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Abstract

The role of uniaxial strain in armchair, T-graphene nanoribbons (ATGNRs) with symmetric
and asymmetric structures is investigated using a nearest-neighbour, tight-binding (TB) model.
ATGNRs with structural symmetry and two a sub-lattice structure exhibit Dirac points at zero
strain. Application of uniaxial strain to these systems induces multiple Dirac points under
compression (up to −20% strain), with the number of these points commensurate with the
number of tetra-carbon base-units along the width of the unit cell, accounting also for the
mirror symmetry of the structure. Under tensile, uniaxial strain (up to 20% extension), the
induced asymmetry in the carbon tetrabond results in the number of Dirac points being
reduced, although a minimum number are preserved due to the fundamental mirror-symmetry
of the symmetric ATGNR. Asymmetric ATGNRs, which are semiconductors, are shown to
have tunable band-gaps that decrease as a function of increasing ribbon width and uniaxial
strain. Uniaxial strain induces a single Dirac point at the band edge of these systems under
high compression (>16%), with the closing of the band gap linked to symmetry-induced
perturbations in the structure that override the symmetry-breaking, gap-opening mechanisms.
In summary, the TB model shows ATGNRs to have suitable device features for flexible
electronics applications, such as band-gap tuning, and for the strain engineering of relativistic
properties.

Keywords: tight-binding studies, strain engineering, T-graphene nanoribbons, relativistic
properties, Dirac systems
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1. Introduction

Graphene—a 2D allotrope of carbon—needs no introduction.
Its remarkable properties on the bulk length scale (e.g., high
charge-carrier mobility, strength and flexibility) have resulted
in numerous studies and an intense drive to realise applica-
tions [1]. Most notable about this system are its relativistic
properties that arise from the linear, electronic dispersion about
the Fermi energy, these being the so-called Dirac cones [2, 3].
Although bulk graphene is without a natural band gap, one can
be realised on the nanoscale, for example, in graphene nanorib-
bons (GNRs; nm-width strips of graphene) due to edge effects
and quantum confinement. In both simulation and experiment,
the band gaps of GNRs vary inversely as a function of increas-
ing ribbon width [4, 5] and are also tunable as a function of
strain [6], the latter being a property amenable to applications
in flexible electronics.

The physical realisation of graphene has stimulated the
field of 2D-materials research resulting in several new sys-
tems being proposed and fabricated, such as silicene and ger-
manene (single layers of silicon and germanium) [7, 8], and
monolayer transition-metal dichalcogenides [9]. See also ref-
erences [10, 11], as well as articles therein for detailed reviews.
Studies of the Dirac-cone features, specifically the low-energy,
linear energy dispersion, which gives rise to the desired rel-
ativistic properties of graphene and these other 2D systems,
have ensured. Such studies include experimental verification
of the relativistic features, such as the prevalence of mass-
less charge carriers with ultra-high mobilities [12], with up
to 105 cm2 V−1 s−1 charge-carrier mobility reported in sus-
pended graphene [13]. Robustness testing of the Dirac-cone
properties against structural deformation and patterning, and
mechanisms for Dirac-cone formation and tunability, the lat-
ter pertaining to k-space displacement and relativistic on/off
properties, have also been reported (e.g., [11, 14–16]).

A key feature attributed to the mechanism for Dirac-cone
formation has been the intrinsic, underlying honeycomb lat-
tice structure of these systems [11]. Thus, of particular inter-
est are 2D-carbon systems that are without honeycomb-lattice
symmetry, but have propensity to form Dirac cones. Examples
include buckled T-graphene [17], S-graphene [18] and certain
graphyne variants (e.g., reference [19]). T-graphene, a two-
dimensional tetra-symmetric carbon allotrope, is of particular
interest as it is predicted by density functional theory (DFT)
to have high stability with a cohesive energy of−9.4 eV/atom
versus −9.9 eV/atom for graphene [20]. In its buckled form,
planar T-graphene exhibits two Dirac points with associated
linear dispersion that persist for up to∼20%strain [17], similar
to strained graphene [14]. The modest out-of-plane buckling
of the T-graphene structure between two nearest-neighbour
carbon tetrarings (0.55 Å) is sufficient to induce a two sub-
lattice structure and real-space symmetry with resulting π and
π∗ crossings—these being attributed to the formation mech-
anism of the Dirac points [17]. Underlying all of these lin-
ear dispersion-forming systems are protective symmetries of
various origins [18, 21, 22].

