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Abstract—Active sensing plays an essential role in searching
and tracking a target without initial target state information. This
paper studies the active sensing approach for sensor management
problems using multiple unmanned aerial vehicles based on the
received signal strength measurements of the target. A Bayesian
optimisation-based approach is proposed which adopts the Gaus-
sian process method to model the received signal strength in an
area over time and then the expected improvement acquisition
function is leveraged to decide where to take new measurements
considering the uncertainty of the Gaussian process. A unique
contribution of this paper consists of the designed spatial-
temporal composite kernel function that accounts for the time-
varying nature of the signal strength. Numerical results obtained
from different measurement noise levels and varying initial
Bayesian optimisation settings demonstrate that the proposed
approach can efficiently schedule multiple unmanned aerial
vehicles to locate the target within a minimum number of
initial data. Particularly, it achieves at most 57% lower tracking
error and 46% lower lost-track probability as compared to the
benchmark approach.

Index Terms—Bayesian optimisation, target tracking, sensor
management, Gaussian process, unmanned aerial vehicles, active
sensing

I. INTRODUCTION

Target tracking is a fundamental task for various appli-

cations including sea surveillance, autonomous vehicles, and

traffic monitoring. Both model-based and data-driven ap-

proaches have been proposed to solve related problems such

as data association, sensor management, and group/extended

tracking. Nevertheless, many of these works rely on infor-

mative prior beliefs of the target location, which may not be

available, for instance, the target could be lost track or perform

tracking in an active sensing [1], [2] scenario.

The main challenge of the above problem is how to ef-

ficiently locate the target for tracking. Track-before-detect

is a well-known technology that can help to extract point

measurements of the target from a large number of sensor

measurements. It can improve track accuracy and allow the

tracker to follow targets with a low signal-to-noise ratio [3],

[4]. However, this type of technology normally requires high

computational and memory costs to deal with large volumes of

data. In addition, it is a model-based approach and needs the

target state-space model to perform the target state estimation.

There are previous works using Bayesian optimisation (BO)

to solve the searching and localisation problems. As a machine

learning-based optimisation method, BO builds a surrogate

model for the objective function with prediction uncertainty

quantification using Gaussian process (GP) regression and

iteratively locates the global optimum based on an acquisition

function (AF) defined on the surrogate. BO has been applied

to various searching and localisation problems, including lo-

cating WiFi devices [5], environmental monitoring [6], and

contaminant source identification [7]. In [5], GP was used to

model the received signal strength (RSS) of a smartphone in a

certain area as a map. Applying BO, the position of the highest

RSS was located within just a few minutes using an unmanned

aerial vehicle (UAV). In [6], a BO approach is applied to

generate the actions of a moving robot to measure the ozone

concentration to substitute a large number of sensor nodes for

monitoring. In [7], BO solved the problem of searching for

the contaminant source, by modelling the concentration of the

contaminant in a certain area using GP. However, most existing

works focused on searching for static targets, which means

they modelled the observations from stationary functions using

GP without considering the dynamics of the functions.

BO can also be used to solve dynamic and non-stationary

optimisation problems. In [8], a warping function was intro-

duced to convert a stationary kernel into a non-stationary one.

Then the data will follow a stationary process in the transferred

space. There was also work [9] studying to partition the data

space into sub-spaces and modelled each region as a separate

stationary process. Furthermore, [10] proposed a combination

of local and global GPs to account for the non-stationary

process and solve the non-stationary optimisation problems.

Although these works have been demonstrated to succeed in

various applications, they did not explicitly consider the time

dependencies of the observations. In [11], a spatial-temporal

kernel was designed to model the function over time, thereby

solving the dynamic optimisation problem with BO.

