syntax. The first five models are the models simulated in the Matuschek et al 
(2017) article. In addition, we simulated the full CRI model and the reduced full CRI model using the proposed pipeline. For each model, we report 
the Type I error for each fixed effect, the power for the interaction, and the percentages of singular and nonconvergent models. C = condition; S = 
subject; I = item; CRI = complex random intercept.

Reanalysis of Singmann and Klauer 
(2011, Experiment 2)

To further assess the reliability of CRIs, we reanalyzed 
the sk2011.2 data set available in the afex package  
(Singmann et al., 2020). The study was a mixed design 
with one between-subjects factor (instruction) and two 
within-subject factors (inference, type). Here, we ana-
lyzed the dependent variable response with LMM ANOVA 
tables (see Table 8a), and we tested models that differed 
in their random structure but not their fixed effects (the 
scripts are available in the OSF (https://osf.io/zbkdv/) 
“Reanalyses” folder). Specifically, we compared the 
results obtained by (a) the maximal model (Model s1), 
(b) the maximal model without correlations among ran-
dom effects (Model s2), (c) the model obtained from 
buildmer (using the method described for Model o1), (d) 
a full CRI model (Model i1), (e) the model reduced using 
the proposed pipeline starting from the full CRI model, 
and (f) a participants’ random-intercept-only model.

We collected convergence and singularity issues, 
degree of freedom, and p-value estimates for each 
model. Models were fitted using afex (Version 1.1-1; 
Singmann et al., 2020), lme4 (Version 1.1-29; Bates et al., 
2015), and buildmer (Version 2.4; Voeten, 2022). The p 
values were computed using Kenward-Roger degrees of 
freedom with the R package car (Version 3.0-13; Fox & 

Weisberg, 2019). All these analyses were carried out in 
R (Version 4.1.2; R Core Team, 2018).

All models produced similar results with few exceptions 
(see Table 8a). In particular, p values of the double 
instruction:type interaction was significant for the model 
without correlations and the model obtained from  
buildmer. Moreover, the triple interaction instruction: 
inference:type was significant in all models. Thus, we 
explored whether multiple comparisons of this interac-
tion were affected by different random structures (see 
Table 8b). Results indicate that the model with the par-
ticipants’ intercept only was the most anticonservative 
with 42 out of 66 Bonferroni-corrected paired compari-
sons showing a p value lower than .05, followed by the 
model obtained by buildmer. Note that the reduced 
model following our suggested pipeline had no conver-
gence and singularity issues, and both ANOVAs and  
Bonferroni-corrected paired comparisons were highly 
similar to the full random-slopes model. Overall, these 
reanalyses support the importance of including significant 
effects as CRIs or random slopes and indirectly confirm 
the findings from the simulation studies.

Discussion

In a series of studies, we tested the reliability of different 
methods used to reduce overfitted LMMs in fully crossed 

https://osf.io/zbkdv/
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experimental designs. We showed that removing correla-
tions or random slopes to achieve nonsingular and con-
vergent models may dramatically inflate Type I errors. 
We also introduced a new method for model reduction 
using CRI and tested its reliability for hypothesis testing 
using simulated and real data. Finally, we proposed and 
tested a pipeline to reduce arbitrary decisions when 
reducing an overparametrized model and to achieve 
nonsingular and convergent models without inflating 
Type I errors.

To the best of our knowledge, our work for the first 
to show that using CRIs can play an important role in 
reducing pseudoreplication and obtaining models with 
few convergence problems. Moreover, it also demon-
strates the importance of adding CRIs of significant 
effects. Our pipeline can be successfully applied follow-
ing six steps and a few simple criteria to obtain conser-
vative reduced LMMs (see Fig. 1 and A Step-by-Step 
Procedure for Efficient and Reliable Random-Effects 
Structures). We combined into a single procedure many 
suggestions (e.g., use of maximal model, the possibility 
of simplifying overparametrized models by removing 
random slope or correlations) put forward by different 
scholars (Barr, 2013; Barr et al., 2013; Bates et al., 2018; 
Brauer & Curtin, 2018; Singmann & Kellen, 2020) and 
extended them by using CRIs.

Note that although we mainly based our results on 
simulated data for statistical inference, pseudoreplica-
tion problems might inflate Type I error also in other 
statistics influenced by degrees of freedom, such as the 
Akaike information criterion, or even in statistical pro-
cedures that can be independent from degrees of free-
dom, such as bootstrap techniques. The procedure set 
out in this article does not have the ambition to be 
perfect in terms of Type I error and power but, rather, 
to be a pragmatic approach with a clear and concise 
step-by-step procedure that can be used by any scholar 
who wants to use a method validated by simulations 
with clear recommendations.

Recommendations for model reduction

Scholars usually reduce maximal models to increase the 
power of LMMs. It is known—and shown also by our 
simulations—that removing random effects from the 
random-effects structure can dramatically increase Type 
I error. Henceforth, scholars who have access to adequate 
computational resources are recommended to start from 
a maximal model. In case limited computational resources 
do not allow computing the model, the p values, or mul-
tiple comparisons or unforeseen system errors preclude 
statical analyses, our pipeline provides the possibility to 
start from full CRI models. Using CRIs to avoid Type I 
error inflation also extends other approaches when these 
may fail to solve singularity and convergence issues 

(Brauer & Curtin, 2018; Singmann & Kellen, 2020). This 
may be crucial if the scholar cannot compute the maximal 
model in the first instance, precluding the possibility to 
assess which random effects have the lowest variance or 
whether the model has any singularity/convergence 
issue. Moreover, our pipeline suggests few clear steps 
(i.e., starting from a full CRI model and removing CRIs 
with the lowest variance one at a time) to avoid anticon-
servative results (e.g., by supporting main findings by 
also analyzing aggregated data).