In this paper, we investigate the electronic proper-
ties of armchair T-graphene nanoribbons (ATGNRs) under

uniaxial strain within the tight-binding (TB) formalism.
DFT studies show that ATGNRs with structural symme-
try (figure 1(a)) have resultant low-energy, linear dispersion
features (i.e., Dirac points), whereas structurally asymmet-
ric systems (figure 1(b)) have semiconductor properties via
symmetry-breaking mechanisms [17, 23]. These symmetry-
induced properties pertaining to Dirac-point formation have
been fundamentally characterised using TB [23]. In this work,
we will extend this understanding to investigate the appli-
cation of uniaxial strain within the TB formalism to deter-
mine (i) the robustness of the linear dispersion and Dirac
points against structural modifications, and (ii) any symmetry-
related mechanisms for strain-induced, Dirac-feature forma-
tion, particularly in asymmetrically-structured, semiconduc-
tor ATGNRs. The use of a minimal TB model will enable
computationally-efficient calculations at ultra-fine sampling to
investigate these features and the ability to probe underlying
mechanisms that specifically relate to the kinetics of themodel,
such as strain-induced electronic confinement and structural
symmetry changes, commensurate also with changes in the
ribbon width. In addition to these investigations, we will also
provide a comparison to the electronic properties of armchair
graphene nanoribbons (AGNRs) (figure 1(c)) and, in general,
also place this work into the broader context of study of struc-
tural and symmetry-related classes of low-dimensional Dirac
systems. Such studies may add fundamental understanding of
the role of symmetry in engineering relativistic features and
stimulate greater research into ATGNRs as tunable electronic
devices within the realm of flexible electronics.

2. Method

The ATGNRs and AGNRs are investigated using spin-
independent, TB model,

Ĥ = −
∑

i j

ti jc
†
i c j + H.c. (1)

Here, c†i (c j) is the fermion creation (destruction) operator that
creates (destroys) an electron at site i ( j) and H.c. denotes
the Hermitian conjugate. The carbon atoms in these systems
are considered to be chemically equivalent; hence, the on-site
energies are set to zero. For the ATGNRs, the parameterisa-
tion in Dai et al (2014) is used with hopping integrals t1a =
2.525 eV and t1b = 2.835 eV for the nearest-neighbour 1a and
1b bonds, respectively (figures 1(a) and (b)). The AGNRs are
modelled using the parameter set in Hancock et al (2010) [24]
with up to third nearest-neighbour hopping (t1 = 2.7 eV, t2 =
0.20 eV and t3 = 0.18 eV for first, second and third nearest-
neighbour hopping, respectively), and with edge-perturbation
to the hopping to capture hydrogen passivation (tedge = 1.06t1)
(figure 1(c)). Band structures are determined from the numer-
ical eigenenergy solutions of the Hamiltonian matrix gener-
ated from equation (1), which has been calculated along the
one-dimensional, first Brillouin zone using k-point increments
of 0.001 Å−1 in units of π/a, where a denotes the unit-cell
dimension of each system.
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Figure 1. Unit cells (boxed) for (a) symmetric and (b) asymmetric ATGNRs, showing exemplar 6-ATGNR and 7-ATGNR systems,
respectively, and for the (c) AGNR (8-AGNR). NAT and NA denote the naming conventions specific to the ribbon widths for NAT-ATGNRs
and NA-AGNRs. t1a and t1b are the nearest-neighbour hopping parameters for ATGNRs, with AGNRs having up to third nearest-neighbour
hopping (t1, t2 and t3). The fundamental, tetra-based units for the ATGNRs are highlighted in green.