A. Main Contributions

This paper proposes a BO-guided active sensing approach to

manage sensors to search and track a moving target. Different

from our previous work [12] where we track in a distributed

way, this work focuses on tracking in an active manner without

prior position information. The proposed approach is based on

RSS measurements which is a popular type of data for tracking

[13]. In particular, GP has been applied to learn the RSS map



of the target in an area of interest area [5], [14], [15]. The

main contribution consists of the developed spatial-temporal

composite kernel functions to account for the time-varying

and non-stationary nature of the RSS map. Moreover, it can

schedule multiple UAVs to accelerate the searching process

and maintain robustness in high-noise scenarios. The proposed

approach can also be applied to determine sensor activation

over time in sensor management problems [16], to save power

and reduce received clutter measurements.

Particularly, the algorithms proposed in this paper differs

from our previous work [17] in several aspects: 1) the previous

work focused on efficient GP factorisation approaches for

BO, while in this work, we propose a composite kernel

design to represent the target dynamics. This kernel function

characterises the local stationarity of the time-varying RSS

map in a more accurate manner. 2) a thorough validation of

the proposed approaches is performed over a range of case

studies with varying numbers of sensors and different levels

of sensor measurement noise.

The rest of the paper is organised as follows. Section II

introduces the problem formulations and the fundamentals of

BO. Section III describes the proposed BO-guided searching

and tracking approach. The simulation results are presented in

Section IV, followed by the conclusions in Section V.

II. PROBLEM FORMULATION

We first model the RSS of a moving target as a black-box

function of the coordinates of the measuring location and the

time. Define the location of measuring the RSS in time t as

xt ∈ X ⊂ R
2, where X is the area of interest. Denote y as the

measurement, a black-box dynamic function can be written as

y = f(xt, t) + ϵ, (1)

where ϵ is the measurement noise. The noise follows a zero-

mean Gaussian distribution with variance σ2.

Given the fact that the expected value of an RSS mea-

surement increases as the distance between the target and the

receiver decreases, the location corresponding to the highest

expected value of the RSS measurements is treated as the

target location. Therefore, the problem of searching and track-

ing a target over time becomes finding the maximum of the

black-box dynamic function, which is a dynamic optimisation

problem [18]. This optimisation problem can be formulated as

(PPP) max f(xt, t), (2)

s.t. xt ∈ X , t ∈ T , (3)

where X and T are the spatial and temporal search spaces,

respectively.

In the following sections, we leverage the GP to model this

black-box function. Then, AF is used to determine where to

place the UAVs to measure the signal strengths of the target

in a sequential way to optimise the objective function online.

A. Gaussian Process Regression

Since the unknown function f(xt, t) is a black-box function

with no analytical form available, GP is used as a surrogate

model of the function for the following reasons: 1) GP can

quantify the uncertainty of the learned knowledge of RSS

values in a principled way, which provides useful informa-

tion to balance the exploration-exploitation (EE) tradeoff for

solving the maximisation problem (see more details in the

next section). 2) GP works well with a small volume of data

and is especially useful in the early stage of the searching

process where only a limited number of RSS measurements

is available to build the surrogate. The GP that is placed as

a prior distribution of the unknown function f(xt, t) can be

written as

f(xt, t) ∼ GP (m(xt, t), k((xt, t), (x
′
t, t

′))) , (4)

where (xt, t) and (x′
t, t

′) are either the training or the testing

input data. m(xt, t) and k((xt, t), (x
′
t, t

′)) denote the mean

and the covariance functions of GP, respectively.

Suppose that by the time t, nt RSS measurements have

been received with time stamps t1, t2, · · · , tnt
. Define xti as

the location associated with the measurement at time stamp ti,
where ti ≤ t. In addition, define yti as the RSS measurement

at ti. Therefore, at any time t, we can have a set of 3-tuple

that can be denoted as Dt = {xti , ti, yti}
nt

i=1
.