Practical implications for statistical 
inference

In terms of Type I errors and power, the full-random-
slopes models (Model s1) have the best performance. 
However, full CRI models (Model i1) may be a valid 
alternative to (non)correlated full random-slopes mod-
els. That is, scholars may start directly with a full CRI 
model when there is limited computing power or a small 
number of data points or when singularity or conver-
gence issues arise. Conversely, the resulting models from 
automatic packages, such as buildmer, have the advan-
tage to always avoid convergence and singularity issues, 
but unfortunately, they tend to show higher Type I error.

In this article, we presented a practical step-by-step 
procedure to simplify the random-effects structure of an 
LMM while controlling for pseudoreplication. Our 
approach differs from other approaches because we pro-
vide a single criterion to remove random effects (i.e., 
the CRI with the lowest variance), reducing the risk of 
arbitrary decisions (e.g., removing the highest-order 
effect or keeping it) and spurious results.

We tested our pipeline in three different ways: two 
based on data simulations and one using real data. In all 
cases, the reduced model never inflated Type I error. We 
also checked the models’ performance in post hoc analy-
ses based on estimated marginal means by using the 
emmeans package, one of the most used among research-
ers. We showed that models with a highly reduced  
random-effects structure will likely increase Type I errors 
even after applying conservative corrections. Conversely, 
post hoc tests computed on the estimates of the simpli-
fied models following the suggested pipeline did not 
inflate Type I error and were more conservative.

However, based on our simulations, any model reduc-
tion of the random-slopes structure may increase the 
Type I error compared with a full-slopes maximal model. 
Thus, scholars should carefully discuss a fixed effect 
with a significant p value obtained from a reduced model 
and may also try to validate their findings by analyzing 
the data in other supportive way (e.g., adding effect sizes 
and/or confidence intervals). Moreover, note that post 
hoc testing on the estimated effects of a model with a 
poor conditional R2 may lead to greater Type I errors 
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and biased results. In these cases, it is recommended to 
compute post hoc testing with pairwise t tests, or pair-
wise regressions when necessary, on aggregated data 
and apply family-wise error corrections.

Simulation differences between this 
work and other studies

Our simulations adopted a frequentist approach and lead 
to more Type I errors and singularity and convergence 
issues than the reader can find in other articles based 
on data simulations. This is because the seminal and 
traditional simulative approach to validate statistical pro-
cedures is to simulate data that perfectly follow all model 
assumptions and to simulate simple experimental designs 
to have clearer insights concerning the validity of the 
proposed approach.

Notwithstanding these methodologies are of the 
utmost importance and a validation has to use one of 
such approaches (in this work, we used the simulation 
scripts from the seminal work of Matuschek et al., 2017), 
sometimes simulated data are different from the data 
obtained in real experiments. Moreover, at least from 
our and other colleagues’ experience, (un)correlated full 
random-slopes models often lead to nonconvergence or 
singularity issues, and traditional model-reduction meth-
ods lead to pseudoreplication issues.

For all these reasons, we lowered the number of simu-
lated participants under the recommended level (note 
that we also simulated data with 50 and 30 participants 
in Simulation Studies 2 and 4, respectively), and we used 
two categorical independent variables with three levels 
each. We believe this approach allowed us to simulate 
more closely a psychology or neuroscience experimental 
design and allowed us to stress the difficulties in obtain-
ing models with no singularities and convergence issues.

Conclusions

In this article, we proposed transforming random slopes 
into CRIs to control for Type I error inflation following 
model reduction. We also proposed a new and concise 
iterative decision process to determine the random-
effects structure starting from a full CRI LMM. We dem-
onstrated that our approach successfully reduces the risk 
of Type I error inflation by providing a few criteria to 
interpret results from reduced models. We believe this 
step-by-step approach can be easily implemented also 
by scholars and reviewers who are new to LMMs. More-
over, scholars who have not enough computational 
power or enough observations to start with a full  
random-slopes model can directly start with a full CRI 
model. Our step-by-step approach, together with other 
seminal approaches (Barr et al., 2013; Matuschek et al., 

2017), may positively contribute to reduce study replica-
tion failure, and although we applied this approach to 
LMMs and behavioral data, we believe our pipeline may 
also be applied to generalized LMMs and neural data.
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3. For sake of conciseness, we refer to categorical independent 
variables with the term “factor” and to continuous independent 
variables with the term “covariate.”
4. For example, we note that the variances provided by the 
rePCA function in lme4 (Version 1.1-30) are not labeled, and 
they are presented in the order of the variance explained (i.e., 
the variances are not in the order specified in the model). This 
might lead a (less experienced) scholar to remove the wrong 
effects from the random structure.
5. Scholars may try to reach convergence of maximal linear 
mixed-effect models by changing the statistical framework from 
the frequentist to the Bayesian approach based on Monte Carlo 
Markov chains (MCMCs; Brown, 2021; Meteyard & Davies, 2020). 
However, a complete change of statistical and philosophical 
framework requires substantial new knowledge to check the 
assumptions of Bayesian statistical models that may not be famil-
iar to all scholars using a frequentist approach (e.g., the conver-
gence among all the chains of the MCMC, the autocorrelation 
within chains, the posterior predictive checks among the most 
notorious).
6. https://cran.r-project.org/web/packages/afex/vignettes/afex_
mixed_example.html#results-of-maximal-and-final-model.
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