Uniaxial strain is implemented via Harrison scaling of the
hopping parameters in equation (1) [25],

t′i j = ti j

( r0

r

)2
, (2)

where ti j and t′i j are the unstrained and strained hopping inte-
grals between sites i and j, and r0 and r are the unstrained and
strained bond lengths, respectively. For a given strain,

ǫ =
r − r0

r0
. (3)

In this respect, we define ǫx as the uniaxial strain in the x-
direction (along the ribbon length) and ǫy as the uniaxial strain
in the y-direction (along the ribbon width), such that

ǫy = −Pǫx. (4)

Here, P = 0.24 is the Poisson ratio derived from DFT cal-
culations on bulk T-graphene [6], which we have used as an
approximate value for the ATGNRs.

3. Results and discussion

The TB model with nearest-neighbour hopping reproduces
with good approximation, the low-energy, band structure
features of ATGNRs against published DFT results [23]
for both the symmetric (figures 2(a)–(d)) and asymmetric
(figures 2(e)–(h)) cases. The unit cell for symmetric ATGNRs
has as its base unit, a fundamental, two sub-lattice struc-
ture, and mirror symmetry (figure 1(a)) akin to buckled, pla-
nar T-graphene, which translates to Dirac points in k-space
(figures 2(a)–(d)). In asymmetric ATGNRs, the structural
symmetry of the unit cell is broken (figure 1(b)), thereby induc-
ing a gap-openingmechanism at the Fermi-level [23], which is
captured also in the TB results (figures 2(e)–(h)). For both sys-
tems, the number of nodal points across k-space increases for
increasing unit-cell size (system width) in concordance with
the number of structural base-units.

Nearest-neighbour hopping in ATGNRs is sufficient to cap-
ture the essential features of the gap versus width trends as

shown in the TB and DFT comparisons (figure 3(a)). Asym-
metric (odd) ATGNRs are semiconductors with a band gap
that varies inversely as a function of increasing ribbon width,
similar to AGNRs (cf figure 3(b)). However, structurally-
symmetric ATGNRs remain gapless due to the two sublat-
tice structure and mirror, structural symmetry. Symmetric
ATGNRs can be compared to 3p + 2 AGNRs, which are
also structurally symmetric and zero-gapped in the nearest-
neighbour TB model, but, in contrast to symmetric ATGNRs,
have a finite gap in the DFT that is reproduced by adding edge-
perturbation and third nearest-neighbour hopping to the TB
simulation [5, 26].

The TB results in figure 3 are fitted usingEgap = A e−λw + c

as the best choice of function over this fitting range. The
exponential fitting shows asymmetric ATGNRs have a rate of
decrease in gap (−λ) versuswidth (w) equivalent to theAGNR
3p and 3p+ 1 families (λ = 0.15), althoughAGNR band gaps
remain relatively higher at ∼60% mean difference compared
to ATGNRs across this range of widths. Within the TB simu-
lation, asymmetric ATGNRs approach room-temperature ther-
mal viability with band gaps >kBT = 0.03 eV at 300 K for
widths less than 30 Å, as opposed to AGNRs, which remain
thermally viable for all of the widths reported here.

Uniaxial strain (ǫx) is applied to the x-direction of the
ATGNRs (i.e., along the ribbon length) with upper and lower
values at ±0.2 commensurate with limits determined by DFT
and molecular dynamics studies of T-graphene nanosystems
(e.g., fracture strains reported between 0.17–0.24 [27–29]).
For the 2-ATGNR, the TB model shows the Dirac point and
its associated linear dispersion to be conserved up to the
extreme values of strain (ǫx = ±0.2), albeit with displacement
in k-space as a function of the induced structural perturbation
(figure 4).

Corresponding bond length modifications and Dirac point
features for the 2-ATGNR, including the linear dispersion
range obtained upon fitting versus the applied uniaxial strain
at ǫx = 0 and ±0.2, are shown in table 1. In accordance with
equations (2)–(4), a negative, compressive strain increases
hopping (decreases bond length) in the x-direction, and
decreases hopping (increases bond length) in the y-direction,
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Figure 2. Band structures centred at the Fermi energy (EF) as a function of ribbon width for the structurally-symmetric (a) 2-ATGNR,
(b) 4-ATGNR, (c) 6-ATGNR and (d) 8-ATGNR, and structurally-asymmetric (e) 3-ATGNR, (f) 5-ATGNR, (g) 7-ATGNR and (h) 9-ATGNR
systems (cf figures 1(a) and (b), respectively). The plots show favourable comparison of the TB model (this work; black lines) against the
DFT results extracted from Dai et al (figure 2, reference [23]; grey lines). Here, ‘a’ denotes the unit-cell dimension for each system.