Given Dt, define Kt as a covariance matrix with the (i, j)th

entry as k((xti , ti), (xtj , tj)). In addition, define k∗ as a

vector with the jth entry as k((xtj , tj), (xt∗ , t∗)). Denote

the set of measurements received until time t by yt =
[yt1 , yt2 , · · · , ytnt

]⊺. The GP regression equations at a new

input (x∗, t∗) can be written as

µ∗ = m(x∗, t∗) + k⊺

∗(Kt + σ2I)−1(yt −m(x∗, t∗)), (5)

σ2
∗ = k((x∗, t∗), (x∗, t∗))− k⊺

∗(Kt + σ2I)−1k∗, (6)

where µ∗ and σ2
∗ denote the posterior predictive mean and

variance of the unknown function at (x∗, t∗), respectively.

The hyperparameters of GP need to be learned from the

data. As a standard GP, maximum likelihood estimation is

applied to learn the hyperparameters by maximising the log

marginal likelihood which can be written as

log p(yt|Dt, θθθ) = −1/2y⊺

t (Kt + σ2I)−1yt

− 1/2 log|Kt + σ2I| − nt/2 log 2π, (7)

where θθθ represents the set of hyperparameters.

B. Acquisition Function

After building a surrogate model of the unknown function,

the challenge is how to sequentially select measuring points to

evaluate the unknown function (collect RSS measurements),

thereby finding the maximum RSS value and locating the

moving target efficiently (e.g. with a minimum number of

measurements). There exists an EE dilemma in this decision-

making process: If keeping exploring the unknown function

to gain knowledge, some low RSS measurements will be

collected, resulting in low searching efficiency. However, only



Fig. 1. UAV-assisted target searching and tracking

exploiting the learned knowledge could miss the opportunity

to receive higher RSS from under-explored areas. Therefore,

in this section, we optimise an AF [19] to determine the

measuring points. The AF is a function of the learned RSS map

and its uncertainty from the surrogate. It provides a principled

way to balance the EE and guide the optimisation process.

1) Expected improvement: The choice of AF represents

different strategies for choosing the next measuring point.

Here we apply the widely used expected improvement (EI)

function [20]. Define an incumbent measurement τnt
=

maxi∈{1,2,··· ,nt} yti . The aim is to find the next measuring

point which gives the highest EI of RSS as compared to the

incumbent measurement. The EI function can be written as

αEI(xt, t) := E[[f(xt, t)− τnt
]+],

=σ(xt, t)ϕ

(

∆(xt, t)

σ(xt, t)

)

+∆(xt, t)Φ

(

∆(xt, t)

σ(xt, t)

)

, (8)

where ∆(xt, t) = µ(xt, t) − τnt
, is the expected difference

between the predictive RSS at a point and the incumbent

target. Here ϕ(·) and Φ(·) denote the probability density

and cumulative density functions, respectively. E(·) represents

the mathematical expectation operation. In (8), the predictive

standard deviation affects the value of the first term and the

predictive mean affects the second term. By maximizing the

EI function, the EE tradeoff can be well-balanced.

III. BO-GUIDED TARGET TRACKING USING UAVS

To search and track a moving target as presented in Fig (1),

we assume UAVs equipped with RSS sensors can fly over the

region of interest and measure the RSS from the target. Since

we intend to search for a moving target and only highly limited

data can be collected over time, how to build the surrogate

model (GP) to accurately reflect the learned knowledge of the

dynamic function f(xt, t) becomes a crucial challenge. In this

section, the kernel design of GP is discussed.

A. Kernel Function Design

Inspired by [11], a spatial-temporal kernel function is de-

signed to capture both the spatial the temporal correlations in

the unknown time-varying function. This kernel function can

be written as

k((xt, t), (x
′
t, t

′)) = kS(xt,x
′
t) · kT(t, t

′), (9)

Fig. 2. RSS map at a certain time

where kS(·, ·) represents the spatial kernel, used for capturing

the one-time RSS map. kT(·, ·) represents the temporal kernel

which reflects the correlation of the RSS maps over time.