Figure 3. Band gap versus increasing ribbon width for (a) ATGNRs calculated using the TB model with nearest-neighbour hopping (cf
figure 1(a)) versus the DFT results of Dai et al (2014) (figure 2 in reference [23]), and for (b) AGNRs calculated using an extended TB
model with up to third nearest-neighbour hopping and edge-perturbation versus the DFT results from reference [24]. Asymmetric (odd)
ATGNRs are semiconductors (i.e., have finite gaps), whereas symmetric (even) ATGNRs are gapless. All cases show good comparisons
between TB and DFT.

with the opposite being true for positive, tensile strain. The
perturbed bond lengths within the TB model at ǫx = 0.2 (i.e.,
1.398 Å, 1.498 Å and 1.762 Å) are within the approximate
range for those obtained by DFT for T-graphene, e.g., 1.65 Å
maximumbond length at an upper limit of 0.24 strain [27], and
from molecular dynamics simulations, e.g., 1.3–1.8 Å bond-
lengths obtained from 0 to 0.25 strain, and 1.32 Å, 1.45 Å
and 1.72 Å bond lengths at 0.17 strain (see figure S1, refer-
ence [29]). For the compressive case (ǫx = −0.2), the bond
lengths, 1.289 Å and 1.538 Å, are also comparable to the
aforementioned values, whereas the bond length of 1.174 Å
approximates that of a carbon triple bond.

To understand the mechanism for the displacement of the
Dirac point as a function of uniaxial strain, a symbolic, analyt-
ical solution for the energy eigenvalues corresponding to the
8 × 8 Hamiltonian matrix for the 2-ATGNR was obtained
using Mathematica. Setting E = 0, a doubly-degenerate,
lowest-energy solution was found, with the expression for the
Dirac k-point as a function of the applied uniaxial strain (ǫx)
determined as

kD(ǫx) = cos−1

(

t2ax(ǫx)
2t2b(ǫx)

+
t2b(ǫx)
2t2ax(ǫx)

−
t2ay(ǫx)

2t2b(ǫx)

)

, (5)

where

t(ǫx) =
t0

(ǫx + 1)2 cos2 θ + (−Pǫx + 1)2 sin2 θ
(6)

is the general expression for the hopping as a function of strain.
Here, t(ǫx) = tax(ǫx) at θ = 0◦, tay(ǫx) at θ = 90◦ and tb(ǫx) at
θ = 45◦, where θ is the angle relative to the vertical tetrahedral
bond in the x-direction (along the ribbon width), t0 is the ini-
tial hopping value for the bond at ǫx = 0, and P = 0.24 is the
Poisson ratio for T-graphene (see also equations (2) and (4)).

When the tetrahedral bond lengths are equal at zero applied
strain (ǫx = 0), then tax = tay = ta and equation (5) reduces

to kD(ǫx) = cos−1
(

t2
b

2t2a

)

. For compressive strain in the x-

direction, i.e., negative strain values, then tax > tay creates an
asymmetry in the argument of equation (5) that shifts the Dirac
k-point to the left, and vice versa for the case of positive strain
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Figure 4. Band structures for the 2-ATGNR with (a) −0.2, (b) zero and (c) 0.2 uniaxial strain (ǫx) applied along the ribbon length, and
corresponding representative structures that show the resultant structural perturbations. Here, ‘a’ is the unit cell dimension for each system.
The displacement of the Dirac point in k-space as a function of the applied strain corresponds to asymmetric changes in the real-space unit
cell due to strain perturbation.

Table 1. 2-ATGNR with applied uniaxial strain (ǫx) along the ribbon length
showing the perturbation to the bond lengths, TB parameters and features
corresponding to the Dirac points (positions and linear-dispersion ranges).

Strain ǫx −0.2 0 0.2

Horiz. tetrabond (Å) 1.538 1.468 1.398
tay horizontal (eV) [2.299] [2.525] [2.786]

Vert. tetrabond (Å) 1.174 1.468 1.762
tax vertical (eV) [3.945] [2.525] [1.753]

Inter. tetrabond (diag.) (Å) 1.289 1.383 1.498
tb diagonal (eV) [3.260] [2.835] [2.412]

Dirac point features (numerically determined)

k-point position (π/a) 0.19 0.28 0.32

Linear-dispersion range (±eV) 0.16 0.10 0.05

extension, with these results making transparent the underly-
ing, symmetry-breakingmechanism associated with the Dirac
point shift, and confirming the numerical findings in figure 4
and table 1.

The number of Dirac points for symmetric ATGNRs evolve
as a function of increasing ribbon width and strain as illus-
trated by the 6-ATGNR band structures in figure 5. Com-
pressive strain at ǫx = −0.2 leads to longer bond lengths and
reduced hopping in the y-direction (tay), such that the system
is effectively reduced to multiple, weakly-coupled 2-ATGNR
chains (figure 5(d)). In the case of the 6-ATGNR, there are
three 2-ATGNR chains with tetra-based sub-units as shown
in figure 1(a), which translate to the same number of Dirac
points in k-space (figure 5(a)). For the zero-strain result, the
mirror-plane and tetra carbon-ring symmetries (tax = tay) in
the two sub-systems for the 6-ATGNR lead to two Dirac points
(figures 5(b) and (e); see also [23]), whereas in the tensile
strain (positive strain) case, asymmetry in the tetra sub-unit (tax
< tay), yet preservation of the structural mirror-symmetry,
results in a single Dirac point (figures 5(c) and (f)). The TB
prediction, therefore, not only demonstrates the robustness
of the Dirac points in symmetric ATGNRs under uniaxial

strain, but also the tunability of the number of these points
by strain engineering linked to changes in structural symmetry
and quantum confinement.

Asymmetric ATGNRs are semiconductors due to their
structural asymmetry (figure 2(b)). Upon application of uniax-
ial strain (ǫx), the band gap increases for these systems with
positive, tensile strain and decreases for negative, compres-
sive strain irrespective of the system size (figures 6(a)–(d)
for 3-, 5-, 7- and 9-ATGNRs, respectively). This finding is
commensurate with the change in energetics of the system;
a lengthening of bonds in the x-direction under tensile strain
results in greater quantum confinement along the ribbon width
and a reduction of the kinetics, i.e., reduced value of the hop-
ping, tax (cf equation (2)) in the direction of periodicity. The
increased quantum confinement against the direction of peri-
odicity causes further gap opening, whereas the converse is
true under compression. Similarly, greater quantum confine-
ment along the ribbon width for smaller-width systems results
in larger band gaps against larger-width systems at the same
values of comparative strain. The gap versus strain results
as a function of system size shows points where the band
gap closes, with the number of these points increasing as a
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Figure 5. Band structures for the 6-ATGNR with (a) −0.2, (b) zero and (c) 0.2 uniaxial strain (ǫx) applied along the ribbon length. Figures
(d)–(f) show in relative scale, the structural modifications with multiple unit cells in the direction of periodicity (x-direction) used to
highlight confinement and structural effects. In (d), compressive strain ǫx and shorter bond lengths lead to increased kinetics in the
x-direction, resulting in an effective system of three, weakly-coupled 2-ATGNR chains and the three Dirac points in (a). The box highlights
the direction of increased lateral confinement in y, and the dashed line indicates the structural symmetry of the effective 2-ATGNR.
(e) shows the 6-ATGNR with zero strain having two structural symmetries, namely, the mirror symmetry indicated by the dashed line, and
that of the symmetric tetrahedral sub-unit, which can be translated about this point resulting in the two Dirac points in (b) [23]. In (f), tensile
strain in ǫx causes increased lateral confinement in y highlighted by the box. The loss of symmetry in the base tetrahedral-unit results in
symmetry reduction with only the mirror symmetry remaining as indicated by the dashed line and single Dirac point in (c).

function of increasing ribbon width (figures 6(a)–(d)). Inves-
tigation of these points via band structure studies show that
Dirac-point features occur at the band edge under extreme
compressive strain only (ǫx = −0.164 for the 3-ATGNR,
ǫx = −0.180 for the 5-ATGNR, ǫx = −0.187 for the 7-
ATGNR and ǫx = −0.192 for the 9-ATGNR). Closer exam-
ination of the 5-ATGNR as an exemplar asymmetric system
shows that in addition to the Dirac point and associated lin-
ear dispersion at the band-edge for ǫx = −0.180, there is also
a band-gap closure under tensile strain at ǫx = 0.067, albeit
with parabolic dispersion (figure 6(e)).