Particularly, considering a large area of interest, at one

time stamp, the RSS map of the target can be almost flat

in most regions that are far from the true location of the

target. Therefore, the RSS may only become high and vary

a lot in a relatively small region, which is more informative

in order to maximise the unknown function. In Fig 2, an

RSS map of a 400 meters × 400 meters area is presented,

with the highest strength located at (80,250). This map is

generated using the log distance path loss model, the details

of this model will be given in Section IV-A. This figure shows

that based on the path loss model, the RSS in a certain area

is a local stationary process [10] even without considering

time correlation. Therefore, a single stationary kernel will not

capture the behaviour of this process.

In this paper, we design a composite kernel as the spatial

kernel to characterise the local stationarity of the RSS map.

The spatial kernel is defined as a sum of a constant kernel

kS,Con, a squared exponential (SE) kernel kS,SE, and an expo-

nential kernel kS,Exp. The constant kernel is added considering

the fact that the RSS values in a certain area are all above a

certain number. The SE kernel represents the smooth changes

of RSS in most of the area (the blue area in Fig 2). To account

for the rapid RSS changes around the informative area (the red

area in Fig 2), we also added an exponential kernel. For the

temporal kernel, we choose to use Matérn kernel kT,Mat since it

includes a large class of kernels and is proven to be very useful

for matching physical processes more realistically because of

this flexibility.

The kernel function (9) can be rewritten as

k((xt, t), (x
′
t, t

′)) = (kS,Con(xt,x
′
t)

+ kS,SE(xt,x
′
t) + kS,Exp(xt,x

′
t)) · kT,Mat(t, t

′), (10)

kS,Con(xt,x
′
t) = Φ, (11)

kS,SE(xt,x
′
t) = σ2

m exp
(

−∥xt − x′
t∥2/l2

)

, (12)

kS,Exp(xt,x
′
t) = σ2

m exp (−∥xt − x′
t∥/l) , (13)



kT,Mat(t, t
′) = σ2

m

21−v

Γ(v)
(

√
2v∥t− t′∥

l
)vKv(

√
2v∥t− t′∥

l
),

(14)

where σ2
m and l are the amplitude and length scale parameters,

respectively. Φ represents a constant. kv(·) is a modified Bessel

function and Γ(·) is a Gamma function. Moreover, v is a

smoothness parameter of Matérn kernel. Different functions

belonging to the Matérn kernel can be built with varying v.

Algorithm 1 BO-guided active sensing

Require: Prior surrogate model GP0, initial data D0, UAV

number K
1: while ti ≤ T do

2: Receive the K RSS measurements

3: Set the time stamp ti = max{t1i , t2i , · · · , tKi }
4: Augment data Di ← Di−1 ∪

{

xk
ti
, tki , y

k
ti

}K

k=1

5: Update GPi by maximising (7)

6: Set the start time stamp ts ← ti + ψ
7: Update search bound of time scale as t = [ts, ts + γ]
8: Determine {xk

ti+1
}Kk=1

and {tki+1}Kk=1
by sequentially

maximising AF as follows:

{xk
ti+1

, tki+1} = argmax
xt∈X ,t∈t

αk(xt, t)

9: Send the UAVs to measure the RSSs at {xk
ti+1

, ti+1}Kk=1

10: i← i+ 1
11: end while

B. Multi-Agent BO

In practice, using more than one UAV to measure the signal

strength can collect more data for GP update and capture

the temporal correlation more efficiently. Selecting multiple

measuring points belongs to the parallel BO problem [19]. One

straightforward solution is to consider a multi-point EI (q-EI)

scheme. Despite this, there is no closed form of the q-EI when

q > 2, and searching for the globally optimal vector of points

can be computationally intensive. Therefore, we consider an

approximated q-EI that uses a sequential standard EI as a

replacement [21]. This scheme chooses the measuring point

sequentially following (8), assuming that the RSS value of

the previous point has already been observed, which equals a

constant (usually the predictive mean of the unknown dynamic

function f(·) is used). Based on the approximated q-EI, the

complexity of solving the EI function only grows linearly in

terms of the number of agents (UAVs).