An explanation of the gap-closing features of the asym-
metric 5-ATGNR can be found in the induced symmetry
changes caused by strain effects, which are apparent in the
structural modifications and TB features in table 2. In the
case of the Dirac-point formation at high compressive strain
(ǫx = −0.180), the system approaches one of weakly-coupled,
vertical chain units, such as the cleaved structure in figure 4(b)
in reference [27], and similar also to the aforementioned,
symmetric ATGNRs under compression, for example the
6-ATGNR in figure 5(d). In the case of the gap closing at
positive, tensile strain (ǫx = 0.067), the TB results (table 2)
shows that all of the bond lengths become comparable in the
5-ATGNR, yielding a structural change towards a system with
quasi-rectangular, structural symmetry. In both of these cases,
the introduction of structural symmetries result in gap-closing
mechanisms that overcome the native, structural asymmetry
effects of the ATGNR.

Table 2. 5-ATGNR bond lengths and hopping parameters
determined at the points where the band gap closes (ǫx = −0.180
and 0.067) and at zero strain.

Strain −0.180 0 0.067

Horiz. tetrabond (Å) 1.532 1.468 1.444
tay horizontal (eV) [2.320] [2.525] [2.608]

Vert. tetrabond (Å) 1.203 1.468 1.567
tax vertical (eV) [3.758] [2.525] [2.218]

Inter. tetrabond (diag.) (Å) 1.297 1.383 1.419
tb diagonal (eV) [3.223] [2.835] [2.693]

Dirac-point formation occurs for 2D-systems that map in
the low-energy limit, to an effective two-band solution, hav-
ing also an inherent, protective symmetry that allows for band
crossing and degeneracy at high-symmetry k-points—the so-
called von Neumann–Wigner theorem [30]. Against these cri-
teria, graphene is classified as a class I Dirac system due to
its inherent two-sublattice honeycomb structure that translates
to a low-energy, two-band model having a degenerate solu-
tion and linear dispersion about the high-symmetry K and
K′ points. Underpinning this solution is the structural, three-
fold rotational symmetry at each lattice point in graphene and
reflection symmetry of its two sublattices [21], with robustness
of the Dirac points to Brillouin-zone strain distortion being
attributed to an underlying protective symmetry characterised
by antiunitary operation [22]. In AGNRs, theDirac points have
been shown to be accessed via uniaxial strain that shifts these
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Figure 6. Band gap as a function of uniaxial strain (ǫx) applied along the ribbon length for the (a) 3-ATGNR, (b) 5-ATGNR, (c) 7-ATGNR,
(d) 9-ATGNR systems. To capture the narrow closing of the band-gaps in (a)–(d), 0.0001-increment calculations in ǫx were applied over the
full strain range, with this degree of computation being tractable via tight binding. (e) Corresponding band structures as a function of
uniaxial strain (ǫx) for the 5-ATGNR.

points in k-space so that they coincidewith the allowed discrete
AGNR k-values [31].

In comparison, the ATGNRs studied in this work are classi-
fied as class II Dirac systems, whereby Dirac-point formation
results from the inherent mirror-symmetry in the real-space
structure [21, 23]. Such effects are most apparent in unstrained
mirror-symmetric ATGNRs, which have Dirac points ver-
sus asymmetric gapless ATGNRs. For ATGNRs with uni-
axial strain, we have demonstrated the preservation of the
Dirac points and the number of these to be related to changes
in symmetry and quantum confinement effects due to real-
space structural modifications. Preservation of the structural
mirror-symmetry is critical for preserving the single Dirac-
point feature of these systems as per the vonNeumann–Wigner
theorem, and is shown, for example, by the 6-ATGNR under
tensile strain (figure 5(c)). Introduction of structural symme-
try, as in the 5-ATGNR with tensile strain (figure 6(b)), can
also fulfil the essential symmetry requirement where mirror
symmetry is not intrinsic, in this case by the mapping of this
system to a quasi-rectangular structure, which has also been
shown to be a class II Dirac system [21].