C. Algorithm Overview

As discussed in previous sections, BO-guided tracking em-

ploys a GP prior GP0 as the surrogate model of the unknown

dynamic function, along with an initial set of data D0. The

initial data can be randomly sampled from the search space

representing an area of interest of the target location x and

a period of time t. Subsequently, the GP is used to construct

the AF, guiding the searching for the target location associated

with the maximum RSS over time.

TABLE I
TRACKING ERROR (METER) AND PROBABILITY OF LOST TRACK

Initial Number
Spatial kernel σ = 1.0 dB σ = 5.0 dB

data of UAVs

10

1
Con+SE 101.03(36/100) 139.57(55/100)
Con+SE+Exp 43.28 (5/100) 86.34(22/100)

2
Con+SE 27.67(1/100) 59.16(13/100)
Con+SE+Exp 24.60(0/100) 37.20(5/100)

3
Con+SE 25.67(0/100) 32.99(2/100)
Con+SE+Exp 18.21(0/100) 24.87(1/100)

30

1
Con+SE 57.58(15/100) 130.91(59/100)
Con+SE+Exp 32.53(1/100) 68.22(13/100)

2
Con+SE 29.30(2/100) 41.57(4/100)
Con+SE+Exp 25.02(2/100) 28.56(0/100)

3
Con+SE 24.13(1/100) 32.65(3/100)
Con+SE+Exp 17.32(0/100) 20.82(0/100)

In addition, at any time ti, define the spatial search space

as the whole area of interest and the temporal search space

as t = [ts, ts + γ], where ts = ti + ψ. The parameters γ and

ψ can be adjusted to constrain the temporal search space by

controlling how far the algorithm can look forward in the time

domain to decide when to take measurements. This will help

to alleviate the myopic issue of the EI function.

The proposed algorithm works in an iterative process, the

UAVs are scheduled to collect measurements and send the

measurements to an edge node which then updates GP and

determines new points for UAVs to measure. The proposed

algorithm will terminate after a pre-defined time period T . The

detailed process is described in Algorithm 1. We introduce a

superscript k ∈ 1, 2, · · ·K to represent different UAVs, where

K is the number of UAVs.

IV. NUMERICAL RESULTS

A. Observation Model

A commonly used radio propagation model for the wireless

channel is the log distance path loss model [22]. This model

considers the path loss that a signal encounters inside a build-

ing or densely populated areas over a distance. In addition, it

also takes attenuation caused by flat fading into account. In

all simulations, the log distance path loss model is used to

generate RSS measurements of the moving target. The RSS

of a target received by a UAV can be written as

yti = y0,ti − η log10(dti) + ϵ, (15)

where dti represents the distance between the target and the

UAV at ti. y0,ti is a constant characterising the transmission

power of the UAV at ti with the unit of dBm; η is a slope

index; ϵ is the logarithm of the shadowing component, which

is assumed to be a zero mean Gaussian noise. The proposed

algorithm is validated by setting the standard deviation of the

Gaussian noise as 1 and 5 dB in the RSS measurements.

B. Simulation Settings

The performance of the proposed approach is tested in a 400

meters × 400 meters area. The target trajectory is generated

based on the constant velocity model with the initial target



(a) nt = 0

(b) nt = 30

(c) nt = 60

(d) nt = 110

Fig. 3. Ground truth RSS map, learned RSS surrogate, value of AF, and uncertainty estimation of surrogate based on increasing number of collected RSS
measurements. Each row represents a different number of received RSS measurements nt in the process. The red region represents higher RSS values in the
first and second figure of each subfigure. The red region also represent the high AF values and high predictive confidence in the third and fourth subfigures,
respectively.