4. Conclusion

Application of uniaxial strain in symmetric and asymmet-
ric ATGNRs has been studied using a nearest-neighbour, TB
model. Symmetry-based arguments are used to explain the
displacement of the Dirac point in k-space and gap-closing
mechanisms in these systems caused by structural pertur-
bations upon application of uniaxial strain. The linear dis-
persion and associated Dirac points are shown to be robust
against structural modification in symmetric ATGNRs, with
capability demonstrated for multi Dirac-point formation for
systems under compressive uniaxial strain. For asymmet-
ric ATGNRs, symmetry-inducing structural changes under
compressive strain result in gap-closing mechanisms, includ-
ing Dirac-point formation, that overcome limitations due to
structural asymmetry. We hope these investigations add fun-
damental understanding to the role of symmetry in the for-
mation of relativistic properties (Dirac features) and stimulate
future DFT studies, as well as greater research, in general,
into ATGNRs, which show potential for strain engineering of
relativistic properties within the realm of flexible electronics.
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[10] Tomańek D 2020 Phys. Rev. Appl. 13 030001
[11] Wang J, Deng S, Liu Z and Liu Z 2015 Natl Sci. Rev. 2 22

[12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson
M I, Grigorieva I V, Dubonos S V and Firsov A A 2005
Nature 438 197

[13] Bao W, Liu G, Zhao Z, Zhang H, Yan D, Deshpande A, LeRoy
B and Lau C N 2010 Nano Res. 3 98

[14] Choi S-M, Jhi S-H and Son Y-W 2010 Phys. Rev. B
81 081407

[15] Jia T-T, Zheng M-M, Fan X-Y, Su Y, Li S-J, Liu H-Y, Chen G
and Kawazoe Y 2016 Sci. Rep. 6 18869

[16] Sugita Y, Miyake T and Motome Y 2018 Phys. Rev. B
97 035125

[17] Liu Y, Wang G, Huang Q, Guo L and Chen X 2012 Phys. Rev.
Lett. 108 225505

[18] Bandyopadhyay A, Datta S, Jana D, Nath S and Uddin M M
2020 Sci. Rep. 10 2502

[19] Malko D, Neiss C, Viñes F and Görling A 2012 Phys. Rev. Lett.
108 086804

[20] Majidi R 2017 Theor. Chem. Acc. 136 109
[21] van Miert G and Smith C M 2016 Phys. Rev. B 93 035401
[22] Hou J-M and Chen W 2015 Sci. Rep. 5 17571
[23] Dai C J, Yan X H, Xiao Y and Guo Y D 2014 Europhys. Lett.

107 37004
[24] Hancock Y, Uppstu A, Saloriutta K, Harju A and Puska M J

2010 Phys. Rev. B 81 245402
[25] Harrison W A 1980 Electronic Structure and the Properties of

Solids: The Physics of the Chemical Bond (San Francisco,
CA: Freeman)

[26] White C T, Li J, Gunlycke D and Mintmire JW 2007 Nano Lett.
7 825

[27] Fthenakis Z G and Lathiotakis N N 2015 Phys. Chem. Chem.
Phys. 17 16418

[28] Sun H, Mukherjee S, Daly M, Krishnan A, Karigerasi M H and
Singh C V 2016 Carbon 110 443

[29] Sui C, Zhao Y, Zhang Z, He J, Zhang Z, He X,Wang C and and
Wu J 2017 ACS Omega 2 3977

[30] von Neumann J and Wigner E 1929 Phys. Z. 30 467
Hettema H (ed) 2000 Quantum Chemistry, Classic Scientific

Papers (Word Scientific Series in 20th Century Chemistry
vol 8) (Singapore: World Scientific) pp 25–31 (Engl. transl.)

[31] Li Y, Jiang X, Liu Z and Liu Z 2010 Nano Res. 3

545

8


	Tight-binding studies of uniaxial strain in T-graphene nanoribbons
	1.  Introduction
	2.  Method
	3.  Results and discussion
	4.  Conclusion
	Data availability statement
	Acknowledgement
	ORCID iDs
	References