(a) σ = 1 dB (b) σ = 5 dB

(c) σ = 1 dB (d) σ = 5 dB

Fig. 4. Target location prediction error versus time, |D0| = 30. The performance of the benchmark scheme is presented in (a) and (b) using spatial kernel
kS = kS,Con + kS,SE. The performance of the proposed algorithm is presented in (c) and (d) using the designed kernel function in (10)

state vector [50m, 1m/s, 50m, 1m/s]. The proposed algorithm

is compared with a benchmark algorithm presented in [11],

which uses BO to solve dynamic optimisation problems. We

set ψ = 1, γ = 2 to construct the temporal search space.

C. Tracking Process Visualisation

The searching and tracking process of the proposed algo-

rithm using a single UAV with 10 initial data is visualised in

Fig 3. Each row of the figures, from left to right, presents the

true RSS map of the experimental region, the predictive mean

RSS of the posterior GP, the value of the acquisition function,

and the predicted uncertainty of the GP surrogate, at different

times. The point with the maximum AF value is the location

to which the UAV is dispatched for measurement collection.

Fig 3 (a) presents the results at the very early stage of the

searching and tracking process. The predicted target location

is notably distant from the true target location due to the

limited knowledge learned at this point. In the third subfigure

of (a), it is evident that the UAV is scheduled to a location far

from the predicted target location, indicating that our scheme

is actively searching for the target to reduce the uncertainty

of the surrogate model and has yet to accumulate sufficient

information for accurate prediction. The low confidence can

also be observed in the last figure of Fig 3 (a), displaying

a substantial predictive uncertainty across the entire region.

From Fig 3 (b), as more measurements are collected for GP

update, the proposed algorithm becomes increasingly accurate,

and the UAV is scheduled to move around the target. This

illustrates that the algorithm successfully narrows down the

target location to a smaller region with higher confidence.

D. Tracking Error and Robustness

The prediction errors of the two approaches are presented in

Table I with varying numbers of UAVs, initial data sizes, and

measurement noise levels. The tracking error is defined as the

mean Euclidean distance between the predicted target locations

and the true locations. The results are further averaged over

100 Monte Carlo simulations. The empirical probability of

lost track is also calculated to show how many simulations

the approaches fail to track the target. We determine a case

to be lost track if the tracking accuracy remains higher than

a threshold when the simulation terminates. This probability

can serve as a metric of robustness. The table reveals that

the proposed approach can work on a very limited size of

initial data and efficiently utilize multiple UAVs for searching

and tracking. With more UAVs implemented, both the tracking

error and the empirical probability of lost track can be reduced.



E. Impact of Kernel Function Design

Table I also describes the impact of having different types

of spatial kernels in the proposed and benchmark approaches.

Overall, the proposed approach using the designed spatial

kernel outperforms the benchmark with lower error, higher

reliability and efficient resource allocation. In particular, when

only one UAV is used, having an extra exponential kernel func-

tion achieves at most 57% lower tracking error and improves

with 31% the tracking robustness in the low-noise case, as

compared to the benchmark. In the high-noise case, it helps

to achieve at most 48% lower tracking error and improves

with 46% the tracking robustness. The results demonstrate

that the designed composite kernel can better account for the

local stationarity of the RSS map. Fig 4 presents the averaged

prediction errors with varying numbers of UAVs over time.

The designed spatial kernel with three components performs

better in all the cases. As compared to the benchmark, the pro-

posed approach with the designed spatial kernel (10) achieves

noteworthy error reduction when having measurements from

two and three UAVs.

V. CONCLUSION

This paper proposes a novel active sensing approach to

manage several UAVs to search and track a moving target

using RSS measurements. To model the dynamic nature of

the latent process of the RSS generation over time, a spatial-

temporal composite kernel is designed to build a GP surrogate

model for the process. The effectiveness of the proposed

approach is evaluated based on varying measurement levels

and initial settings. The proposed approach with a combination

of kernels - constant, exponential, and SE kernels can help

BO to efficiently locate the target. Particularly, it achieves at

most 57% and 48% lower tracking error than approaches with

other kernels in low and high-noise cases, respectively. Future

research could be carried out to extend BO for multi-target

searching and tracking problems.
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